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Abstract— We introduce a dynamic model for network par-
ticipation and resource-sharing problems grounded in non-
cooperative game theory. Within a social network, individuals
must decide whether to join cooperative activities or share
resources based on anticipated benefits versus incurred costs.
We cast these problems as non-cooperative games and com-
prehensively characterize the Nash equilibria in these settings.
Furthermore, we introduce Log-Linear Learning (LLL) as a
potential decision strategy for the participants and analyze the
long-term dynamics of this approach within the framework. We
perform extensive simulations on random networks to empiri-
cally validate our research findings. These simulations provide
compelling evidence that within our proposed framework, user
engagement in network participation and sharing dilemmas
closely aligns with the well-established concepts of k-core and
(r, s)-core within network structures.

I. INTRODUCTION

The exchange of information and resources within a social
network depends on the willingness of users to share. These
resources may take the form of information, such as job
openings, stock prices, or product reviews, or they can be
physical resources like sensor suites for weather data in
agricultural planning or location-sharing for accurate traffic
congestion updates on cellphones. Consequently, when in-
dividuals choose not to contribute their available resources,
even if they have many connections in the underlying so-
cial network, it can hinder the progression of a specific
phenomenon. Thus, within the framework of a given social
network, an important challenge is to identify users who are
inclined to engage in cooperative activities ( [1], [2], [3], and
[4]).

We propose a game-theoretic framework for network for-
mation within network participation and sharing games. In
participation games, users face the choice of joining a co-
operative activity, which involves incurring certain costs but
also reaping associated benefits. Similarly, in sharing games,
each player possesses a set of personal resources and must
decide whether to share these resources with their friends or
neighbors in a social network. When mutual resource sharing
occurs among friends with different resources, it can benefit
all parties involved. Various models for user engagement
have been proposed in the literature on social network
analysis, behavioral psychology, and economics, based on
empirical evidence and experimental data. An important
aspect of these models is the concept of reciprocity as
discussed in [5], [6], [7], and [8]. The principle of reciprocity

A. Luqman and H. Jaleel are with the Intelligent Machines & Sociotechni-
cal Systems (iMaSS) Lab, Department of Electrical Engineering, Syed Babar
Ali School of Science & Engineering at LUMS, Lahore, Pakistan. Emails:
hassan.jaleel@lums.edu.pk, 24100041@lums.edu.pk

dictates that users only participate in any activity as long as
their expected benefits outweigh the cost of participation.

Based on reciprocity, the following model has been widely
adopted for the network participation problem. A user de-
cides to participate in a network activity if a minimum
number, say k, of his friends are also participating. He opts
out of the activity if the number of participating friends drops
below k. This model leads to the concept of k-core of the
network as a measure of user engagement (see, for example,
[1], [8], [9], [10]). Here, the k-core is a graph theoretic
notion and refers to the maximal sub-graph of a graph in
which each vertex has at least k neighbors. Similarly, in the
network sharing problem as presented in [4], there exists a
total of r resources in the network, and each user is randomly
assigned s of these resources, where s is less than r. Then,
the users agree to share their resources if they can access
all the r resources through their friends. This model leads to
(r, s)-core as a solution concept for network-sharing games.

The analysis that establishes k-core and (r, s)-core as a
measure of user engagement in [1] and [4], and the other
related literature assumes that all the players are initially
participating in the cooperative/sharing activity. Then, the
players who do not satisfy the k-neighbor criteria or do not
get access to all the r resources from their participating
friends decide to opt out. This user attrition can lead to a
cascade of users leaving the activity in steps. The iterative
process converges to the k-core or (r, s)-core of the network,
in which all the users satisfy the desired criteria. However,
this approach cannot explain the formation of a participa-
tion/sharing network from initial conditions in which the
number of initial participants is significantly less than the
k-core or (r, s)-core of the network.

There also exists an extensive body of literature on net-
work formation in which the primary research question is
to figure out the type of networks that emerge when a
group of myopic and self-interested agents has to decide
whether to participate in a cooperative activity or not (see
e.g., [11], [12], [13], [14]). However, these works focus on
edge formation so that users can select a specific subset of
neighbors with whom they wish to collaborate. This problem
differs from the user participation problem, in which all the
neighbors of a participating user benefit.

Our objective in this work is to generalize the network
participation and sharing problem setups by proposing a
dynamic network formation approach that can lead to a
participation/sharing network from any initial condition. In
particular, we formulate these problems as non-cooperative
games where users are modeled as self-interested rational
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players with a utility function. The players decide between
participating in a network activity or opting out by maxi-
mizing their local utility functions. We provide a complete
characterization of the Nash equilibria set for both games.
Then, we propose a dynamic model for players’ decisions in
which players select their actions using Log-Linear Learning
as defined in [15] and [16].

Log-linear learning (LLL) is a version of noisy best-
response dynamics that assumes the players have bounded
rationality. In bounded rationality, players select the best
response actions with a high probability but select suboptimal
actions with a small but non-zero probability. This behavior
based on bounded rationality has been explored in a variety
of theoretical and empirical settings as in [17], [18], [19], and
[20]. After setting up the game, we prove for the network
participation game that all the best response paths are acyclic
and stochastically stable joint action profiles under LLL will
belong to the set of Nash equilibria.

II. SETUP

We consider a social network of n players represented by a
graph G(V, E), where V = {1, 2, . . . , n} is the set of players
and E is the edge set. An edge (i, j) ∈ E implies that players
i and j can interact and benefit from each other. Let N (i)
be the neighborhood set of player i, i.e.,

N (i) = {j ∈ V | (i, j) ∈ E},

and N [i] = N (i)∪{i} be the closed neighborhood of i. Each
player has a set of actions Ai and A = A1, A2, . . . , An is
the set of joint action profiles. Each element σ in A is an
n-tuple (σ1, σ2, . . . , σn) such that σi ∈ Ai is an action of
player i. We use the notation σ = (σi, σ−i) to represent
actions from the perspective of player i where σ−i is an
(n−1)-tuple representing the actions of all the players other
than i. Similarly, for any set S ⊂ V , σ = (σS , σV \S) is a
decomposition of action profile between players in the sets
S and V \ S respectively.

A player has a utility function defined over the set of
joint action profiles, i.e., Ui : A → R. Given an action
profile σ−i, player i prefers action σi over σ′

i if and only
if Ui(σi, σ−i) > Ui(σ

′
i, σ−i). The set of best responses of

player i to σ−i is

Bi(σ−i) = {σ∗
i ∈ Ai | Ui(σ

∗
i , σ−i) ≥ Ui(σi, σ−i) ∀ σi ∈ Ai}.

Let
dH(σ, σ′) = |{j ∈ V | σj ̸= σ′

j}|

be the number of players whose actions differ in pro-
files σ and σ′. A sequence of joint action profiles P =
(σ0, σ1, · · · , σl−1), σp ∈ A for all p ∈ {0, 1, · · · , l−1}, is a
best-response path if dH(σp, σp+1) = 1 for each consecutive
pair of profiles and σp+1

i belongs to Bi(σ
p
−i) for the updating

player i. Thus, at each step of the best response path, only
one player updates his action, and the updated action is the
best response to the actions of other players. For the path P ,
we define

P(σp, σp+1) = {i ∈ V | σp
i ̸= σp+1

i },

i.e., P(σp, σp+1) is the index of the player updating his
action from σp to σp+1.

Given an action profile, players update their actions based
on some strategic rule. A variety of learning rules have
been proposed and analyzed in the literature. We assume
that players’ action selection strategy can be modeled by
Log-Linear Learning (LLL), which is a version of noisy
best response dynamics (see e.g., [15] and [21]). Log-linear
learning is an asynchronous learning rule in which, at each
decision time, only one player updates his action. It induces
a Markov chain on the A, and the induced Markov chain is
ergodic and reversible with a unique stationary distribution
µLLL
T . An action profile σ is stochastically stable if and only

if limT→0 µ
LLL
T (σ) > 0, where T is a noise parameter for

selecting noisy actions.

III. NETWORK PARTICIPATION GAME-k NEIGHBOR
SETUP

Consider a social network represented by a graph G(V, E),
where V = {1, 2, · · · , n} is the set of players, and E is the
set of connections among the players. Suppose the players
are allowed to participate in some collaborative activity. Each
agent will have to pay some cost to participate in that activity.
Let the cost of participation be k. Each player also anticipates
receiving some benefit from participating in this activity, and
the benefit depends on the number of neighbors of the player
who also decide to participate. To formulate this problem as
a game, each player has two actions in his action set Ai =
{1, 0}, where the actions 1 and 0 represent participating or
not participating in the activity. Given an action profile σ in
A. We define two sets

Vσ = {j ∈ V | σj = 1},

i.e., Vσ is the set of players participating in the network in
action profile σ. From a player’s perspective, we define

N p
i (σ) = {j ∈ N (i) | σj = 1}.

where N p
i (σ) is the set of neighbors of i that are already

participating in the network. As before N p
i [σ] = N p

i (σ)∪{i}
be the closed neighborhood of participating players of i.

A key challenge in formulating the network participation
problem as a non-cooperative game is to propose a utility
function that should support the empirical evidence and
experimental observations regarding players’ participation
decisions. It should also result in a game setup that can be
analyzed in detail. The utility function of a player that we
propose in this work is

Ui(σi, σ−i) = σi

(
1

N (i)
(N p

i (σ)− k) +
α

N (i)
1i(σ)

)
.

(1)
A player’s utility is zero for not participating in the cooper-
ative activity. For σi = 1, the utility has two terms. The first
term depends on the number of his neighbors participating
in the network, represented by N p

i (σ). A player receives a
positive utility if N p

i (σ) is greater than k and a negative
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utility if N p
i (σ) < k. The second term is an indicator

function.

1i(σ) =

{
1 |N p

i (σ)| = k,
0 otherwise,

and α ∈ (0, 1). The objective of the second term is to
break the tie when the number of participating neighbors
of a player is exactly equal to k.

The utility function is normalized by N (i), which results
in a utility function that is asymmetric about the real axis
depending on the relative values of k and N (i). This asym-
metry helps in modeling the phenomenon that for players
with the number of neighbors significantly higher than k,
the cost of joining the network when N p

i (σ) is less than k is
small as compared to the players with a small neighborhood
set. This relative difference in cost implies that players with
a large number of neighbors will be more willing to take
risks, and the probability of selecting noisy actions in LLL
will be higher than those with a small number of neighbors.
Thus, well-connected players in the network are more likely
to join early than players with few neighbors.

A. Analysis

Next, we analyze the network participation game for which
the player utilities are defined in (1), and players use noisy
best response, modeled by LLL, as their decision strategy.
We will use Nash equilibrium and stochastic stability as our
solution concept to analyze network formation behavior for
this setup.

Proposition 1: For the network participation game with
utility function defined in (1), an action profile σ∗ is a Nash
equilibrium if either of the following conditions is satisfied.

1) σ∗
i = 0 for all i ∈ V .

2) For all i in Vσ∗ , d(i, Vσ∗) ≥ k and for all j in V \Vσ∗ ,
d(j, Vσ∗) < k.
Proof: To prove the first part of the proposition, suppose

the joint action profile is σ = (0, 0 . . . , 0). Then, the utility
of all the players is zero. At each iteration, a random player,
say i, is selected to update his action under LLL. Then,

Ui(0, σ−i) = 0 and Ui(1, σ−i) = −k/|N (i)|.

Thus, each player prefers no participation over participation
if the current joint profile is (0, . . . , 0).

For condition 2), the joint action profile σ is represented
as σ = (σVσ∗ , σV \Vσ∗ ). For each player in Vσ∗ , the con-
dition d(i, Vσ∗) ≥ k implies that player i has at least k
neighbors who are participating in the activity. Therefore,
Ui(1, σ

∗
−i) > Ui(0, σ

∗
−i). The strict inequality is enforced

by the second term in the utility action that adds a value of
α to the utility function when the number of participating
neighbors is exactly equal to k. Similarly, for all players
j ∈ V \ Vσ∗ , the condition d(j, Vσ∗) < k implies that the
number of participating neighbors is less than k and therefore
Ui(0, σ

∗
−i) < Ui(1, σ

∗
−i).

Proposition 2: For the network participation game with
utility function defined in (1), all best response paths are
acyclic.

Proof: Suppose the above statement is not true and
there exists a best response path P = (σ1, σ2, · · · , σl, σl+1

that is a cycle, i.e., σ1 = σl+1. For a path to be a cycle, every
player that transitions from 0 to 1 must transition back to 1
and every player that transitions from 1 to 0 must transition
back from 0 to 1. Thus, we can only have a cycle with an
even number of transitions, which implies that l must be an
even number with σl+1 = σ1.

Let G be a global function on the set of joint action profiles
and is defined as

G(σ) =

n∑
i=1

Ûi(σi, σ−i),

where

Ûi(σi, σ−i) = N (i)Ui(σi, σ−i)− α1i(σ)σi. (2)

If the path P is a cycle, then the following equality must
hold

l∑
q=1

[
G(σq+1)−G(σq)

]
= 0.

Since every transition must be reversed in a cyclic path.
Suppose

P(σq1 , σq1+1) = P(σq2 , σq2+1) = i,

i.e., player i updates the actions in transitions (σq1 , σq1+1)
and (σq2 , σq2+1). Without loss of generality, we assume that
i transitions from 0 to 1 in σq1 to σq1+1 transition and from
1 to 0 in some later transition σq2 to σq2 , where 1 < q1 <
q2 < l. Then,

G(σq1+1)−G(σq1) = [Ûi(1, σ
q1
−i)− Ûi(0, σ

q1
−i]+∑

j∈Np
i (σq1 )

[
Ûj(σ

q1
j , 1, σq1

−{i,j})− Ûj(σ
q1
j , 0, σq1

−{i,j})
]
+

∑
j /∈Np

i [σq1 ]

[
Ûj(σ

q1)− Ûj(σ
q1)

]
.

Here Ûj(σ
q1
j , 1, σq1

−{i,j}) is the updated utility of player j

when σq1
j is the action of j, σq1

i = 1 is the action of player
i and σq1

−{i,j} is the joint action profile of actions of players
other than i and j.

The last term in the above equation is equal to zero since
the utility of the players that are not in the participating
neighborhood of player i remains the same from σq1 to
σq1+1. Player i transitions from 0 to 1 as his best response
if the |N p

i (σ
q1)| ≥ k. Thus,

[Ûi(1, σ
q1
−i)− Ûi(0, σ

q1
−i)] = |N p

i (σ
q1)| − k.

The second term in the expression for G(σq1) − G(σq1+1)
is the impact of player i’s participation on the utility of his
participating neighbors and is equal to N p

i (σ
q1) since the

utility of each participating neighbor of i is increased by a
factor of 1/N (j). Thus,

G(σq1)−G(σq1+1) = 2N p
i (σ

q1)− k.
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When player i transitions from 1 to 0 at some later step
of the cycle, say σq2 = (1, σq2

−i) and σq2+1 = (0, σq2
−i), then

G(σq2)−G(σq2+1) = 2N p
i (σ

q2)− k.

Since a transition from 1 to 0 is the best response only if
the number of participating neighbors is less than k, we get
N p(σq2) < k ≤ N p(σq1). Therefore,

[G(σq1)−G(σq1+1)]− [G(σq2)−G(σq2+1)] > 0

Thus, given the best response cycle, we can divide the entire
path into a pair of transitions of individual players from 1
to 0 and then from 0 to 1. The corresponding difference in
the global function G(·) for these transition pairs is always
greater than zero. Therefore,

l−1∑
p=1

[
G(σp+1)−G(σp)

]
> 0

for any best response cycle, which is a contradiction. Thus,
the best response path cannot be a cycle for our network
participation game with the utility function defined in (2).

Proposition 3: Consider the network participation game
with the utility function defined in (1). If all the players
adhere to Log-Linear Learning for decision-making, then the
stochastically stable joint action profiles belong to the set of
Nash equilibria.

Proof: The proof is a direct consequence of Props.
1 and 2. Prop. 1 implies that all the Nash equilibria of
the game are strict, i.e. if σ∗ ∈ A is a Nash equilibrium
then Ui(σ

∗
i , σ

∗
−i) is strictly greater than Ui(σi, σ

∗
−i) for any

σi ∈ Ai. Prop 2 establishes that the best response paths are
acyclic. For a finite number of players with a finite number
of actions, |A| is finite, and therefore, every best response
path should have a finite length. Thus, every best response
path has to terminate, and it cannot terminate to any profile
other than a Nash equilibrium. The Markov chain induced by
LLL follows a best response path with high probability and
Nash equilibria are the only absorbing states of the Markov
chain if T = 0. Thus, in the limiting case of T → 0, the
stochastically stable profiles for which µLLL

T > 0 will belong
to the set of Nash equilibria, which concludes the proof.

IV. NETWORK PARTICIPATION GAME: ASSORTED
RESOURCES SETUP

We consider a generalization of the network participation
game as presented in [4]. In the generalized setup, each
player has a set of personal resources, which can be certain
physical sensors, information, or expertise for performing
certain tasks. A player can share his resources with his im-
mediate neighbors in the network. Let R = {0, 1, . . . , r−1}
be the set of resources available in the network. Each node
is assigned a subset of s resources where s ≤ r. This setup
can be represented as a labeled graph in which each node
is assigned a label, where the label of anode is the set of
resources assigned to that player.

In this game setup with assorted resources, V =
{1, 2, . . . , n} is the set of players, and each player can

interact with a subset of other players. Each player has a
set of actions Ai = {1, 0}, where σi = 1 and σi = 0 imply
that player i is participating or not participating in the social
activity. Given an action profile σ = (σi, σ−i) in A, where
σi is the action of player i and σ−i is the joint action profile
of all the players other than i, we define

Li(σ−i) =
⋃

j∈Np
i [σ]

l(j).

where N p
i [σ] is the closed neighborhood of i and comprises i

and all the neighbors of i that are participating in the sharing
network in profile σ−i Thus, Li(σ−i) is the set of resources
that i can access either directly or through its immediate
neighbors who are participating. We propose the following
utility function for each player

Ui(σi, σ−i) =
σi

r
(|Li(σ−i)| − r + α1(σ)) , (3)

where

1i(σ) =

{
1 |Li(σ−i)| = r,
0 otherwise,

Notice that we have redefined 1i for notational convenience
and it will be obvious from the situation which definition is
applicable.

Player i receives zero utility when there is no participation,
i.e., σi = 0. If the player decides to participate, the resulting
utility, as defined in (3), is negative if the number of resources
that i can access in the closed neighborhood of participating
players, N p

i (σ), is less than r. However, if i has access to
all the r resources, then Ui equals α/r for some positive α.

A. Analysis

We have set up a non-cooperative game for the network
sharing game with assorted resources by defining a utility
function in (3). Again, we consider Nash equilibrium to be
our primary solution concept for analyzing network behavior.
The analysis approach will be similar to the k neighbor setup
approach.

Proposition 4: For the network sharing game with utility
function defined in (3), an action profile σ∗ is a Nash
equilibrium if either of the following conditions is satisfied.

1) σ∗
i = 0 for all i ∈ V .

2) For all i in Vσ∗ , |Li(σ
∗
−i)| = r and for all j in V \Vσ∗ ,

|Li(σ
∗
−i)| < r, where Li(σ

∗
−i) is the set of resources

that player i can access in the closed neighborhood of
participating players.
Proof: We can verify the above statements by applying

the definition of Nash equilibrium. Consider condition 1)
and let σ∗ = (0, 0 . . . , 0), i.e., no player participates in the
sharing network. Suppose player i is randomly selected to
update the action. Then, i’s utilities for both actions will be
the following.

Ui(0, σ
∗
−i) = 0 and Ui(1, σ

∗
−i) = (s− r)/r.

Thus, i will prefer no participation over participation if σ∗

is all zero.

777



0 1 2 3 4 5 6 7 8 9

Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
-c

o
re

 s
iz

e

k = 5

k = 6

k=7

k=8

k=9

(a) k-core size

0 1 2 3 4 5 6 7 8 9 10

Number of iterations 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
e
tw

o
rk

 s
iz

e

k = 5

k = 6

k=7

k=8

k=9

(b) Participation Network size
with LLL

0 1 2 3 4 5 6 7 8 9 10

Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(r
,s

)-
c
o
re

 s
iz

e

(r,s) = (10,4)

(r,s) = (10,3)

(r,s) = (8,4)

(r,s) = (8,3)

(r,s) = (6,3)

(c) (r, s)-core size

0 1 2 3 4 5 6 7 8 9 10

Number of iterations 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
e
tw

o
rk

 s
iz

e

(r,s) = (10,4)

(r,s) = (10,3)

(r,s) = (8,4)

(r,s) = (8,3)

(r,s) = (6,3)

(d) Sharing network size with LLL

Fig. 1. Simulation Results for Network Participation and Sharing Games

Let σ∗ = (σ∗
Vσ∗ , σ

∗
V \Vσ∗ ) be an action profile that satisfies

condition 2). Suppose player i is randomly selected to update
the action under LLL. Then, if i belongs to Vσ∗ , condition
2) implies that Li(σ

∗
−i) = r, i.e., i has access to all the r

resources in the closed neighborhood of participating players.
Therefore,

Ui(1, σ
∗
−i) = α/r and Ui(0, σ

∗
−i) = 0,

and player i will prefer to keep participating in the sharing
network over not participating. Suppose i ∈ V \ Vσ∗ and
condition 2) implies that σ∗

i = 0 and Li(σ
∗
−i)| < r. When

i will receive an opportunity to update his action, his utility
for both the actions will be

Ui(0, σ
∗
−i) = 0 and Ui(1, σ

∗
−i) = (s− r).

Therefore, player i’s best response will be σi = 0.
Finally, we argue that any action profile that does not

satisfy conditions 1) or 2) is not a Nash equilibrium. Suppose
there exists a non-zero such profile σ̂ that does not satisfy
condition 2) but is a Nash equilibrium. Not satisfying 2)
implies that either there exists a player with σ̂i = 1 but
|Li(σ̂−i)| < r or there exists a player with σ̂i = 0 but
|Li(σ̂−i)| = r. In both of these scenarios, the best response
of that player will be to switch the current action, and hence
σ̂ cannot be Nash equilibrium.

V. SIMULATION

We performed extensive simulations in Matlab to validate
our results. We modeled the underlying social network with
Erdös-Rényi (ER) graphs. In an ER graph, an edge exists
between any node pair with probability p. We considered ER
graphs with n = 1000 players and link formation probability
p = 0.010. Thus, each player had ten neighbors on average.
We generated 100 ER graphs and verified our results on all
the randomly generated networks. Then, we computed the
average performance over all the hundred networks.

A. Simulation results for the Network Participation Game:

For the network participation game, we selected T = 0.3
and α = 0.5, where T was the noise parameter in LLL
and α was a parameter in the utility function defined in (1).
We simulated networks with k = {5, 6, 7, 8, 9}. The results
are presented in Fig. 1. In Fig. 1(a), we present the results
of the standard k-core selection algorithm as described in
[1] in which we started with all the players participating in

k 5 6 7 8 9
% error 0.22 0.28 2.28 1.3 0

TABLE I
PERFORMANCE COMPARISON FOR NETWORK PARTICIPATION GAME

the network, and then we iteratively removed the players
who did not satisfy the k neighbor criteria. The x-axis in
this plot corresponds to the number of iterations, and the
y-axis corresponds to the expected fraction of players that
belong to the k-core of the network, averaged over one
hundred randomly generated networks. As can be seen from
the figure, the k-core of the networks was empty for k = 8
and k = 9, and a significant fraction of players were included
in the k-core for k < 8.

In Fig. 1(b), we present the results of our proposed
approach for the network participation problem. In this plot,
the x-axis represents the number of iterations of LLL, and
the y-axis represents the network size equal to the fraction
of players participating. For our results, we started with the
initial condition with no participating player. However, under
LLL, the fraction of players who decide to participate in
the network starts to increase and reach a steady state after
around twenty thousand iterations. From these results, we
can immediately observe a direct relation between the sizes
of the k-core and network sizes under our proposed scheme
for various values of k.

We compared each player’s action in the k-core for-
mulation and our proposed formulation for performance
comparison. Because of the noise in LLL, players have a
non-zero probability of switching their actions. However,
choosing a suboptimal action is a rare event. Therefore, we
considered the actions of all the players when LLL reached a
steady state. In particular, we considered the actions of all the
players in the final thirty thousand iterations of LLL. From
Fig. 1(b). we can observe that the state of the network is
the steady state for the final thirty thousand iterations. Then,
we imposed a constraint: if a player decided to participate in
the network for over 95% of these thirty thousand iterations,
we considered that player a network member. Otherwise, we
assumed that the player’s participation was a rare event and
the player was not considered a network member.

The results of this analysis are presented in Table I. For
the cases of k ∈ {5, 6, 7, 8, 9}, the expected error is less
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k (10,4) (10,3) (8,4) (8,3) (6,4)
% error 0.53 0.24 0.156 0.77 0.08

TABLE II
PERFORMANCE COMPARISON FOR NETWORK PARTICIPATION GAME

than 2.5%, which is an extremely tight bound considering
the stochastic nature of players’ decision strategy. Based on
these results, we can declare with high confidence that in
the network participation game that we presented in Section
III where the objective of the players was to maximize
their utility defined in (1) using LLL, the global state of
network converges to the k-core of the network. Thus, we
have addressed the challenge of k-core formation as a non-
cooperative game.

B. Simulation results for the Network Sharing Game:

We performed a similar analysis for the Network Sharing
Game, and the results are presented in Fig. 1. As before, the
underlying social network is an ER graph with n = 1000
and p = 0.01, which resulted in an expected number of ten
neighbors per player. The simulations were performed for
(r, s) in {(10, 4), (10, 3), (8, 4), (8, 3), (6, 3)}. We selected
the noise parameter T = 0.15 and α = 0.5 for (3). The
results were averaged over one hundred randomly generated
ER networks. In Fig. 1(c), we present the results for the
expected fraction of players included in the (r, s) core of
ER networks. The only case in which (r, s)-core was empty
was (r, s) = (10, 3). The percentage of players included in
the (r, s)-core for all the other simulated scenarios was over
80%. In Fig. 1(d), we present the results for our proposed
scheme for the network sharing game. The y-axis represents
the network size regarding the expected fraction of players
sharing their resources over the network with LLL as their
decision strategy. We can observe that the results are very
similar.

We compared the network performance under (r, s)-core
and the size of the sharing network under our proposed
scheme. For this comparison, we again compared the actions
of all players in the (r, s)-core and our proposed scheme in
the steady state, which is the final thirty thousand iterations
described above. The results of this comparison are presented
in Table II, and it can be seen that the errors in all the
scenarios are less than 1%. Thus, the players’ actions under
LLL were the same as in the (r, s)-core setup, which
validates our proposed approach for the network sharing
game as presented in Section IV.

VI. CONCLUSIONS

We introduced a game theoretic model addressing user
participation and sharing issues pivotal in social network
analysis. Previous approaches assumed full participation
from the start or focused on edge-level network formation,
requiring users to decide their connections. We formulated
these setups as non-cooperative games with bounded ratio-
nality. We provided utility functions and fully characterized

Nash equilibria. Analyzing best response paths for network
participation, we demonstrated that Log-Linear Learning
(LLL) dynamics converged to Nash equilibria. We validated
our approach through extensive simulations, illustrating the
evolution from zero user engagement to k-cores and (r, s)-
cores in randomly generated ER networks.
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