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Abstract— We investigate the propagation of stubborn be-
havior in a network coordination game where players update
their strategies using log-linear learning dynamics. A network
is considered robust if the stubborn players cannot impact
the stable behavior of the other players. We present a graph-
theoretic framework for analyzing the robustness of various
networks, establishing conditions wherein all network nodes
switch to a stubborn behavior. Our framework leverages the
notion of graph closed-knittedness, which measures the strength
of external influence on a set of nodes. Using closed-knittedness
and a closely related notion of graph plumpness, we derive
necessary and sufficient conditions for network robustness to
stubborn behavior. We validate our analytical results and bound
through extensive Monte-Carlo simulations.

I. INTRODUCTION

As the use of social networks continues to grow, the
decisions made by individuals within these networks are
increasingly influenced by the choices of their peers. Peer
influence plays a substantial role in shaping the behavior
and decisions of individuals within the network. The process
through which information permeates a social network has
become a pivotal focus in research and has given rise to
important inquiries regarding how behaviors and innovations
diffuse within these interconnected communities.

Innovation diffusion is a theoretical framework and con-
cept that explains the mechanisms through which new ideas,
products, services, or practices are spread and adopted within
various social contexts, including social systems, communi-
ties, organizations, and societies. In the existing literature of
innovation diffusion, this problem has been formalized as a
network coordination game, where players decide between
maintaining the status quo and adopting innovation [1],
[2]. Players update their strategies using log-linear learning
dynamics ( [3], [4], and [5]). The authors provide conditions
under which the speed of convergence to innovative behavior
is fast. The speed of convergence of behavior in binary-
choice coordination games [6], [7], [8], [9], [10], [11], [12]
varies under different interaction structures.
The framework used in the previous works assumes a homo-
geneous population where all players update their strategies
using log-linear learning dynamics. In this homogeneous
context, the long-term behavior remains unaffected by the in-
teraction structure, as noted in [13]. Consequently, all players
ultimately converge to adopt the innovation. The interaction
structure’s role is primarily in determining the speed at which
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players embrace innovative behavior. On the contrary, if we
allow certain players to be heterogeneous, meaning they
follow rules different from log-linear learning, the eventual
outcome is affected by both the interaction structure and the
quantity and placement of these heterogeneous players within
the network.
This paper primarily addresses the propagation of stub-
born behavior as opposed to the diffusion of innovative
behavior. Specifically, it investigates whether, in a network
coordination game, if an initial group of stubborn players
adheres to the status quo, can their stubborn behavior hinder
the remaining players, who update their actions using Log
Linear Learning, from adopting innovation? Additionally,
we explore the graph-theoretic properties that define and
influence the spread of stubborn behavior within the network.
We have previously initiated research on this problem and
presented initial findings in [14] and [15]. In those works,
we established conditions based on game parameters and
network structures to ascertain the network’s robustness
or non-robustness, utilizing the Radius Coradius result of
[7] and [5] for the characterization of stochastically stable
states. In [14], we introduced a novel notion of robustness
to quantify the impact of heterogeneous players. Three
types of heterogeneous players were considered, namely
stubborn, confused, and strategic adversaries. Later in [15],
we derived qualitative conditions to determine the robustness
of stochastically stable action profiles under various games
and network settings. Building upon our previous work,
this research aims to enhance the efficiency of robustness
analysis, which can be computationally expensive for larger
networks. We seek to identify graph theoretic properties that
influence a network’s robustness, making it either robust or
non-robust. This capability empowers us to address complex
inquiries regarding the robustness of diverse networks. Our
primary contribution lies in introducing a graph theoretic
method for quantifying network robustness.
The structure of the paper is as follows. Section II outlines
the setup, while Section III introduces a graph-theoretic
framework for assessing network robustness. In Section IV,
we present results for diverse network classes, such as d-
regular, path, tree, grid, Cartesian product, and clique chain
networks. Finally, Section V concludes the paper.

II. SETUP

We consider a symmetric coordination game played across
a network, where each player interacts with a specific subset
of others. This game offers two action choices for each
player: A, typically denoting innovation, and B, symbolizing
the status quo. The network is represented by a graph
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A B
A 1 + α, 1 + α 0, 0
B 0, 0 1, 1

Fig. 1. Payoff matrix of a 2× 2 coordination game.

G(N , E), where the vertex set N represents the set of players
and the edge set E represents the interaction connections
among the players. N denotes the number of nodes in the
set N . Let Ni be the neighborhood set of player i and the
number of neighbors of node i is its degree d(i). Given a set
S ⊂ N , d(S) is the sum of the degrees of all the vertices
in S , i.e., d(S) =

∑Ni

i=1 d(i). Given a pair of sets T and
T ′, d(T, T ′) denote the number of edges (i, j) ∈ E such that
i ∈ T and j ∈ T ′. The action set of each player is the set of
available actions and is denoted by Ai. The set of joint action
profiles is A = A1 × A2 × · · · × AN . Let σ ∈ A be a joint
action profile. We will represent it as σ = (σi, σ−i), where
σi ∈ Ai is the action of i and σ−i is the join action of all
the players other than i in the joint action profile σ. We also
use the notation σ(i) = σi to represent the action of player i
in the profile σ. Let σA and σB represent the action profiles
in which all the players play action A and B, respectively,
i.e., σA(i) = A and σB(i) = B for all i ∈ N . We define
NA(σ) ⊆ N and NB(σ) ⊆ N be the set of players with
actions A and B in profile σ, respectively.

We model players’ decisions through Log-Linear Learning
dynamics (referred to as LLL), which is a noisy best response
dynamics. Let Ni be the neighborhood set of player i, the
utilities of player i for selecting actions A and B

Ui(A, σ−i) =
∑
j∈Ni

u(i, j) = (1 + α)|NA(σ−i) ∩Ni|.

Ui(B, σ−i) =
∑
j∈Ni

u(i, j) = |NB(σ−i) ∩Ni|.
(1)

A salient feature of the above payoff structure is that the
resulting game is a potential game that admits an exact
potential function, which is given by

ϕ(σ) = (1 + α)d(NA(σ),NA(σ)) + d(NB(σ),NB(σ)).

Note that the potential function for this setup is equal to
half of the sum of the payoffs received by all the players.
In general, any function that satisfies the following property
can be used as a potential function.

ϕ(σi, σ−i)− ϕ(σ′
i, σ−i) = Ui(σi, σ−i)− Ui(σ

′
i, σ−i).

A. Graph theoretic Notions

To analyze the robustness properties of the stochastically
stable (denoted as SS) profiles in the network coordination
game under LLL, we will build our framework on the graph-
theoretic notions of closed knittedness and plumpness, which
were presented in [1] and [16].

Definition 2.1: A set S ⊆ N is r-closed-knit if it satisfies
the following condition:

∀ S ′ ⊆ S, S ′ ̸= {}, d(S ′,S)/d(S ′) ≥ r.

Closed-knittedness (denoted as CK) is a measure of how
well integrated each member of the set S is with the other
members of S. Thus CK(S) = r implies that no subset S ′

of S has more than r fraction of its interactions outside of
S. The closed knittedness of a set is bounded between 0
and 1/2, where zero corresponds to the situation in which a
subset of S has no interactions with elements of S and 1/2
means that no subset of S has any interactions outside of S.

For defining set autonomy, consider a scenario in which
all the members of S follow LLL, and all the members of
the complement set N \S are allowed to select any decision
strategy. We refer to this scenario as restricted LLL.

Definition 2.2: [1] A set S is σ∗
S autonomous if and only

if (σ∗
S , σN\S) is stochastically stable under restricted LLL.

For potential games, stochastically stable profiles are those
that maximize a potential function. Therefore, autonomous
sets can also be defined in terms of potential function.

Definition 2.3: [16] “ A set S ⊆ N is σ∗
S -autonomous

if, for all σ such that σS ̸= σ∗
S

ϕ(σ∗
S , σ−S) > ϕ(σ).

Finally, [1] connected the notion of set autonomy with closed
knittedness with the following results.

Proposition 1: [1] A set S ⊆ N is σA
S autonomous if

and only if
CK(S) > 1/(α+ 2).

III. RELATIONSHIP BETWEEN ROBUSTNESS, AUTONOMY,
AND CLOSE-KNITTEDNESS

We present our graph-theoretic framework for the robust-
ness of stochastically stable profiles in graphical coordination
games in log linear learning with a focus on the scenario
in which a small set of stubborn players are present in
the setup. In [14], we primarily considered the situation in
which a single stubborn/heterogeneous player was introduced
in the setup, and we proposed a Radius-Coradius based
analysis framework for characterizing the long-term impact
of the heterogeneous players on the entire population. The
Radius and Coradius are primarily the properties of the
learning dynamics and in this work, we will present graph-
theoretic conditions for the robustness of stochastically stable
profiles in LLL dynamics in graphical coordination games.
For graphical coordination games, profile σA, in which all
players play action A, is the unique stochastically stable
profile [13]. This setup is said to be robust if all the players
continue playing action A regardless of the behavior of
the stubborn players. We start by connecting the notion of
robustness with close-knittedness that we will analyze in this
work.

Proposition 2: Consider a network coordination game
with parameter α, which represents the payoff advance of
an innovative practice. Let the interaction network topology
be represented by a graph G(N , E). Let H ⊂ N be the set of
stubborn players. Then, σA is robust to the stubborn players
if and only if

α >
1

CK(N \H)
− 2. (2)
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Proof: Consider the restricted LLL dynamics, in which
all the players other than the stubborn players follow LLL
dynamics. Moreover, we say that σA is robust to stubborn
behavior if σA

N\H is stochastically stable under the restricted
LLL dynamics. From Def.2.2, the above condition implies
that σA is robust if N \H is an autonomous set. From Prop.
1, N \ H is autonomous if and only if CK(N \ H) >
1/(α + 2). Rearranging this expression yields the desired
robustness condition on α.

An important factor in the practicality of the above result is
the complexity of computing the closed knittedness of a set.
Computing the closed knittedness of a given set S requires
evaluating the ratio d(S ′,S)/d(S ′) for all the possible 2|S|

subsets of the S, which can be computationally intractable
for large networks. To address the computational issues, we
refer to the notions of homogeneous sets and plumpness.

Definition 3.1: [17] A set S ⊂ N is homogeneous if

CK(S) = d(S,S)/d(S).
Thus, a set is homogeneous if no subset of S is less integrated
within the set than the set S is with itself.

Definition 3.2: [16] The plumpness of a set S ⊂ N is
defined as follows:

Pl(S) = d(S,S)/d(S).
In general, CK(S) ≤ Pl(S) ≤ 1/2. However, if S is homo-
geneous, then Pl(S) = CK(S). This equality is important
because computing the closed knittedness of a set requires
evaluating the ratio d(S ′,S)/d(S ′) for all the possible 2|S|

subsets of S . Whereas, computing the plumpness of a set is
a one-step operation.

Proposition 3: Consider the constrained LLL such that
all the players in a set S ⊂ N follow LLL dynamics and
the players in N \S are fixed on action B. Then, the profile
σ = (σA

S , σ
B
N\S) is not stochastically stable if

Pl(S) < 1/(α+ 2)
Proof: Suppose that Pl(S) < 1/(α + 2). Then,

d(S,S)/d(S) ≤ 1/(α+2). Substituting d(S) = 2d(S,S) +
d(S,N \ S),we get

α d(S,S) ≤ d(S,N \ S). (3)

In order to establish that (σA
S , σ

B
N\S) is not stochastically

stable, it is essential to provide evidence of an alternative
profile, such as (σB

S , σB
N\S), which acts as the potential

maximizer according to the specified condition.

ϕ(σB
S , σB

N\S)− ϕ(σA
S , σ

B
N\S),

= [d(S,S) + d(S,N \ S)]− d(S,S)(1 + α),

= d(S,N \ S)− α d(S,S),
≥ 0

The last step is based on the condition in (3).

A direct consequence of Prop. 2 and 3 is that a network is
robust to placement of |H| stubborn players if and only if the
set S = N \H constitute an autonomous set for a given α.
According to Prop. 1, an autonomous set S is r-close-knit,

a

b

c d e

fghi

j

Fig. 2. A Graph Illustrating Prop. 2 and 3. Here S = {c, d, e, f, g, h}
and S′ = {c, h}. The black nodes represent the stubborn nodes, while the
rest of the nodes update their actions using LLL

network is robust for α > 1/r − 2. On the other hand, if
the network is not homogeneous, the network is not robust
if α < 1/P l(S)− 2.
To highlight the distinction between plumpness and close-

knittedness, let’s examine the network depicted in Fig.2,
which was originally presented in [16]. For this network,
if we choose S = {c, d, e, f, g, h}. Let H = {a, b, j, i}
is the set of stubborn players. Close-knittedness of set S
is CK(S) = minS′⊂S d(S ′,S)/d(S ′) = 3/8. This min-
imum is achieved for S ′ = {c, h}. Plumpness of set S
is Pl(S) = d(S,S)/d(S) = 9/22. Based on Prop. 2,
σ = (σA

S , σ
B
N\S) is robust to stubborn players if and only

if α > (1/CK(S)) − 2 = 0.67. From Prop. 3, σ =
(σA

S , σ
B
N\S) is not stochastically stable if α < (1/P l(S))−

2 = 0.44. Lets calculate the potential for three different
action profiles: ϕ(σA

S′ , σA
S\S′ , σB

N\S), ϕ(σB
S′ , σB

S\S′ , σB
N\S),

and ϕ(σB
S′ , σA

S\S′ , σB
N\S).

ϕ(σA
S′ , σA

S\S′ , σB
N\S) = d(S ′,S ′)Ui(A,A) + d(S ′,S \ S ′)

Ui(A,A) + d(S − S ′,S \ S ′)Ui(A,A)

We get ϕ(σA
S′ , σA

S−S′ , σB
N\S) = 9 + 9α. Similarly,

ϕ(σB
S′ , σB

S−S′ , σB
N\S) = 13, and ϕ(σB

S′ , σA
S−S′ , σB

N\S) =
11 + 6α. Comparing the potential of all three states, we get
the following conditions on α.

• ϕ(σB
S′ , σB

S−S′ , σB
N\S) is SS if α < 0.33.

• ϕ(σB
S′ , σA

S−S′ , σB
N\S) is SS if 0.33 < α < 0.67.

• ϕ(σA
S′ , σA

S−S′ , σB
N\S) is SS if α > 0.67.

Relating these to the bounds on α obtained from CK(S) and
Pl(S), we confirm that Prop. 3 offers a sufficient condition
to establish the non-robustness of a given network. This
guarantees that σA can not become a stable action profile
when α remains below a certain threshold. Additionally,
Prop. 2 presents both a sufficient and necessary condition
to establish the robustness of a given network, ensuring that
σA remains a stable action profile when α exceeds a certain
limit. In the intermediate range of α values between these
thresholds, we observe an equilibrium action profile where
some players choose action A while others select action B
(referred to as co-existent equilibria in [18]).

As a starting point, we will utilize Proposition 3 in the sub-
sequent sections of the paper to confirm the non-robustness
of various networks, thereby simplifying the computational
complexity of our analysis.
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IV. ANALYTICAL RESULTS

A. Results for single stubborn player

In this section, we show that in regular networks, robust-
ness is independent of the number of edges in the network
and only depends on the number of nodes present in the
network.

1) k-regular network: A k-regular network is defined such
that each node is connected to exactly k neighbors. These
networks hold significance due to their inherent structural
regularity, simplifying the analysis process.

Proposition 4: Any connected k−regular network with
N nodes is not robust to the presence of a single stubborn
player in the system if α < 2/(N − 2).

Proof: In a k−regular network where S = N \ H
players update their action using LLL and one node is made
stubborn. Pl(S) is given by

Pl(S) = d(S,S)
d(S)

=
Nk
2 − k

Nk − k
=

N − 2

2(N − 1)

Using Prop. 3, we obtain the desired bound on α.
2) Multi-regular Network: A multi-regular network con-

sists of variable degree clusters, where the degrees range
from 1 to p in ascending order as shown in Fig. 3(a).
The number of nodes in each cluster is {N1, N2, ....Np},
N =

∑p
i=1 Ni and degrees of clusters are {k1, k2, ...., kp}

and S = N \ H is the set of nodes, which update their
actions using LLL.

Proposition 5: A multi-regular network is not robust to
the placement of a single stubborn player in the highest
degree cluster if α < 2kp/(N1k1+N2k2+....+Npkp−2kp).

Proof: CK of a multi-regular network is given by

Pl(S) = d(S,S)
d(S)

=
N1k1

2 + N2k2

2 + . . .+
Npkp

2 − k

N1k1 +N2k2 + . . .+Npkp − k

To expand the upper limit of α, CK must be minimized,
given that α is less than 1/r − 2.
By applying the mediant inequality a−x

b−x ≤ a
b , we can

conclude that the smallest Pl(S) is achieved when k equals
kp i.e the stubborn node is placed in highest degree cluster.
Thus, the Pl(S) after placing the stubborn node in the highest
degree cluster is

d(S,S)
d(S)

=
N1k1 +N2k2 + . . .+Npkp − 2kp
2(N1k1 +N2k2 + . . .+Npkp − kp)

Using Prop. 3, we attain the desired bound on α.
In regular networks, we have observed that the addition of
edges doesn’t affect network robustness since α is exclu-
sively dependent on the number of nodes. However, this is
not the case for non-regular networks. Next, we will discuss
the analysis of robustness in non-regular networks.

3) Path network: A path graph is a graph that can be
visually represented in such a way that all its vertices and
edges are positioned along a single straight line.

Proposition 6: A path network with N nodes is not
robust to the presence of a single stubborn player placed
at the corner of the network if α < 1/(N − 2).

Proof: If we place a stubborn node at the corner of a
path network with N total nodes, the resulting Pl(S)forS =
N \H is

d(S,S)
d(S)

=
N − 2

2N − 3

Using Prop. 3, We get the desired condition on α.
4) Grid Network: A grid graph is characterized by a

layout resembling a grid, where nodes are positioned at the
intersections of rows and columns. When two nodes are
adjacent, they are connected by an edge.

Proposition 7: An m × n grid network is not robust to
the addition of a single stubborn player in the network if
α < 4/(2mn−m− n− 4).

Proof: An m×n grid network consists of (m− 1)n+
(n − 1)m edges. It has four corner nodes with degree 2,
2(m − 2) + 2(n − 2) boundary nodes with degree 3 and
(m − 2)(n − 2) internal nodes with degree 4. Pl(S) after
adding a single stubborn node is

d(S,S)
d(S)

=
2mn−m− n− 4

4mn− 2m− 2n− 4

Applying Prop. 3, resuls in the aforementioned bound.
5) Cartesian Product of complete and path graph (Kn ×

Pm): The Cartesian product of two graphs Kn and Pm is
a graph that has a vertex set equal to the Cartesian product
of the vertex sets of Kn and Pm, and an edge between two
vertices (k1, p1) and (k2, p2) if and only if either k1 = k2
and there is an edge between p1 and p2 in Pm, or p1 = p2
and there is an edge between k1 and k2 in Kn.

Proposition 8: The Cartesian product of two graphs
(Kn×Pm) is not robust to the addition of a single stubborn
node if α ≤ 2(n+ 1)/(mn2 +mn− 4n− 2).

Proof: The Cartesian product of two graphs (Kn×Pm)
consists of m[n(n−1)

2 ] + (m− 1)n total edges and degree of
this network is 2n(n)+n(m−2)(n+1). Pl(S) for S = N\H
is

d(S,S)
d(S)

=
mn2 +mn− 4n− 2

2(mn2 +mn− 3n− 1)

Applying Prop. 3, results in the desired condition.
6) Clique Chains: A clique chain G(Kn,m) of N nodes

and diameter D is a graph obtained from a path graph of
diameter m − 1, by replacing each node with a clique of
size n such that the vertices in distinct cliques are adjacent
if and only if the corresponding original vertices in the path
graph are adjacent.

Proposition 9: A clique chain networkG(Kn,m) is not
robust to the addition of a single stubborn node in the
network, if α ≤ (6n− 2)/(3mn2 −mn− 2n2 − 6n+ 2).

Proof: Each clique in the clique chain network
G(Kn,m) has n(n − 1)/2 edges and the edges within any
two cliques are n2(m − 1). Set S = N \H , so d(S,S) in
this case becomes m(n(n−1)/2)+mn2(m−1)− (3n−1),
where 3n − 1 are the edges associated with stubborn node.
The degree of all the nodes other than boundary nodes is
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(a) Multi-regular example
network

m

n

(b) m× n Grid network

m

n

(c) Cartesian Product net-
work Kn × Pm

m

n

(d) Clique chain network
Km,n

Fig. 3. Example networks

(a) Path graph with 12
nodes for α− ϵ

(b) 4×4 grid network for
α− ϵ

(c) Peterson graph(k-
regular) for α− ϵ

(d) Cartesian product
K4 × P4 for α− ϵ

(e) Clique Chain
G(K4, 4) for α− ϵ

(f) Path graph with 12
nodes for α+ ϵ

(g) 4×4 grid network for
α+ ϵ

(h) Peterson graph(k-
regular) for α+ ϵ

(i) Cartesian product
K4 × P4 for α+ ϵ

(j) Clique Chain
G(K4, 4) for α+ ϵ

Fig. 4. Long run population behavior in graphical coordination game across various networks, considering parameters: noise τ = 0.1, iterations = 1×106,
and following the different bounds on α specified in Prop. 4, 6, 7, 8, and 9. Vertical axes represent the fraction of players playing A (ηA)

n(m − 2)(3n − 1) and the degree of boundary nodes is
2n(2n− 1). Pl(S) for this graph is

d(S,S)
d(S)

=
3mn2 −mn− 2n2 − 6n+ 2

2(3mn2 −mn− 2n2 − 3n+ 1)

Using Prop. 3, we obtain the desired condition.
By examining the limits of α in grid networks, Cartesian
product networks, and clique chains, we can see that the
bound on α becomes smaller and smaller with the addition
of further edges in the network.
To validate the findings outlined in Propositions. 4, 6, 7,
8, and 9, a coordination game was simulated for 1 × 106

iterations with noise parameter τ = 0.1 and the outcomes
are depicted in Fig. 4. The vertical axes represent the
fractions of players opting for action A. Figs. 4(a) through
4(e) demonstrate that the various networks do not exhibit
robustness in the presence of stubborn players when the
payoff advantage is α − ϵ. A noteworthy finding when the
payoff advantage is α + ϵ is that, as depicted in Figs. 4(f)
through 4(j), the network exhibits robustness to the presence
of stubborn players. In this simulation, ϵ is set to 0.05 for
all cases, and α is calculated using the threshold specified
in Propositions [4-10].

B. Multiple stubborn players

In this section, our objective is to determine the rela-
tionship between the minimum number of disjoint stubborn
players required to render the network non-robust for all
values of α < 1. Let |H| be the number of disjoint stubborn

agents required to make the network non-robust and let
S = N \H .

1) k-regular network: For a k-regular network with N
nodes, the plumpness of this network after the addition of
|H| stubborn nodes is

d(S,S)
d(S)

=
N − 2|H|
2(N − |H|)

,

Then, α < 2|H|/(N − 2|H|).
2) Grid network: For an m×n grid network, Pl(S) after

addition of |H| disjoint stubborn nodes is

d(S,S)
d(S)

=
2mn−m− n− 4|H|
4mn− 2m− 2n− 4|H|

,

Bound on α is, α < 4|H|/(2mn−m− n− 4|H|).
3) Cartesian Product network: In a Cartesian product

network (Kn × Pm), Pl(S) after addition of |H| disjoint
stubborn nodes is

d(S,S)
d(S)

=
mn2 +mn− 2n− 2|H|(n+ 1)

2(mn2 +mn− 2n)− 2|H|(n+ 1))
,

Bound on α is α < (2|H|(n + 1))/(mn2 + mn − 2n −
2|H|(n+ 1)).

4) Clique chain: In a clique chain network (Kn,m), Pl(S)
after addition of |H| disjoint stubborn nodes is

d(S,S)
d(S)

=
3mn2 −mn− 2n2 − 6n|H|+ 2|H|
2(3mn2 − 2n2 −mn− 3n|H|+ |H|)

,

Bound on α is α < (2|H|(3n− 1))/(3mn2 −mn− 2n2 −
2|H|(3n− 1)).
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Fig. 5. Comparison of bound on α as a function of the minimum number
of disjoint stubborn agents for k-regular, grid, cartesian product, and clique
chain network. m = n = 10 and N = 100

When comparing the bounds on α with respect to the
minimum number of disjoint stubborn agents needed to
render the network non-robust as shown in Fig. 5, it is evident
that the inclusion of edges may or may not influence the
allowable α value for maintaining network non-robustness.

V. CONCLUSIONS

In this paper, we have presented a graph-theoretic frame-
work to evaluate the robustness of various networks. Existing
algorithms for addressing this issue are computationally
intractable. Our analysis spans a diverse set of network
structures, including sparse and dense networks, such as
k-regular networks, multi-regular networks, path networks,
grid networks, cartesian product networks, and clique chain
networks. For our future research, we aim to bridge the
gap between Radius-coradius analysis, which relies on the
explicit computation of resistances, and the concept of close-
knittedness, which is a purely network-related property.

VI. APPENDIX

A. Proof of Prop.1

If set S is σ∗
S -autonomous, it achieves the maximum

potential and σ∗
S is stochastically stable. Thus,

ϕ(σA
S , σ

B
N\S) > ϕ(σB

S′ , σA
S\S′ , σB

N\S)

ϕ(σA
S′ , σA

S\S′ , σB
N\S) > ϕ(σA

S′ , σB
S\S′ , σB

N\S)
(4)

By definition of the potential function,
ϕ(σA

S′ , σA
S\S′ , σB

N\S) = d(S ′,S ′)(1 + α) + d(N \ S,N \
S) + d(S \ S ′,S \ S ′)(1 + α) + d(S ′,S \ S ′)(1 + α)
ϕ(σA

S′ , σB
S\S′ , σB

N\S) = d(S ′,S ′)(1 + α) + d(S \ S ′,S \
S ′) + d(S \ S ′,N \ S) + d(N \ S,N \ S)
After substituting into Eq. 4 and simplifying,

d(S ′,S ′)(α) + d(S ′,S \ S ′)(1 + α)− d(S ′,N \ S) > 0

=⇒ d(S ′,S)(2 + α)− d(S ′) > 0

which results in the desired condition.
To prove the other side, we need to show that If

d(S ′,S)/d(S ′) > 1/(2 + α), S is σ∗
S -autonomous.

d(S ′,S)(2 + α)− d(S ′) > 0

d(S ′,S)(1 + α)− [d(S ′)− d(S ′,S)] > 0

d(S ′,S)(1 + α)− [d(S ′)− d(S ′,S \ S ′)− d(S ′,S ′) > 0

d(S ′,S ′)(+α) + d(S ′,S \ S ′)(1 + α)− d(S ′,N \ S) > 0

After adding some redundant terms,

d(S ′,S ′)(1 + α) + d(S ′,S \ S ′)(1 + α) + d(N \ S,N \ S)
+ d(S \ S ′,S \ S ′)(1 + α) > d(S ′,S ′)(1 + α)+

d(S \ S ′,S \ S ′) + d(S \ S ′,N \ S) + d(N \ S,N \ S).

which gives the condition,

(σA
S′ , σA

S\S′ , σB
N\S) > ϕ(σA

S′ , σB
S\S′ , σB

N\S).
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