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Abstract— Energy-optimal operation of robotic systems has
gained high interest in both industry and science. We propose
to fuse model predictive control and Bayesian optimization
to plan minimum-energy trajectories for industrial robots that
guarantee successful executions of the primary task. Particularly,
parts of the predictive planner are learned using Bayesian
optimization to account for the secondary, higher-level objective
– here energy minimization. The effectiveness of the proposed
approach is underlined in simulation, where a reduction in
energy consumption is observed while maintaining a high quality
of task executions.

I. INTRODUCTION

Nowadays, robots are deployed in many different industries,
e.g., as part of automated manufacturing systems [1]. There
are many reasons for this such as their accuracy, repeatability
and speed of (repetitive) task executions [2]. However, the
increasing deployment of industrial robots has led to an
increase in the electrical energy consumed by manufacturing
processes. Rising energy costs as well as the desire to become
energy-neutral have increased the demand for reducing the
energy consumption [3]. Furthermore, industries have to adapt
to fluctuations in energy allocation and supply to account for
flexible energy prices or energy supply limitations [4]. Thus,
achieving maximum energy efficiency while allowing for a
flexible adjustment of energy usage, e.g., by changing the
production speed, is of paramount interest [5].

There exists a wide variety of approaches aiming towards
energy efficiency of robotic manufacturing systems. Firstly,
one can aim for an energy-efficient design of the manu-
facturing process, e.g., avoiding oversized robots for the
intended task or reducing idle time when the robot is not
in use [6]. Secondly, one can focus on the software side,
e.g., path optimization, planning an energy-optimal trajectory
that realizes the path, or implementing energy-saving standby
modes that are used whenever the robot is idle [6].

We focus on this second class of approaches, considering
a given robot, a particular task and a specified path for
successful task completion given by a predefined contour.
It remains to compute an energy-efficient trajectory that
realizes the path exploiting the available degrees of freedom.
For instance, avoiding high velocities and accelerations
reduces energy consumption. However, this leads to long
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execution times and thus, increased energy consumption due
to the required compensation of gravitational and payload
forces. Moreover, different robot poses may lead to the
same position on the path. We propose to compute energy-
optimal trajectories using a predictive planners based on
path-following model predictive control formulations [7],
[8]. The planner solves an optimal control problem (OCP),
thus being capable of directly accounting for constraints as
well as the system dynamics. The planner decides about
the timing of the reference path, thereby controlling the
velocities, accelerations and task execution times. One of the
key challenges is to select a suitable cost function for the
predictive planner that achieves a desired accuracy on the
path (primary objective) and energy optimality (secondary
objective). These are (partially) competing subobjectives that
need to be carefully balanced using (weighting) parameters.
We propose to exploit the degrees-of-freedom given by the
cost function parametrization to identify the task realization
that is optimal with respect to the secondary objective while
satisfying the primary objective. Specifically, we propose
to use Bayesian optimization [9], a machine-learning-based
optimization method for black-box objective functions, to
learn the cost function parametrization based on measurement
and simulation data from repeated task executions.

Optimization-based planners are widely used in literature
to generate optimal trajectories for robotic systems [10],
[11], [12]. They have been successfully applied to reduce
energy consumption of robots [13], [14], [15], [16], [17], [18].
Current approaches rely either on an approximation of energy
consumption exploiting velocities and accelerations [13] or
on exact models of energy consumption that are employed
directly as cost function in the planner or controller [14].
The special case of accumulated kinetic energy minimization,
which, however, does not reflect the total energy consumption,
can be treated using operational space controllers [19] in
combination with reference attractors. Our approach directly
accounts for the consumed energy while not relying on the
availability of a possibly complex energy consumption model.
Rather, we exploit Bayesian optimization to capture the energy
consumption model implicitly from measurement data or
expensive simulations that are not suited for direct use in
the planner. Using Bayesian optimization to learn the cost
function (its parametrization) of the planner allows to adapt
to changing and uncertain operating conditions. Following
these ideas, Bayesian optimization has recently been used
to tune model predictive controllers based on closed-loop
information [20], [21].

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1367



The main contribution of this work is the integration of
path-following optimal control and Bayesian optimization for
planning energy-optimal trajectories. The proposed approach
provides a flexible framework to exploit degrees-of-freedom
in the task definition. While outlined for minimizing energy
consumption, the framework can be applied straightforwardly
to other scenarios. Thus, the proposed approach combines
the main advantages of optimal control and Bayesian opti-
mization: it directly accounts for constraints and the system
dynamics while effectively and efficiently exploiting data
to adapt without requiring in-depth prior knowledge. The
effectiveness of the approach is underlined in simulation.

In Section II, we introduce the considered problem. There-
after, the model predictive planner is described in Section III.
In Section IV, we provide an overview of Gaussian process
regression, followed by a discussion of Bayesian optimization
in Section V. We introduce our proposed approach in Section
VI and underline its effectiveness using simulations before
concluding in Section VII.

II. PROBLEM FORMULATION

We consider a nonlinear system – the robot –

ẋ(t) = f
(
x(t), u(t)

)
, x(t0) = x0 (1a)

y(t) = h
(
x(t)

)
, (1b)

where x ∈ Rnx is the system state (the angular positions
and velocities of the robot), u ∈ Rnu the control input (the
joint torques), y ∈ Rny the output (such as the coordinates
of the tool center point), f : Rnx × Rnu → Rnx captures
the dynamics, and h : Rnx → Rny maps the state to the
output. The initial state at time t0 is given by x0 ∈ Rnx ,
and the states as well as the inputs are subject to constraints
(x, u) ∈ X × U such as maximum velocities, or collision
avoidance constraints. The system shall follow a path in the
output-space (the robot’s operational space) given by

C={y=F (θ)∈Rny |θ∈ [θl,θu]⊂R, F : [θl,θu]→Rny} (2)

with path parameter θ while reducing energy consumption.
To achieve this goal, we establish a planning algorithm

based on model predictive control (MPC) that determines
the minimum-energy state and input trajectories with respect
to the system dynamics. At the same time, the planner is
supposed to keep the path-following error to a (acceptable)
minimum while guaranteeing constraint satisfaction. However,
directly employing an energy-based cost functional in the
MPC-based trajectory planner can result in a computationally
expensive optimization problem or might be impossible
if energy consumption models are unavailable. Thus, we
consider a standard quadratic cost function in the MPC-based
planner that takes deviations from the path, control energy and
progress on the path into account. As this leads to competing
control objectives, it remains to select the weight parameters
for each objective. To do so, we employ Bayesian optimization
that iteratively learns the weight parameters from data such
that the energy consumed for executing the planned trajectory
is minimized while accounting for the desired path-following
accuracy.

III. MODEL PREDICTIVE PLANNER

We employ a model predictive trajectory planner based on
solving an optimal control problem to plan trajectories for the
system (1) whose execution is safe, feasible and leads to the
successful completion of the desired task. The advantage of
the optimal-control-based trajectory planner is that it directly
takes the system dynamics as well as constraints into account.
Furthermore, it works for a wide variety of cost functions
that enable to encode different control objectives. We define
the underlying optimal control problem as

min
ū, v̄, T

Jβ
(
ȳ − F (θ), x̄, ū, θ̄, v̄, T

)
(3a)

s.t. ∀τ ∈ [0, T ],

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(0), (3b)
˙̄θ(τ) = ρ(θ̄(τ), v̄(τ)), θ̄(0) = θ(0), (3c)
ȳ(τ) = h(x̄(τ)), (3d)
x̄(τ) ∈ X , ū(τ) ∈ U , (3e)
θ̄(τ) ∈ [θl,θu], v̄(τ) ∈ V, (3f)
T ∈ [0,Tu], (3g)[
x̄⊤(T ) θ̄(T )]

]⊤ ∈ Ω. (3h)

Therein, (3b) and (3d) represent the robot dynamics (1) and
·̄ denotes a prediction inside the optimal control problem. The
path parameter θ, defining the output reference according to
(2), is equipped with a virtual dynamics ρ : Rnθ×Rnv → Rnθ

(3c) controlled by the virtual input v̄(t) [8]. Since we optimize
over both the system input ū and the virtual input v̄, the
optimizer can control the temporal evolution of the path
parameter, given by (3c), and hence the timing of the output
reference to be tracked. The virtual dynamics are a design
choice and often implemented as an integrator chain. We
consider constraints on the system states and control inputs
(3e) as well as on the path parameter and the virtual inputs
(3f). We constrain the final time T within which the task has
to be completed by (3g). Furthermore, a terminal constraint
(3h) is deployed, which may be – together with the terminal
cost (to be defined shortly) and a terminal controller – used
to establish convergence guarantees [7].

We define the cost function (3a) as

Jβ=

∫ T

0

Lβ

(
ȳ−F (θ), x̄, ū, θ, v̄, T

)
dτ+E

(
x̄(T ), θ(T )

)
, (4)

where E(·) and Lβ(·) are the terminal and stage cost,
respectively. The particular structure of the cost function
Jβ depends on the task for which the trajectories are planned.
Usually, the cost is a weighted sum of multiple, potentially
competing subobjectives. The weighting parameters β ∈ Rnβ

adjust the importance of the subobjectives in regard of the
overall task objective and are often determined by human
experts. However, there is usually no unique set of weighting
parameters that leads to a successful task completion. Hence,
there is a degree-of-freedom in tuning β, which we exploit to
achieve a higher-level objective, e.g., minimizing the energy
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consumption. We use Gaussian process (GP) regression to
learn the energy consumption as a function of β, which is
later optimized using Bayesian optimization.

IV. GAUSSIAN PROCESS REGRESSION

A Gaussian process, denoted by

g(ξ) ∼ GP(m(ξ), k(ξ, ξ′)) (5)

defines a Gaussian probability distribution over functions. It
is defined by its prior mean function m : Rnξ → R, ξ 7→
E[g(ξ)] and prior covariance function (kernel) k : Rnξ ×
Rnξ → R, (ξ, ξ′) 7→ Cov[g(ξ), g(ξ′)]. Formally, it is defined
as a collection of random variables – the function values g(ξ)
for all ξ ∈ Rnξ – any finite number of which is jointly and
consistently Gaussian distributed [22].

We employ a Gaussian process g to model an unknown
function φ : Rnξ → R, ξ 7→ φ(ξ). To this end, we rely on a
set D = {(ξi, γi = φ(ξi) + ε) | i = 1, . . . , nD} of nD noisy
observations γi = φ(ξi) + ε, where ε ∼ N (0, σ2

n) models
white Gaussian measurement noise with variance σ2

n. Therein,
(γ1, . . . , γnD ) realizes the random vector (g(ξ1), . . . , g(ξnD )).
For conciseness of notation, we write in the following D =
{Ξ, γ}, where Ξ ∈ RnD×nξ is the training input matrix and
γ ∈ RnD is the training target (output) vector. Given that we
want to predict a set of test targets φ(ξ∗i ), i = 1, . . . , n∗

D at test
inputs ξ∗i , concisely denoted as {Ξ∗ ∈ Rn∗

D×nξ , φ∗ ∈ Rn∗
D},

we consider the prior distribution1[
g(Ξ)
g(Ξ∗)

]
∼ N

([
m(Ξ)
m(Ξ∗)

]
,

[
k(Ξ,Ξ) k(Ξ,Ξ∗)
k(Ξ∗,Ξ) k(Ξ∗,Ξ∗)

])
. (6)

We obtain the posterior (predictive) distribution for the test
targets by conditioning (6) on D, yielding g(Ξ∗) |Ξ∗,Ξ, γ ∼
N (m+(Ξ∗), k+(Ξ∗,Ξ∗)) with

m+(Ξ∗) = m(Ξ∗) + k(Ξ∗,Ξ)k−1
γ (γ −m(Ξ)) (7a)

k+(Ξ∗,Ξ∗) = k(Ξ∗,Ξ∗)− k(Ξ∗,Ξ)k−1
γ k(Ξ,Ξ∗), (7b)

where kγ = [k(Ξ,Ξ) + σ2
nI]. The posterior mean (7a) is an

estimate for the unknown test targets, i.e., φ̂∗ = m+(Ξ∗),
while the posterior variances, i.e., the diagonal elements of
(7b), quantify prediction uncertainty [22].

Usually, the prior mean and covariance functions m(·; θ)
and k(·, ·; θ) depend on free hyperparameters θ. These hy-
perparameters have to be adjusted to the underlying problem
in order to obtain meaningful predictive distributions. One
possibility to find suitable hyperparameters is to infer them
from the training data using evidence maximization [22]. In
evidence maximization, we maximize the expressiveness of
the GP model, given by the logarithmic marginal likelihood

log
(
p(γ |Ξ, θ)

)
=−1

2
γ⊤
0 k−1

γ γ0−
1

2
log(|kγ |)−

nD

2
log(2π),

(8)

1With a slight abuse of notation, we overload functions g, m and k
in the following and mean by g(A), m(A) column vectors defined by
[g(A)]i = g(ai), [m(A)]i = m(ai) and by k(A,B) a matrix defined by
[k(A,B)]ij = k(ai, bj). Therein, A,B ∈ {Ξ,Ξ∗} and ai, bj denote the
ith and jth row of A and B respectively.

where γ0 = γ − m(Ξ), p(·) denotes a probability density
function and |·| the determinant. The optimal hyperparameters
are then obtained from maximizing (8) w.r.t. θ.

V. BAYESIAN OPTIMIZATION

Bayesian optimization (BO) is an optimization method for
solving problems of the form

ξ† = arg max
ξ∈R⊆Rnξ

{φ(ξ)}, (9)

where we seek the global optimizer ξ† that maximizes the
cost function φ : Rnξ → R over a set R. In Bayesian
optimization, we assume an unknown cost function φ that,
however, can be observed (evaluated) at query points ξq ∈
R. Evaluating φ may be (computationally) expensive, φ
might be complex, e.g., nonlinear and nonconvex, or gradient
information about φ may be lacking. This often prevents from
deploying standard optimization approaches such as widely
used gradient-based methods [9], [23].

To remedy from this situation, Bayesian optimization relies
on a Bayesian surrogate model of the cost function, for
which Gaussian processes are a common choice. Thus, we
place a Gaussian process prior (5) over φ, representing our
beliefs about the cost function we are optimizing. In Bayesian
optimization, this surrogate model is now sequentially refined
by iterating the following two steps:

(i) Select a query point ξqn at which the cost function is
probed to generate a new observation {ξqn, φ(ξqn)}, and

(ii) Update the (posterior) GP model given the augmented
training data set Dn+1 ← Dn ∪ {ξqn, φ(ξqn)}.

Therein, subscript n ∈ N0 denotes the dependency on the
current iteration and Dn is the set of training data collected
up to iteration n [9], [23].

The crucial step in the iterative procedure described above
is the selection of a query point ξqn such that the sequential
search is effectively guided towards the global optimizer ξ†,
i.e., it is not necessary to probe any point in space but we
want to achieve that ξqn

n→∞−−−−→ ξ†. To this end, acquisition
functions are used. An acquisition function α : Rnξ →
R, ξ 7→ α(ξ;Dn) utilizes the posterior GP model of φ to
evaluate the utility of a query point, trading off exploration
of the search space and exploitation of already identified,
promising areas. The query point ξqn is then determined,
using the available information up to iteration n, as

ξqn = argmax
ξ∈R
{α(ξ;Dn)} . (10)

While there exist many different acquisition functions [9],
[23], we employ the so-called expected improvement acqui-
sition function, given by

αEI(ξ;Dn)=(m+
n (ξ)−λ+ω)Φ̄

m+
n (ξ)−λ√
k+n (ξ, ξ)


+

√
k+n (ξ, ξ)ϕ

m+
n (ξ)−λ√
k+n (ξ, ξ)

 .

(11)
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Therein, m+
n and k+n denote the posterior mean and covariance

functions (7a) and (7b) based on Dn. Furthermore, ϕ denotes
the standard Gaussian probability density function and
Φ̄(·) = 1 − Φ(·), where Φ denotes the standard Gaussian
cumulative density function. The target value λ is the
unknown, best reachable cost value. In practice, λ is often
set to be the so-far best observed value, i.e., λ = λn =
max{φ(ξq1 ), . . . , φ(ξ

q
n−1)}. The parameter ω ≥ 0 may be

used to enhance exploration.
The sequential approach of Bayesian optimization to

solving Problem (9) using a series of query points, i.e.,
candidate optimizers, is in general data-efficient. However,
note that obtaining the desired convergence guarantees has
only been partially resolved in literature and is an ongoing
area of research, see [9] and references therein. Nonetheless,
Bayesian optimization has been deployed successfully in a
wide variety of applications [24], [25].

VI. ENERGY-OPTIMAL TRAJECTORY PLANNING FOR A
ROBOTIC MANIPULATOR

We aim to find energy-optimal trajectories for a Franka
Emika Panda robot performing a path-following task. Firstly,
we discuss the modeling of the robot and the peculiarities of
the trajectory planner. Afterwards, the BO-based algorithm
that is used to learn the cost function of the planner is outlined.
We conclude by presenting simulation results.

A. Trajectory Planner

An important aspect, when it comes to trajectory planning
for robotic manipulators, are the dynamics of the system.
Commonly, the dynamics are derived using Lagrangian
mechanics in combination with a tailored approach for
parameter estimation [26]. The resulting models are often
given in implicit form as

τ = B(q)q̈ + C(q, q̇)q̇ + g(q) (12)

where τ ∈ Rn are the joint torques. The joint angles,
velocities and accelerations are given by q, q̇, q̈ ∈ Rn, where
n denotes the number of joints. The terms B(q), C(q, q̇) ∈
Rn×n represent the contributions of the inertia and Coriolis
forces to the torques, respectively, while g(q) ∈ Rn is the
gravitational contribution to the torques. Due to the structure
of (12), one can use feedback linearization to simplify the
model used in the OCP (3b), c.f., [26]. Feedback linearization
allows us to formulate our dynamics as a double integrator.
Consequently, we define the states as [x1, x2]

⊤ = [q, q̇]⊤ with
input u = q̈. We constrain the state and input (3e) according
to the joint limits of the manipulator. The output function
(3d) is derived from the direct forward kinematics of the
robot and given by

y = [hpos(x1), hori(x1)]
⊤. (13)

The function hpos : Rn → R3 maps the joint angles to the
Cartesian position of the end-effector, and hori : Rn → R4

directly defines the end-effector orientation error based on
quaternions. It is also possible to include additional output
constraints in the planner, e.g., to maintain a fixed orientation.

We define the stage cost in (4) as

Lβ =∥(hpos(x1)− F (θ))∥2β1
+ ∥hori(x1)∥2β2

+ ∥θ∥2β3
+ ∥v∥2β4

+ ∥x2∥2β5
+ ∥u∥2β6

+ ∥T∥2β7
,

(14)

where we penalize the quadratic error between the end-
effector position and the given path, and the orientation error.
Furthermore, we penalize the progress of the path parameter
θ, the artificial input v, the joint velocities x2, the joint
accelerations u, and the final time T of task completion.
We set E(x(T ), θ(T )) = 0 as the terminal cost function
(4). To guarantee that the planner predicts trajectories to the
end of the path, we use as the terminal constraint in (3h)
[hpos(x1(T )), θ(T )]

⊤ = [F (θu), θu]
⊤ with θ ∈ [θl, θu].

The cost (14) is characterized by a set of weighting
parameters. For this set of parameters β = {βi ∈ R>0 |
i ∈ I, I = If ∪ It}, we distinguish between two index sets.
The index set If marks all the fixed parameters βIf

, while
It represents the index set of the parameters βIt

that we
want to learn. Hence, the planner has additional degrees of
freedom that we can use to impose superordinate objectives.
For simplicity, we only consider three tuning parameters:
β4, β6, and β7. It is possible to exploit richer cost function
parametrizations, such as using individual penalty parameters
for joint velocities and accelerations, at the cost of higher
computational loads as BO is known to suffer from the curse
of dimensionality. We aim to adjust β such that the computed
state and input trajectories result in a reduction of consumed
energy during task execution.

B. Parameter Learning using Bayesian Optimization

We deploy Bayesian optimization to learn the free pa-
rameters of the primary cost function (14) of the planner.
Specifically, we seek the optimal parameters β† such that the
trajectories resulting from solving OCP (3) with cost function
(14) are energy-optimal. To this end, we quantify the energy
consumption in task execution (iteration) j and given a set
of parameters βj as

W j = W (βj) =

∫ T

0

|τ j
⊤
(t)q̇j(t)|dt, (15)

where τ j(t) and q̇j(t) describe the trajectories of the joint
torques and velocities, respectively, for t ∈ [0, T ].2

To model the function W in (15), we employ a zero-
mean Gaussian process with squared-exponential covariance
function. To this end, we rely on the training data set Dj ,
which is initialized as D1 = ∅ and afterwards updated
by Dj = {(βi,W i) | i = 1, . . . , j − 1} = Dj−1 ∪
{(βj−1,W j−1)} for j ≥ 2. Based thereon, the next candidate
optimizer βj+1 to be probed in the next iteration is computed
according to (10) using the expected improvement acquisition
function (11). We summarize the algorithm in the following:

(i) Initialize D1 = ∅ and β1 = βinit.

2Exact energy models are often not available in practice. Note that (15)
is an approximation since it does not account for the amount of energy
required to hold a certain pose.
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Fig. 1. Desired path (blue line) and path-following results for the first (red
line) and final, energy-optimal (yellow line) run are shown.

(ii) Solve OCP (3) using βj to obtain task-optimal state
and input trajectories x† and u†, respectively.

(iii) Evaluate the energy consumption W j (15) and augment
the training data set by Dj+1 = Dj ∪ {(βj

It
,W j)}.

(iv) Update posterior GP model of W based on Dj+1,
including hyperparameter optimization.

(v) Exploit the updated GP model to obtain the next
candidate optimizer βj+1 = βj+1

It
∪ βj+1

If
, where

βj+1
It

= argmaxβ {αEI(β;Dj)} according to (10) with
acquisition function (11).

(vi) If j ≥ Nmin and |Wj−Wj−1| ≤ ρ for a small constant
ρ ∈ R+ and a minimum number Nmin of iterations,
terminate and set β† = βj . Otherwise, go to (ii) with
j ← j + 1.

In the following, we demonstrate the effectiveness of the
algorithm in simulation. The algorithm has been implemented
in Matlab using GPML [22] and CasADi [27].

C. Minimum-energy Trajectories for a Robotic Manipulator

We consider a seven-link Franka Emika Panda robot3. We
exploit the dynamic model derived in [28]. The robot is
supposed to follow a predefined path in the Cartesian (rx, ry)-
plane with its end-effector, see Fig. 1. We apply the approach
outlined in the previous section to compute energy-optimal
trajectories for the robot by learning βIt . The energy decrease
over the iterations is shown in Fig. 2.

Within the first 30 iterations, we observe that the energy
cost evaluation is very noisy with high peaks. This is due to
the exploration and exploitation trade-off. In the beginning,
the BO tries to explore the parameter space more to gain
information about the underlying cost function. From iteration
31 and forward, the peaks become smaller because the
BO relies more on exploitation from this point on. At the
89th iteration step, the algorithm converges to the minimal
value of (15) and we found the optimal parameters β∗.
From Fig. 2, one can deduce how challenging it can be
for an expert operator to find an optimal parameter set. It
would require many trial and error experiments. Bayesian
optimization, however, can find a global optimum and does not
require extensive hands-on tuning. Furthermore, the proposed
approach can be extended to situations where knowledge

3The joint constraints can be found at: frankaemika.github.io/
docs/control_parameters.html

1 20 40 60 80
100

110

120

130

Number of iterations

W
(J

)

samples
smoothed

Fig. 2. Energy consumption over the BO iterations: Energy consumption
values for each query parametrization (blue line) and smoothed version
thereof (red line) are shown.

about the system or its environment is limited, using a fully
parameterized model predictive planner, cf. [9].

Given the optimal parameters, the trajectory planner (3)
determines the energy-optimal state and input trajectories for
following the predefined path with acceptable accuracy. The
path is the contour of a polygon that lies in the rx-ry-plane,
where the rz-coordinate is constant. Fig. 1 shows the path, the
actual end-effector position in the first iteration, and the actual
end-effector position in the 89th iteration using the energy-
optimal parameters in the planner. We see that the robot is
able to follow the path with small errors in the first iteration.
When using the energy-optimal parameters, we observe that
the end-effector is navigated more smoothly in the corners
of the given contour. This is due to the fact that we used the
fixed parameters βIf

to prioritize low position errors in the
planner. A more detailed comparison of the errors and energy
consumption is given in Tab. I. Here, the error is defined as
the Euclidean distance between the path and the end-effector
position. The maximum errors and average errors are given
by ∥e∥max and ∥e∥avg, respectively.

The corresponding joint velocity, acceleration, and torque
trajectories are shown in Fig. 3 for the second joint. Here,
we observe that the absolute value of the torques becomes
smaller over the iterations and we have smoothing effects
on the torques, especially when comparing to the result of
the 15th iteration, which displays large spikes in the torques.
Such abruptly changing torques impose a strain on the joint
drives, which leads to promoted fatigue effects and decreased
longevity. Hence, besides not being energy-optimal, such
trajectories are to be avoided in order to reduce wear and
tear. Furthermore, we see that the trajectories also vary in
the task execution time since the weighting parameter for
penalizing larger task execution times in (14) is adapted
by the BO procedure. The tuning algorithm tries to find a
trade-off between the joint velocities and accelerations and
the maximum task execution time that ultimately leads to a
decrease of the overall energy. Also important to note is that
the trajectory in iteration 15 ends at exactly 25s. This is due
the hard constraint on the final time in (3g).

TABLE I
PATH-FOLLOWING ERROR AND ENERGY CONSUMPTION.
No. iteration ∥e∥max (mm) ∥e∥avg (mm) W (J)

1 1.5 0.03 131
89 5 0.6 103

1371
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Fig. 3. Exemplary results of the energy-optimal joint velocity (top), joint
acceleration (middle), and joint torque (bottom) trajectories of the second
joint for indicated BO iterations.

VII. CONCLUSIONS

We presented a trajectory planning approach that solves a
path-following OCP to compute a realization of a specified
task. Besides this primary objective, encoded directly in
the OCP, we account for secondary, higher-level objectives
by exploiting degrees-of-freedom in the form of learning
parameters of the OCP using Bayesian optimization. The
proposed approach was used to compute minimum-energy
trajectories for a robotic manipulator for a path-following
task. We have demonstrated a significant reduction in energy
consumption, while the planned trajectories also led to a
successful completion of the primary task, illustrating the
effectiveness of the proposed approach.

Future research will be dedicated towards implementing
the proposed approach for a real-world scenario. Furthermore,
different higher-level objectives besides minimizing energy
consumption can be considered, such as quality of task
executions (e.g., quality of a welding seam). Future steps
include further the extension of the proposed scheme to
scenarios subject to uncertainty and to safety-critical scenarios
in which constraints need to be satisfied in each iteration.
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[8] J. Matschek, T. Bäthge, T. Faulwasser, and R. Findeisen, “Nonlinear
predictive control for trajectory tracking and path following: An
introduction and perspektive,” in Handbook of Model Predictive Control,
S. Rakovic and S. Levine, Eds. Birkhäuser, 2019, pp. 169–198.
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