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Abstract— When a centrally operated ride-hailing company
considers to enter a market already served by another company,
it has to make a strategic decision about how to distribute its
fleet among different regions in the area. This decision will
be influenced by the market share the company can secure
and the costs associated with charging the vehicles in each
region, all while competing with the company already operating
in the area. In this paper, we propose a Colonel Blotto-like
game to model this decision-making. For the class of games
that we study, we first prove the existence and uniqueness
of a Nash Equilibrium. Subsequently, we provide its general
characterization and present an algorithm for computing the
ones in the feasible set’s interior. Additionally, for a simplified
scenario involving two regions, which would correspond to a
city area with a downtown and a suburban region, we also
provide a method to check for the equilibria on the feasible
set’s boundary. Finally, through a numerical case study, we
illustrate the impact of charging prices on the position of the
Nash equilibrium.

I. INRODUCTION

Ride-hailing services have revolutionized urban transporta-
tion, offering convenience, cost-efficiency, and flexibility to
their ever-increasing number of customers. With the simul-
taneous need to curb the environmental impact of traditional
gas-powered vehicles, the rapid adoption of electric vehicles
(EVs) [1] in the ride-hailing market has become a necessity
as they govern the transition to sustainable and environmen-
tally friendly modes of transportation. However, the integra-
tion of EVs into the ride-hailing ecosystem presents various
challenges, from managing the charging of the vehicles to
optimizing fleet operations [2]–[4]. In particular, when a
centrally operated ride-hailing company wants to enter an
existing market already served by another company, it has
to make a strategic decision on how to distribute vehicles
among different regions in order to run a profitable business.
This decision will be primarily influenced by the expected
ride-hailing market share for the company and the antici-
pated operational costs, all within a competitive environment
shared with other service providers [5]–[7]. The company’s
objective is to maximize its influence in the regions and
effectively meet the heterogeneously distributed ride-hailing
demand while factoring in different charging prices offered
by existing charging infrastructure in the area.
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Fig. 1. Representation of the Blotto game setup with two companies and
six ’battlefields’ J = {J1, J2, J3, J4, J5, J6}.

Tackling the intricate dynamics of ride-hailing markets
with EVs and multiple competing companies has already
been explored in existing literature [8]–[10]. However, these
works primarily focus on determining optimal charging
prices in different regions with the aim to incentivize an
exogenously determined societal optimum that could help
reduce congestion in demand-attractive regions and total
queuing times at the charging stations resulting from their
limited capacity. The proposed hierarchical, Stackelberg-like,
game structures assume that company operators split their
fleets so as to minimize the total operational cost that, among
others, includes the cost of charging and the expected profit
earned from operating in different regions. However, the
expected profit does not model the interactions with other
companies. Instead, it has been simplified to a parametrized
linear function of the personal decision vector, providing only
an estimate based on historical data.

We propose a novel approach inspired by the principles
of Blotto games [11], commonly perceived as strategic
allocation games in which players distribute resources or
troops across multiple battlefields [12]–[14]. In this paper, a
Blotto-like model is used to describe how companies split
the share of ride-hailing users. Moreover, their decisions
will be influenced by the cost of charging in each region,
which inherently impacts the overall profitability of the
company. Within the realm of the ride-hailing market, the
framework depicted in Figure 1 conceptualizes each region
as a distinct ’battlefield’ equipped with charging stations,
where the ride-hailing companies can deploy their EVs in a
strategic competition to gain market share and secure cheaper
charging. To the best of our knowledge, our model is the
first one to take into account the cost of charging and to
introduce the concept of customer abandonments. In the
existing literature, the market share acquisition is typically
modeled using classical Blotto games with Tullock contest
success functions [14]–[16], meaning that the players share
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the whole profit that can be earned in a particular region. In
our framework, we account for the fact that it is not unlikely
that the customers decide to abandon their service requests
due to long waiting times caused by insufficient demand
coverage. As a result, although the overall profit potential for
the company in a specific region increases with the number of
deployed vehicles, a portion of it will inevitably be forfeited
depending on the companies’ participation within the region.

Apart from the novel model, the main contribution of this
paper involves establishing the existence and uniqueness of
the Nash equilibrium of the proposed game. For a general
setup, we analyze the best-response optimization problems
of the companies which results in a method to analytically
compute the Nash equilibrium if it is located in the feasible
set’s interior. Moreover, for a two-region setup, we are also
able to provide steps to analytically compute the ones on
the boundary. Finally, through a numerical case study, we
illustrate the influence of different charging prices on the
attained Nash equilibrium (NE) of the proposed model.

The paper is outlined as follows: the rest of this section
introduces the basic notation. In Section II, we outline the
general problem statement and present the structure of the
electric ride-hailing market. In Section III, we then present
our main methodological and theoretical results. Finally,
we conclude the paper with Sections IV and V, where we
illustrate our model in a numerical case study and propose
ideas for future research.

Notation: Let R denote the set of real numbers and R≥0

the set of non-negative reals. Let 1m denote the vector of all
ones of length m. For a finite set A, we let RA

(≥0) denote the
set of (non-negative) real vectors indexed by the elements of
A and |A| the cardinality of A. For finite sets A, B and a
set of |B| vectors xi ∈ RA

≥0, we define x := col((xi)i∈B) ∈
R|A||B| to be their concatenation. For a vector x ∈ Rn, we let
diag(x) ∈ Rn×n denote a diagonal matrix whose elements
on the diagonal correspond to vector x.

II. PROBLEM STATEMENT

We consider a scenario in which two players, in this case
ride-hailing companies a and b, are interested in distributing
their fleets of respective sizes Xa and Xb across m regions
in a particular area given by set J . For player i ∈ {a, b},
let xi

j ≥ 0 denote the part of the fleet player i assigned to
region j ∈ J and x−i

j ≥ 0 denote the part that its opponent
assigned to the same region. Each player’s decision vector
can be defined by xi := col(xi

j)j∈J ∈ Ωi, with the set of
corresponding feasible allocations given by

Ωi := {xi ∈ Rm
≥0|1T

mxi = Xi ∧ xi
j ≥ 0,∀j ∈ J } . (1)

Each company aims to split the ride-hailing fleet in an
attempt to maximize the profit obtained by operating and
recharging the vehicles in different regions. For a particular
choice of strategies xa ∈ Ωa and xb ∈ Ωb, we model the
profit of each company as

ui(x
i, x−i) :=

∑
j∈J

umarket
i,j (xi

j , x
−i
j )− ucharge

i,j (xi
j) ,

where umarket
i,j (xi

j , x
−i
j ) represents the expected ride-hailing

market share the company can secure in region j and
ucharge
i,j (xi

j) denotes the average cost of charging xi
j vehicles.

Market share model: We assume the demand in the area
is heterogeneously distributed between the regions, while
the customers do not exhibit a preference for any particular
company. In the demand-attractive regions, we anticipate a
higher number of requests, necessitating a greater number
of service vehicles to prevent passenger abandonment due
to extended waiting times. In other words, we assume a
portion of the revenue generated from ride-hailing requests
will consistently be forfeited because passengers tend to
cancel their requests if they wait too long for a vehicle to be
assigned to them. Hence, we adopt the following model

umarket
i,j (xi

j , x
−i
j ) := Njpj

xi
j

xi
j + x−i

j + εj
,

where Nj ∈ R>0 denotes the average number of requests in
the region j, pj ∈ R>0 denotes the average profit per vehicle,
and εj > 0 models the profit loss due to abandonments.
Therefore, the aggregated loss in area j ∈ J is given by

ploss
j (xa

j , x
b
j) := Njpj

εj
xa
j + xb

j + εj
.

By looking at ploss
j , it is clear that a higher number of service

requests leads to a higher aggregate profit loss. Moreover,
since ploss

j is an increasing function of the abandonment
parameter εj , a higher value of εj will require more vehicles
in the region to avoid large profit losses.

Charging cost: We assume that regions also offer different
charging prices. Namely, in an attempt to discourage an ex-
cessive concentration of idle drivers in high-demand regions,
we anticipate that less attractive regions would offer reduced
charging prices. We adopt the following charging cost model

ucharge
i,j (xi

j) := cjdjx
i
j .

Here, we define cj ∈ R as the price per unit of energy and
dj ∈ R as the average charging demand per vehicle. In this
context, we consider dj to be influenced by the vehicle’s
operating time, the region’s mean vehicle speed, and the
battery discharge rate. Assuming that vehicles exhibit similar
discharge rates and that idle vehicles continue to move in
search of passengers, it is justified to regard this parameter
as company-independent.

If βm
j := Njpj and βc

j := cjdj , then the interactions between
the companies can be modeled by a set of two coupled
optimization problems given by

G =

{
max
xi∈Ωi

∑
j∈J

xi
j

(
βm
j

xi
j + x−i

j + εj
− βc

j

)
,∀i ∈ {a, b}

}
.

(2)
A viable solution to this game is the concept of a Nash
equilibrium (NE). If we let x := col(xi)i∈{a,b} ∈ Ω, with
Ω := Ωa×Ωb, denote the joint strategy of the two companies,
then the NE can be formally introduced as in Definition 1.
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Definition 1 (Nash equilibrium): A joint strategy x ∈ Ω
is a Nash equilibrium (NE) of the game G given by (2), if
for all i ∈ {a, b} and all xi ∈ Ωi it holds that

ui(x
i, x−i) ≥ ui(x

i, x−i) .

Although (2) resembles the standard lottery Blotto games
with Tullock contest success functions [14]–[16], there exist
significant differences between the models. First, the pro-
posed one takes into account that the total potential profit
in each region will increase with the participation, while
classical Tullock contests assume that the whole profit is
split between the players, i.e., εj = 0. Second, the proposed
model also includes charging costs in the form of linear
terms, rendering the existing results on how to compute the
NE in games with Tullock contests inapplicable. Therefore,
in the following section, we first prove the existence and
uniqueness of the Nash equilibrium for the game G and then
proceed to provide its general characterization.

III. CHARACTERIZING THE NASH EQUILIBRIA

Based on the characteristics of the cost functions and
feasible sets outlined in Section II, we first show that there
exists a unique NE of the game G defined in (2).

Theorem 1: Game G defined by (2), with feasible sets Ωi

given by (1), admits a unique Nash equilibrium.
The proof is given in the extended version of our paper.

A. General characterization

Having established the uniqueness of the Nash equi-
librium, to characterize it, we look at the best-response
optimization problem of each player. Namely, for x ∈ Ω to
be a NE of (2), for each i ∈ {a, b}, the strategy xi ∈ Ωi has
to solve the following best-response optimization problem

maximize
xi

∑
j∈J

xi
j

(
βm
j

xi
j + x−i

j + εj
− βc

j

)
subject to 1T

mxi = Xi, (3a)

xi
j ≥ 0 . (3b)

Since the best-response optimization problem is concave,
and Ωi given by (3a) and (3b) is compact and convex, to
characterize the Nash equilibrium it suffices to look at its
set of KKT conditions. Let L be the Lagrangian of (3)

Li(x
i) = ui(x

i, x−i) + λi(1Txi −Xi) +
∑
j∈J

νijx
i
j ,

where λi ∈ R and νij ∈ R≥0 represent the dual variables
associated with the one equality and m inequality constraints
of each player. For x ∈ Ω to be a NE of (2), it has to solve
the set of nonlinear KKT equations of (3) for some feasible
λ
i

and νij . We start by analyzing the stationarity conditions

∂La

∂xa
j

= λ
a
+ νaj − βc

j +
βm
j (xb

j + εj)

(xa
j + xb

j + εj)2
= 0 , (4)

∂Lb

∂xb
j

= λ
b
+ νbj − βc

j +
βm
j (xa

j + εj)

(xa
j + xb

j + εj)2
= 0 , (5)

for all j ∈ J . After rearranging (4) and (5), we obtain

xa
j =

1

βm
j

(βc
j − λ

b − νbj)(x
a
j + xb

j + εj)
2 − εj , (6)

xb
j =

1

βm
j

(βc
j − λ

a − νaj )(x
a
j + xb

j + εj)
2 − εj . (7)

Let tj := xa
j + xb

j + εj and ∆j := 2βc
j − λ

a − νaj − λ
b − νbj .

By combining (6) and (7), we obtain a quadratic equation

∆jt
2
j − βm

j tj − βm
j εj = 0 . (8)

Because xa
j , x

b
j ≥ 0 and εj > 0, (8) yields the only viable

option which requires that ∆j > 0 and

xa
j + xb

j + εj =
βm
j +

√
(βm

j )2 + 4βm
j εj∆j

2∆j
. (9)

Let Σε :=
∑

j∈J εj , αj := 2βc
j−νaj −νbj , and tλ := λ

a
+λ

b
.

By summing (9) over all regions j ∈ J we get

Xa +Xb +Σε =
∑
j∈J

βm
j +

√
(βm

j )2 + 4βm
j εj(αj − tλ)

2(αj − tλ)
.

(10)
Solving the nonlinear equation (10) for tλ represents the
backbone for characterizing the Nash equilibrium. Therefore,
we first prove the following lemma.

Lemma 1: Let the best-response optimization problem of
each player i ∈ {a, b} be defined by (3). Then, for any two
sets {νaj }j∈J and {νbj}j∈J such that νaj , ν

b
j ≥ 0, there exist

at most one xa ∈ Ωa and xb ∈ Ωb satisfying (4) and (5).
The proof is given in the extended version of our paper.

Observe that (xa, xb, {νaj }j∈J , {νbj}j∈J , λ
a
, λ

b
) deter-

mined by (6) and (7) will be a solution of the best-response
optimization problem (3), if the complementary slackness
condition also holds for all j ∈ J . Namely, if νij > 0 for
some i, j, then it has to hold that xi

j = 0. Since t∗λ has
to be computed numerically and the choice of νij directly
influences the interval in which t∗λ is located, finding the NE
of (2) for m > 2 is in general hard as it requires extensive
exploration of the unbounded space of dual variables νij .
However, if the unique NE of (2) is in the interior of the
feasible set, i.e., it is a strategy x ∈ Ω with xa

j , x
b
j > 0 for

all j ∈ J , then Theorem 2 directly allows us to compute it.
Theorem 2: Let the best-response optimization problem of

each player i ∈ {a, b} in game (2) be defined by (3). Then,
if the interior NE strategy x ∈ Ω exists, it is determined by

xi
j =

(κ∗
j )

2

βm
j

(
βc
j − λ

−i
)
− εj ,

λ
i
=

1∑
j

(κ∗
j )

2

βm
j

(
−Σε −X−i +

∑
j

βc
j (κ

∗
j )

2

βm
j

)
,

where for all j ∈ J , κ∗
j is given by

κ∗
j =

βm
j +

√
(βm

j )2 + 4βm
j εj(2βc

j − t∗λ)

2(2βc
j − t∗λ)

,
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where t∗λ is the unique solution of (10) with αj = 2βc
j and

satisfying t∗λ ∈ (−∞,minj
βm
j

4εj
+ 2βc

j ].

On the other hand, when there are only two regions, i.e.,
J = {1, 2}, apart from checking for the interior NE that
can be computed using Theorem 2, we can also analytically
examine the existence of a Nash equilibrium on the boundary
of the feasible set. Therefore, for a two-region setup, we can
always compute the unique NE.

B. Two-region case

The number of local regions in a given area is essentially
determined by the range of charging prices accessible for
vehicles to choose from and the desire to have homoge-
neously distributed demand within the region. Therefore,
it is not unlikely that a city area could be divided into
a downtown and a suburban region such that the vehicles
incur lower expenses should they choose to charge in the
suburban areas. Interestingly, this setup allows us to establish
additional criteria based on βm

j , βc
j , εj , Xa and Xb that

precisely locate the NE.
Due to complementary slackness, characterizing the Nash

equilibria on the boundary in this case boils down to exam-
ining if some of the following structures

• xT = [0,Xa, z,Xb − z] for z ∈ [0,Xb],
• xT = [Xa, 0, z,Xb − z] for z ∈ [0,Xb],
• xT = [z,Xa − z, 0,Xb] for z ∈ [0,Xa],
• xT = [z,Xa − z,Xb, 0] for z ∈ [0,Xa],

can represent a NE of the game (2), i.e., if it can be a solution
to a pair of best-response optimization problems (3). Given
the symmetry of the problems concerning the four cases
mentioned above, in the two subsequent lemmas, we will
present our findings for scenarios in which player a chooses
a boundary action, i.e., the first two cases. The analysis for
the remaining two cases is completely analogous.

Lemma 2: Let the best-response optimization problem of
each player i ∈ {a, b} in game (2) be defined by (3) and
J = {1, 2}. Furthermore, let us define V > V as

V := βc
2 − βc

1 +
βm
1

ε1
− βm

2 (Xa + ε2)

(Xa +Xb + ε2)2
,

V := βc
2 − βc

1 +
βm
1 ε1

(Xb + ε1)2
− βm

2

Xa + ε2
.

If xT = [0,Xa, z
∗,Xb − z∗] solves (3) for player b, then

z∗ = Xb if V ≥ 0, z∗ = 0 if V ≤ 0 and in all other cases,
z∗ represents the unique solution of the equation

βm
1 ε1

(z + ε1)2
− βm

2 (Xa + ε2)

(Xa +Xb − z + ε2)2
+ βc

2 − βc
1 = 0

on interval [0,Xb].
The proof is given in the extended version of our paper.

Lemma 3: Let the best-response optimization problem of
each player i ∈ {a, b} in game (2) be defined by (3) and
J = {1, 2}. Furthermore, let us define W > W as

W := βc
2 − βc

1 +
βm
1

Xa + ε1
− βm

2 ε2
(Xb + ε2)2

,

W := βc
2 − βc

1 +
βm
1 (Xa + ε1)

(Xa +Xb + ε1)2
− βm

2

ε2
.

If xT = [Xa, 0, z
∗,Xb − z∗] solves (3) for player b, then

z∗ = Xb if W ≥ 0, z∗ = 0 if W ≤ 0 and in all other cases,
z∗ represents the unique solution of the equation

βm
1 (Xa + ε1)

(Xa + z + ε1)2
− βm

2 ε2
(Xb − z + ε2)2

+ βc
2 − βc

1 = 0

on interval [0,Xb].
The proof is given in the extended version of our paper.

Using Lemmas 2 and 3, we can now outline the condi-
tions under which xT = [0,Xa, z

∗,Xb − z∗] and xT =
[Xa, 0, z

∗,Xb − z∗], with z∗ ∈ [0,Xb] chosen so as to
solve the best-response optimization problem (3) of player
b, represent the Nash equilibrium of game (2).

Theorem 3: Let the best-response optimization problem
of each player i ∈ {a, b} in (2) be defined by (3) and
J = {1, 2}. Let z∗1 , z

∗
2 ∈ [0,Xb] be such that xT

1 =
[0,Xa, z

∗
1 ,Xb − z∗1 ] and xT

2 = [Xa, 0, z
∗
2 ,Xb − z∗2 ] solve

the best-response optimization problem of player b. Then,
x1 is the NE of game (2) if and only if

z∗1 ∈ (0,Xb) ∧ (Xb − z∗1 −Xa)β
m
2

(Xa +Xb − z∗1 + ε2)2
− βm

1 z∗1
(z∗1 + ε1)2

≥ 0 ,

or
z∗1 = 0 ∧ −V +

(Xb −Xa)β
m
2

(Xa +Xb + ε2)2
≥ 0 .

In addition, x2 is the NE of game (2) if and only if

z∗2 ∈ (0,Xb) ∧ (z∗2 −Xa)β
m
1

(Xa + z∗2 + ε1)2
− (Xb − z∗2)β

m
2

(Xb − z∗2 + ε2)2
≥ 0 ,

or
z∗2 = Xb ∧ W +

(Xb −Xa)β
m
1

(Xa +Xb + ε1)2
≥ 0 .

The proof is given in the extended version of our paper.

It is now clear that combining Theorem 2, 3 and their coun-
terparts corresponding to structures xT = [z,Xa − z, 0,Xb]
and xT = [z,Xa − z,Xb, 0], allows us to compute the Nash
equilibrium of any two-region game (2). In the following
section, we will demonstrate the outlined procedures and
explore the influence of varying the charging prices.

IV. NUMERICAL EXAMPLE

As outlined in Section II, in this paper we are interested in
analyzing the static scenarios assuming that vehicles assigned
to a particular region stay there to charge. To demonstrate
the performance of the algorithms, we construct a four-region
and a two-region setup and analyze the attained NE.

A. Four-region case

We start by examining a scenario wherein the city is seg-
mented into four regions, denoted as J = {J1, J2, J3, J4},
each characterized by varying levels of attractiveness in terms
of ride-hailing demand. In this scenario, we assume the
companies operate with fleet sizes represented by Xa =
1000 and Xb = 2000 vehicles, respectively. The profit
potential across these regions is depicted by the vector
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Fig. 2. Four-region setup - Fleet distribution and earned profit of the
companies in the attained NE for different values of parameter α.

βm = [35 · 103, 50 · 103, 100 · 103, 180 · 103]T , while the
levels of abandonments are detailed through the vector ε =
[50, 100, 120, 200]T . The setup indicates that J4 exhibits the
highest demand for ride-hailing services, necessitating the
largest number of vehicles to serve it effectively. Conversely,
J1 reflects the lowest demand, resulting in a comparatively
smaller number of abandoned service requests. Regarding
the charging costs, we assume they are determined by a
parametrized vector βc = [5, 3α, 5α, 50]T , with α ∈ [1, 20].

We simulate the model for Ntotal = 100 values of param-
eter α in an attempt to illustrate the impact of the charging
prices on the attained Nash equilibrium. For the chosen
configuration of parameters for the four-region setup, we
were able to find the unique Nash equilibrium by direct
application of Theorem 2 for every value of α. In Figure 2,
we show the secured profits of each company in the NE and
the corresponding fleet split for each α. It is evident that the
company operating a larger fleet is notably more affected
by the increased charging prices. Additionally, we observe

TABLE I
COMPANY DECISIONS AND ATTAINED PROFIT

α
Company a Company b

xa
1 xa

2 ua xb
1 xb

2 ub

1.0 222.6 777.4 35591 453.0 1547.0 71178.4
5.0 484.1 515.9 20448 1336.6 663.4 32165.6

25.0 943.6 56.4 3707.7 1937.9 62.1 5646.1
41.0 1000.0 0.0 1290.3 2000.0 0.0 2580.7
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Fig. 3. Two-region setup - Attained NE of the companies and secured
profits in different regions for different values of parameter α. The vertical
black line represents the experimentally obtained critical value αcrit.

that in regions J2 and J3, as the parameter α increases,
both companies simultaneously decrease the portion of their
fleet. This reduction results in fewer vehicles available for
service, leading to an increase in the incurred profit loss ploss

j .
This is further supported by observing that regions J1 and
J4 with fixed charging costs become increasingly popular
as α increases. Furthermore, the plot also implies that the
reduction in vehicle engagement is more prominent in J3
compared to J2 as α increases, which aligns with the fact
that the charging prices rise more rapidly in J3.

B. Two-region case

To test the procedure for finding the NE irrespective of
its position in the feasible set, we construct a two-region
setup, i.e., J = {J1, J2}. In this case, the potential profit and
abandonments are described by βm = [35 · 103, 120 · 103]T
and ε = [100, 300]T and we keep the same fleet sizes as
for the four-region case. To model the charging costs we
now adopt a parametrized vector βc = [10, 10α]T with
α ∈ [1, 50]. Similar to the previous setup, we show the
achieved fleet distribution and attained profits per region for
different values of α in Figure 3. Apart from observing the
same patterns as in the four-region case, here it is also worth
noting that there exists a critical value of α beyond which
the Nash equilibrium will be located on the boundary of the
feasible set. For the chosen set of parameters, by numerical
inspection, we get the approximate value of αcrit ≈ 40.7.
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For reference, in Table I, we show the numerical values of
the attained Nash equilibrium and the total achieved profit of
the companies for some specific values of α. As expected,
with the increase in α, the second region J2 becomes less
attractive even though it enjoys higher ride-hailing service
demand. Beyond the critical value αcrit, the Nash equilibrium
of the system imposes that both companies send their whole
fleets to serve region J1 as the charging costs in region J2
would become predominant. However, although theoretically
possible, the high value of αcrit suggests that this setup would
correspond to an unrealistic real-world scenario as it is highly
unlikely that the charging prices in one region would be
almost 41 times greater than in the other region.

Finally, we explore the impacts of expanding the fleet size
of one of the companies. We assume company a remains
with the same fleet of Xa = 1000 vehicles but we let Xb ∈
[200, 4000]. For the same βm and βc = [10.0, 30.0], Figure 4
shows the splits and the total profits of the companies. As
expected, with the increase of Xb the total profit of company
a decreases due to its smaller market share. However, the plot
also suggests that for a fixed fleet size of company a, there
exists an optimal value of Xb resulting in the highest total
profit. This is not unexpected since a bigger fleet also incurs
higher charging costs thereby diminishing the advantages
achieved when securing the market share. For the chosen
parameters, by numerical inspection, we get Xoptimal

b ≈ 1743.
Before we conclude the numerical case studies, it is worth

noting again that these analyses hold under the assumption
that the vehicles assigned to a particular region stay there to
charge. In reality, it could be the case that ride-hailing vehi-
cles get rebalanced by the company’s central operator [17],
so the vehicles might change the region in which they
operate before charging begins. Since vehicle rebalancing
also comes at a certain cost, it would be beneficial to analyze
the interplay between the current model and rebalancing
costs. However, this is beyond the scope of this paper and
is considered an interesting direction for future research.

V. CONCLUSIONS

In this work, we present a novel extension of the Blotto
games that, in addition to a modified Tullock contest success
function, which makes the profit depend on the participation,
also incorporates an additional linear cost term representing
the charging costs. To analyze how a ride-hailing company
wishing to enter a market should strategically distribute its
fleet among different regions in the area, we start by estab-
lishing the existence and uniqueness of a Nash equilibrium
for the proposed game structure. For a general case with
any number of regions, we propose an analytical method to
find the NE if it is located in the interior of the feasible set.
Furthermore, for a two-region case, we were able to extend
this method to find the NE regardless of its location within
the feasible set. Finally, having established the methodology,
in two numerical case studies, we illustrated the influence of
charging prices on the location of the Nash equilibrium.

n the future, we first aim to investigate if the analysis of
the Nash equilibria on the feasible set’s boundary can be
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Fig. 4. Two-region setup - Attained NE of the companies and total profits
of the companies for different values of Xb

extended. Additionally, we aim to broaden our investigation
to encompass scenarios involving more than two players and
to consider the optimization of fleet size. Finally, we plan to
explore if the proposed method can be further extended to
incorporate the advantages of vehicle rebalancing strategies.
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