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Abstract— In light of the rapid evolution of Artificial Intelli-
gence (AI), a growing number of researchers are investigating
the use of Artificial Neural Networks (ANNs) to enhance first-
principle Vehicle Models (VMs) or potentially replace them
altogether. This paper investigates how AI can be used optimally
to identify a VM in the context of a specific case study based on
a small-scale experimental vehicle. To this end, three different
VMs, each based on a distinct approach, are implemented and
compared: (1) a Kinematic Vehicle Model (KVM), (2) a Deep
Neural Network (DNN) based VM, and (3) a coupled approach
of DNN with KVM, namely Improved KVM (IKVM), where the
DNN is used to learn any unmodeled errors produced by the
KVM. In the context of the DNN-based approaches, four types
of DNNs are implemented based on different configurations
of layers (fully connected, convolution, and long short-term
memory). For DNN training and evaluation, a custom dataset
of driving data is created by driving an F1tenth model car
for around nine and a half hours on an indoor track while
recording all motions using a motion tracking system. The
experiments examine the VMs based on multiple performance
metrics: the sampling period, 12 different scenarios, and the
number of prediction steps the VMs are able to regressively
predict without receiving updates regarding extrinsic vehicle
states before the error grows too large, i.e., above 1 cm. Our
findings are that DNN can increase KVM fidelity substantially.
The optimal use of VMs, however, depends on the problem
parameters and the vehicle states to be predicted.

I. INTRODUCTION

Autonomous driving, is one of the most steadily growing
technologies, with consistent advances towards full

autonomy. Safety concerns are one of the most prominent
reasons for the slowed progress of autonomous vehicles [1].
Model Predictive Control (MPC) is a control algorithm that,
by means of a model, predicts the future behaviour of the
system and then generates inputs to control the system. The
predictive performance of the MPC compared to classical
control approaches has led to MPC taking over many do-
mains, e.g., autonomous driving. Recently, the application
of MPC in autonomous driving architectures, e.g., [2], [3],
or safe control architectures, e.g., [4], [5], has demonstrated
promising results in improving road safety. A significant
challenge in implementing MPC lies in the requirement
for high-fidelity models. To address this issue, robust MPC
techniques have been introduced, allowing for incorporating
model uncertainties, e.g., [6], [7]. However, when dealing
with extensive uncertainty sets, the practical applicability of
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Fig. 1. Prediction of the vehicle’s next state.

these control methods becomes questionable. For this reason,
finding methods to improve the models and decrease their
uncertainty is a topic of considerable interest.

A. Related Work

Due to the progress made in Artificial Intelligence (AI),
there has been a surge of interest in harnessing AI to
create high-fidelity Vehicle Models (VMs). AI-based meth-
ods can potentially learn intrinsic vehicle parameters based
on training data collected by operating the target vehicle
platform. Additionally, such methods allow for compensating
any unmodeled errors still present in first-principles models.
A brief review of these methods is presented in the following.

1) AI for Position Prediction: Finding the next position
of a vehicle using Artificial Neural Networks (ANNs) is the
centre of interest in some research papers, such as [8], that
evaluate Recurrent Neural Networks (RNNs), here in the
form of a Long Short-Term Memory (LSTM). In [9], Liu
et al. evaluate which input parameters are optimal for ANNs
with just a single dense layer, showing that the prediction
is no longer useful after two seconds. This paper also
indicates that multi-layer perceptrons can perform time series
prediction tasks with acceptable results at a time horizon
of up to about one second. In [10], an RNN to predict the
trajectories of the surrounding vehicle is examined. The idea
is to train the RNN on different sampling periods and see
how the error varies with long and short sampling period
ranges.
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2) AI for Acceleration and Yaw Angle Prediction: In [11],
Karri et al. use an ANN to predict a vehicle’s lateral and
longitudinal acceleration and yaw angle based on sensor data.
These predictions show sufficient accuracy, with absolute
root mean squared error between 10% and 20%.

3) AI for Lateral Dynamics Prediction: In [12], an ANN-
based model of a vehicle based on a hybrid learning scheme
is proposed. The data used in training is obtained from the
actual vehicle measurements. This paper concludes that the
ANN-based model is a good approximation. However, it did
not consider the longitudinal dynamics of the vehicle.

B. Contributions

The main idea of this paper is depicted in Fig. 1: we in-
vestigate three different approaches for system identification
and compare their performance in predicting the next state
of a vehicle regarding position, velocity and yaw angle. In
this study, a custom dataset is experimentally generated in an
indoor lab using an F1tenth model car and a motion capture
system to record its driving data for around nine and a half
hours. The collected data encompasses a large variety of
manoeuvres. These data are then used to train different Deep
Neural Networks (DNNs) to predict the vehicle’s next state
(position, velocity and yaw angle). The main contribution
of this paper is the design and implementation of various
VMs to model an F1tenth car using the generated dataset,
where the Kinematic Vehicle Model (KVM) is used as a
comparative baseline to our new approaches. For vehicle
modelling using DNNs, we distinguish between (1) DNNs
used as VMs (DNN-based VMs) and (2) a DNN cou-
pled with the KVM, which we will refer to as Improved
KVM (IKVM). The DNN-based VMs include four different
DNN variations, each featuring distinct configurations of
fully connected layers, convolutional layers, LSTM layers,
and regularization layers such as batch normalization and
dropout. To assess the performance of our two approaches
(DNN-based VMs and IKVM), we provide extensive testing
results based on the collected dataset as well as 12 additional
driving scenarios. The performance of our VMs is evaluated
on multiple metrics and compared to the baseline KVM.

II. BACKGROUND

Some nonlinear methods can be applied to accurately ap-
proximate the future behaviour of a vehicle, like the dynamic
and kinematic models. Each can be realized by either a
bicycle or a four-wheel model. The kinematic bicycle model
is an accurate, simple way to model the time-dependent
behaviour of a vehicle, allowing for predictions [13]. A
kinematic bicycle model is a simplified representation of a
vehicle derived under the assumption that both front tires are
lumped together, both rear tires are lumped together, the tire
slip angle in both tires is zero, and there is no rear steering.
Under the mentioned assumptions, at time t ≥ 0 [14], the
following differentiable nonlinear continuous-time equations

TABLE I
VEHICLE PARAMETERS.

Symbol Variables Unit

origin A point found by the motion capture system as the -

intersection of the passive markers placed

on the F1tenth car

x, y Global x-, y-axis coordinates of the vehicle’s origin m

vx, vy Longitudinal, lateral velocity of the vehicle m/s

ψ, β Yaw, side slip angle of the vehicle rad

lf , lr Distance of the origin to front axle / rear axle m

δ Steering angle rad

a Acceleration m/s2

δ

V⃗

β
vxvy

lr

lf

y

x

ψorigin

Fig. 2. Illustration of the kinematic bicycle model.

describe the motion of the vehicle:

ẋ(t) = vx(t) = V (t) cos(ψ(t) + β(t)), (1a)
ẏ(t) = vy(t) = V (t) sin(ψ(t) + β(t)), (1b)

V̇ (t) = a(t), (1c)

ψ̇(t) =
V (t)

lf + lr
cos(β(t)) tan(δ(t)), (1d)

β(t) = ψ(t)− arctan

(
vy(t)

vx(t)

)
, (1e)

where x, y and ψ denote the global x- and y-axis coordinates
of the origin and the vehicle yaw angle. The origin point
is found as the intersection of the passive markers placed
on the F1tenth car by the motion capture system, which is
explained in the following sections. The vehicle speed is
denoted by V , which is the norm of the velocity vector:
V (t) =

√
(vx(t))2 + (vy(t))2, where vx and vy are the

longitudinal and the lateral speed of the vehicle, respectively.
The parameter β represents the side slip angle of the vehicle.
The vehicle acceleration is denoted as a and the steering
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Fig. 3. Connection between the motion capture system and the F1tenth
car (adapted and inspired by [21]–[24]).

angle as δ. The model parameters are illustrated in Fig. 2
and presented alongside their units in Table I.

III. DATASET CREATION FOR VEHICLE’S NEXT STATE
PREDICTION

This section is divided into two parts: First, the exper-
imental platform is presented, and second, the process of
collecting data is introduced.

A. Experimental Platform

This experimental study is done in an indoor lab, meaning
a tracking system is needed to capture the vehicle’s motion.
Thus, the experimental setup comprises a mobile robot (ve-
hicle) and a motion capture system for data collection. The
vehicle runs the Robot Operating System (ROS), allowing all
communication to run over ROS messages. The individual
parts are illustrated in Fig. 3 and outlined as follows.

1) F1tenth Car as Prototype Vehicle: The prototype ve-
hicle employed in this study is the F1tenth car, an open-
source small-scale autonomous vehicle widely utilized in
racing competitions [15]. In the F1tenth cars, only the two
front wheels can be steered [16]–[19]. The lab observations
show that the vehicle’s two front wheels have nearly the
same steering angle, and for this reason, the following
approximations are assumed:

δf1 = δf2 = δ,
δr1 = δr2 = 0,

where δf1 and δf2 are right and left front wheel angle and
δr1 and δr2 are right and left rear wheel angle, respectively.
Also, δ is introduced in (1).

2) Motion Capture System: Six Vicon VERO cameras
are used as the motion capture system to track the vehicle’s
movement in 3 dimensions with 6 degrees of freedom [20]
for data collection. The platform setup is illustrated in Fig. 3,
where a connection between the motion capture system and
the F1tenth car is established.

B. Collecting the Data

Upon establishing the experimental environment, manual
control via a joystick is used to drive the vehicle. This

approach aims to generate non-ideal driving data, mirroring
the nuances of a human driver. A large variety of driving
scenarios are represented in the dataset, including driving
in all possible directions (forward, backwards, steering right
and left), at different velocities and with various steering
angles to achieve a high degree of generalisation. In addition,
to prevent learning an offset, the origin of the motion capture
system is placed at different locations on the indoor track.
Supervising the motion capture system while driving is
essential to ensure that the collected data is optimal for
training because it may lose calibration or tracking on the
vehicle if one of the markers is suddenly moved. During
an experiment, rosbag record is used to record all ROS
messages in continuous time so that they can be replayed
after the experiment and with an arbitrary sampling period.
Further, data cleaning is performed after sampling in order
to remove the irrelevant data at the beginning and end of
each recording while the vehicle is not yet placed within the
bounds of the track (positioning the vehicle manually, not
with the joystick). The collected data is not submitted to any
other filtering processes since the goal of this study is for
the DNNs to learn the compensation of other errors. For data
labelling, shifting every input leads to the output for the next
state: Output[n]= Input[n+1].

IV. VEHICLE MODELS

In this section, we first introduce the KVM and then
present our DNN-based VMs as a substitute. Finally, we
introduce our coupled VM: IKVM.

A. Kinematic Vehicle Model

The implementation of the KVM is depicted in Fig. 4.
However, it should be noted that the value of the steering
command from the joystick is not directly equal to δ in (1),
where the constraints on δ are −15◦ ≤ δ ≤ 15◦ and
the joystick steering commands can range from −0.34 to
0.34. To convert the joystick steering command to δ used in
(1d), the value of δ is derived experimentally based on lab
observations as follows,

δ[n] ≈ 44.1◦ · steer[n]. (2)

Where steer refers to the steering command from the joy-
stick. The next state in the KVM, as presented in Fig. 4, is
calculated using the Euler method:

Z[n+ 1] = Z[n] + Ż[n]∆t, (3)

where ∆t is the sampling period, Z[n] is the available current
state of the vehicle from the motion capture system, with
Z[n] =

[
x[n] y[n] vx[n] vy[n] ψ[n]

]⊤
, and Ż[n] =[

ẋ[n] ẏ[n] v̇x[n] v̇y[n] ψ̇[n]
]⊤

is the vehicle states’
rate of change, with all entries of Ż[n] obtained from the
motion capture system, except for ψ̇[n] computed using (1d)
and (1e).
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δ[n]
δ[n] = 44.1◦steer[n]

Car

joystick

updates

steer[n]

Vicon

updates

x[n]

y[n]

vx[n]

vy[n]

ψ[n]

ax[n]

ay[n]

Kinematic bicycle

model

V [n] =
√
(vx[n])2 + (vy[n])2

ψ̇[n] = V [n]
lf+lr

cosβ[n] tan δ[n]

β[n] = ψ[n]− arctan
(

vy[n]
vx[n]

)

Prediction of

the next state

x[n+ 1] = x[n] + ẋ[n]∆t

y[n+ 1] = y[n] + ẏ[n]∆t

vx[n+ 1] = vx[n] + v̇x[n]∆t

vy[n+ 1] = vy[n] + v̇y[n]∆t

ψ[n+ 1] = ψ[n] + ψ̇[n]∆t

Z[n+ 1]

Fig. 4. Kinematic Vehicle Model (KVM).

B. DNN-Based Vehicle Models

1) DNN-Based Vehicle Model Architectures: The first VM
built is the DNN-based VM. The core idea is to build
four types of DNNs, illustrated in Fig. 5, to figure out
which type is most appropriate to the time series forecasting
problem. Therefore, four DNNs are built and optimised
to maximise their performance: two types of DNN (feed-
forward and RNN); each type includes two variations (fully
connected and Convolution). Convolutional neural networks
are compared with MLP to find the most efficient architecture
for this forecasting problem. The MLP and CNN consist
of fully connected or convolution layers, respectively, while
their RNN counterparts add an LSTM layer right before the
output layer. It should be noted that the results of the RNNs
are obtained in a way that the input state is always treated
as the first state to keep the comparison fair between all the
VMs. In other words, the hidden states are set to 0; this
corresponds to the worst-case for LSTM-based DNNs. This
is due to the collected data being from multiple different and
independent runs.

2) Feature Selection: After sampling, the dataset is large.
Feature selection is applied to (i) reduce the complexity of
the DNNs, (ii) eliminate noise that irrelevant features would
introduce, and (iii) prevent over-fitting of the DNNs due to
many parameters [25]. The motion capture system produces
the vehicle’s orientation as a quaternion, where all four
components are interlinked. As the vehicle only operates on
a plane, it can rotate just around the z-axis, making only the
yaw angle relevant. The vehicle is controlled with a joystick,
providing just steering and speed commands. This means the
vehicle has two controllable degrees of freedom, the velocity
and steering angle, that control the three total degrees of
freedom, which are the position in x and y and yaw angle.
Furthermore, all parameters’ angular and z components are
irrelevant because the vehicle operates on a plane. As those
components are constant over time, they only consist of noise
that could diminish the performance of the DNNs. Addi-
tionally, the impact of the vehicle’s acceleration on DNNs
performance is experimentally investigated. The results show
that the DNNs perform better when the acceleration is not
included as an input. The feature selection results in the input
vector being reduced to seven variables. The analysis shows
that all seven inputs are relevant and essential, meaning no
further reduction is required.

DNN-Based 
Vehicle Model

Feed-Forward 
Neural Network

Recurrent 
Neural network

Convolutional
Long Short Term

Memory
(ConvLSTM) 

Long Short Term
Memory
(LSTM)

Multi-Layer
Perceptron

(MLP)

Convolutional 
Neural Network

(CNN)

Fig. 5. DNN-based vehicle models.

x[n]

y[n]

vx[n]

vy[n]

ψ[n]

steer[n]

speed[n]

KVM
xk[n+ 1]

yk[n+ 1]

DNN Z[n+ 1]

Fig. 6. Coupled KVM with DNN, Improved KVM (IKVM), where (xk[n+
1], yk[n+ 1]) is the predicted position from the KVM.

C. Coupling of DNN with KVM: Improved KVM (IKVM)

For the coupling method, IKVM is illustrated in Fig. 6,
the most accurate output from the KVM is used as an
additional input to enhance the VM’s performance and
to predict the unmodeled error that the KVM produces
over time. Here, a new DNN architecture needs to be
developed as there are no improvements when using the
architectures introduced in Section IV-B. On the contrary,
the performance of DNN-based VMs deteriorates. This
is because they are complex solutions to this problem,
meaning a small ANN is needed. For this purpose, the
key idea is to work with a shallow neural network. Based
on observations while testing the IKVM, working with a
shallow neural network with linear activation functions has
improved the results of KVM. Furthermore, adding a fully
connected layer to the shallow neural network with a selu
as an activation function improved the IKVM when the
steering angle is non-zero (steering scenario).

V. EXPERIMENTAL RESULTS AND COMPARISON

The VMs are evaluated based on three different evaluation
criteria: first, the optimal VM regarding the sampling period.
Second, the optimal VM regarding scenario evaluation: 12
different combinations of speed and steering and lastly,
which VM is more accurate without updating the vehicle’s
current state. The coefficient of determination (R2) and D2

absolute error score (D2) are used for the evaluation. During
the DNNs optimisation process, R2 shows an almost perfect
score for all DNN outputs with insignificant differences,
whereas D2 exhibits a significant margin in performance.
This makes room for further improvement. Therefore, the D2
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Fig. 7. D2 for sampling period of 100ms.

x y vx vy ψ
0
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0.6

0.8
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MLP CNN LSTM ConvLSTM KVM IKVM

Fig. 8. D2 for sampling period of 250ms.

score is used to evaluate the following experiments without
considering the R2.

A. Effect of Discretisation on the Vehicle Models

This experiment aims to evaluate all VMs introduced
in Section IV (MLP, CNN, LSTM, ConvLSTM, the KVM
and the IKVM) to find the optimal VM depending on
different sampling periods of (100ms, 250ms, 500ms, 1 s
and 2s). Fig. 7 shows that all VMs have a high D2

score. The IKVM, KVM and MLP have the highest score
in terms of predicting the next position (x[n+1], y[n+1]),
while the KVM has the lowest score when predicting the
velocity (vx[n + 1], vy[n + 1]) and the orientation (yaw
angle: ψ[n + 1]). The CNN, ConvLSTM and LSTM have
the highest score when predicting the yaw angle. In addition,
due to the KVM already achieving the maximum possible
score regarding the position, the IKVM cannot be further
improved. However, when considering the velocity and yaw
angle, a significant improvement of IKVM over KVM can be
observed at a sampling period of 100ms. Fig. 8 shows the
VMs scoring at a sampling period of 250ms. The scoring of
the predicted velocity from the KVM is lower than 100ms
with 0.2. The DNN-based VMs and the IKVM still offer

x y vx vy ψ
0

0.2

0.4

0.6

0.8

1
D2

MLP CNN LSTM ConvLSTM KVM IKVM

Fig. 9. D2 for sampling period of 500ms.

x y vx vy ψ
0

0.2

0.4

0.6

0.8

1
D2

MLP CNN LSTM ConvLSTM KVM IKVM

Fig. 10. D2 for sampling period of 1 s.

a better score. However, for predicting the next position,
the scoring is higher than 0.97 for all the VMs, where
the IKVM, KVM and MLP are still the optimal VMs to
predict position. Fig. 9 illustrates how the results change
at a sampling period of 500ms. The vy score for the KVM
is negative, explaining the gap in the plot. This means the
KVM can no longer predict velocity. The error-prone current
vehicle acceleration provided by the motion capture system
has to be used to calculate the next velocity in the KVM,
but it is not required by the DNN-based VMs. This explains
the KVM’s inferior performance in predicting velocity. The
IKVM has enhanced all the predictions over the KVM.
All the VMs present a high score for predicting the next
position. Fig. 10 shows the prediction scores at a sampling
period of 1 s. With such a long sampling period, the KVM
displays the lowest score, which makes the DNN-based
VMs more efficient for all the outputs. It also illustrates
that the ConvLSTM becomes less optimal with increasing
sampling period due to the information loss caused by the
sampling process. Nevertheless, it is the optimal VM to
predict the next state vector Z[n + 1]. The ConvLSTM
scores 0.92 at a sampling period of 1 s for predicting the
vehicle’s position. This also shows that the convolutional
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Fig. 11. D2 for sampling period of 2 s.

neural networks are better than the fully-connected neural
networks at a long sampling period. Sampling with a period
of 2 s is not practical in real-life situations due to a large
amount of information loss and the increased response time.
During the sampling period, the joystick values are variable.
Therefore, the long sampling period reduces the prediction
performance of the VMs. This experiment determines how
badly the VMs perform for long sampling periods. Fig. 11
shows that the CNN and ConvLSTM score the highest out
of all VMs for a sampling period of 2 s, with ConvLSTM
performing best.
In conclusion, at a short sampling period (100ms, 250ms
and 500ms), MLP, KVM and IKVM are optimal for pre-
dicting the next position, while the DNN-based VMs (CNN,
LSTM and ConvLSTM) present the most advantageous VMs
for predicting the velocity and orientation. The observations
also show that ConvLSTM is the optimal VM with a long
sampling period, e.g., 1 s or 2 s.

B. Scenarios Evaluation

In the previous experiment from Section V-A with a short
sampling period, some VMs’ results are similar. As the test
data was collected via random vehicle driving, there might
be an imbalance regarding the covered driving scenarios.
Therefore, additional experiments are performed to cover
specific driving scenarios. Such experiments ensure the deci-
sion of the optimal VM for predicting position, velocity and
orientation independently from scoring based on test data.
Each experiment compares the VMs with similar scoring
on predicting the same output. It is evaluated on 12 new
and different driving scenarios, which means there are 12
different combinations of steering and speed. This evaluation
considers the vehicle moving forward and always steering
to the left side due to the results of driving backwards
and forward having the same effect. Table II defines the
proposed driving scenarios, where V ≈ 1.2m/s is the
maximum velocity of the F1tenth car. All experiments here
are conducted at sampling period ∆t = 250ms. Table III
shows the scenario evaluation of the three VMs with the

TABLE II
EVALUATION SCENARIOS.

w/o steering w/ steering

Speed δ = 0◦ δ ≈ 15◦ δ ≈ 7.5◦ δ ≈ 3.75◦

V ≈ 1.2m/s scenario 1 scenario 4 scenario 7 scenario 10
V ≈ 0.8m/s scenario 2 scenario 5 scenario 8 scenario 11
V ≈ 0.3m/s scenario 3 scenario 6 scenario 9 scenario 12

TABLE III
OPTIMAL VEHICLE MODEL FOR PREDICTING POSITION.

Scenarios
1 2 3 4 5 6 7 8 9 10 11 12 Average

KVM ✓ ✓ ✓ ✓ ✓
IKVM ✓ ✓ ✓ ✓ ✓ ✓ ✓
MLP ✓

highest scoring when predicting the next vehicle position,
where the difference between them is a small variance
between 0.01 and 0.001 D2 score. The KVM is the optimal
solution when the vehicle moves without steering. Where
the IKVM is the best VM for scenarios 4-9. To summarize
this experiment, the IKVM is the most advantageous VM
for predicting the position regarding the average score over
all scenarios. It is able to correct some errors when they
are detected. However, when the error is not detected, the
VM’s performance is not diminished, thus resulting in a score
almost identical to the KVM. The results of the sampling
experiment shown in Fig. 8 illustrate that the DNN-based
VMs (CNN, LSTM and ConvLSTM) are the optimal VMs
for predicting the next velocity and the vehicle’s orientation.
Table IV clearly shows that CNN is the best VM to predict
the velocity (vx[n+ 1], vy[n+ 1]), and Table V shows that
CNN is the most advantageous VM when predicting the
vehicle’s orientation. As a result, at a short sampling period,
the IKVM is the optimal VM for predicting the position.
In contrast, CNN is the optimal VM when predicting the
vehicle’s orientation and velocity.

C. One-to-Many Evaluation

One-to-many means that all the VMs will get an initial
state from the motion capture system and joystick (Input[0]),
and after that, it will work only with its predicted output and
the updated steering and speed commands from the joystick
as the next input, as illustrated in Fig. 12. This experiment
aims to uncover which VM performs best for predicting
the next position of the vehicle without getting updated
on the current state. The evaluation of this experiment is
conducted on a random subset of the test data consisting of
a steering scenario due to its complexity and low accuracy
when predicting the vehicle’s position. A sampling period
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TABLE IV
OPTIMAL VEHICLE MODEL FOR PREDICTING VELOCITY.

Scenarios
1 2 3 4 5 6 7 8 9 10 11 12 Average

CNN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LSTM
ConvLSTM

TABLE V
OPTIMAL VEHICLE MODEL FOR PREDICTING YAW ANGLE ψ.

Scenarios
1 2 3 4 5 6 7 8 9 10 11 12 Average

CNN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LSTM
ConvLSTM ✓ ✓ ✓ ✓

of ∆t = 250ms is used for this experiment. The KVM has
to be adapted to be used for the one-to-many evaluation.
Here, the velocity is no longer provided by the motion
capture system but rather calculated based on (1a) and
(1b). Fig. 13 illustrates the KVM studied in this experiment,
using the joystick command and converting it to steering
angle and velocity with approximated equations based on
lab observation defined as follows:

δ[n] ≈ 44.1◦ · steer[n]. (4)
v[n] ≈ 0.55 · speed[n]. (5)

Where steer and speed refer to the steering and speed
commands from the joystick. Fig. 14 shows the predicted
trajectories of the three highest scoring VMs in predicting
position (MLP, KVM and IKVM) plotted together with the
actual position provided by the motion capture system. Here,
the state obtained from the motion capture system serves as
the ground truth. The left part of Fig. 14 presents many-to-
many (usual case with updating the current state at every
time step), showing that the error detected in one step does
not grow over time. Unfortunately, this is not the case in the
right part of Fig. 14. Here, the error is growing over time.
The left part of Fig. 14 shows that the IKVM is the optimal
solution, reinforcing the conclusion from the evaluation of
the scenarios from the previous experiment. It also shows
that the MLP is even better than the KVM. But this is not the
case in one-to-many, as evident from the right part of Fig. 14,
which shows that the IKVM offers the worst prediction. At
the same time, the MLP optimises the position for the next
four steps before the error can no longer be controlled. For
more precision, the error of every VM produced at each time
step is displayed in Fig. 15. The left part of Fig. 15 shows
that the three VMs have a slight error in the many-to-many
evaluation. For example, the KVM has an error of 1cm in the
steering scenario, while the MLP has an error between 0.3cm
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y[0]

ψ[0]

vx[0]

vy[0]

Joystick[0]

Initial State

Input[0]
VM Output[1]

Joystick[1]

VM Output[2]

Joystick[2]

· · ·
Output[n]

Joystick[n]

VM
Output[n+ 1]

Fig. 12. One-to-many architecture.
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y[n+ 1] = y[n] + ẏ[n]∆t

vx[n+ 1] = vx[n] + v̇x[n]∆t

vy[n+ 1] = vy[n] + v̇y[n]∆t

ψ[n+ 1] = ψ[n] + ψ̇[n]∆t

Z[n+ 1]

Fig. 13. KVM after adaption to one-to-many.

and 0.7cm. Thus, the IKVM performs best with an error
between 0.1cm and 0.5cm. The right part of Fig. 15 shows
how the prediction error grows with every new prediction
step. It should be noted that the graphic scale has a maximum
of 20cm per the IKVM error in the seventh step. At the same
time, the MLP outperformed the other VMs by predicting
three steps without reaching an error of 1cm. After that, the
error gets big, but it remains smaller than the error of the
KVM. In summary, the MLP performs best on the one-to-
many task.

VI. CONCLUSION

This paper presented new approaches using DNNs for
predicting a vehicle’s next state (position, velocity, and orien-
tation). First, we showed how to build a high-quality dataset
and multiple optimal DNNs. Then, we performed several
experiments. The results showed that the proposed alternative
VMs (DNN-based and IKVM) offer better performance than
the KVM even at the most critical scenarios (with steering)
and at extensive sampling periods of 1 s and 2 s and are
thus valid substitutions. We furthermore found that there is
no generally optimal VM for predicting the vehicle’s next
state at all the proposed sampling periods (100ms, 250ms,
500ms, 1 s, 2 s). Instead, which VM is optimal depends
on the desired output, reaction time, and the number of
prediction steps. For short sampling periods (100ms, 250ms,
500ms), the IKVM outperformed all the other VMs in
predicting the vehicle’s next position, while the CNN is the
optimal VM when predicting orientation and velocity. For
sampling periods of 1 s and 2 s, the ConvLSTM is the most
advantageous VM regarding all outputs. In Addition, in case
of no extrinsic updates to the current state, the MLP can
outperform the other VMs at a sampling period of 250ms
by being able to predict three position steps without reaching
an error of 1cm.
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