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Abstract— There has been significant interest in using ad-
vanced control strategies for medical treatments in recent years.
This study proposes a two-fold approach to enhance drug dosing
in cancer treatment. Firstly, a stochastic model predictive con-
trol (SMPC) is designed to address the uncertainties inherent
in patient responses. Secondly, this SMPC is formulated as
a sequential quadratic programming (SQP) MPC to manage
the system’s non-linearities. Therefore, this study proposes
a stochastic SQP-MPC drug delivery framework to enhance
patient outcomes and reduce side effects. The effectiveness of
the proposed strategy is assessed via simulations and compared
with other strategies.

I. INTRODUCTION

Cancer is a predominant cause of mortality worldwide,
exerting a substantial strain on health systems, economies,
and societal frameworks. Projections indicate that in the next
century, 40-50% of people may develop cancer at some point
in their lives [1], [2]. The therapeutic approach to cancer is
contingent upon the tumor’s nature, its progression stage, and
the patient’s overall health. Established treatments include
radiotherapy [3], immunotherapy [4], surgical procedures,
and, notably, chemotherapy [5]. This last treatment, while
effective, is non-discriminative and often results in adverse
side effects, necessitating meticulous planning to ensure the
patient’s well-being.

Currently, the integration of engineering and mathematical
methodologies in devising cancer treatment strategies is on
the rise. In this regard, drug pharmacokinetics models exa-
mine tumor-drug-side effect interactions, as seen in the work
of [6], which offers an overview of various models. Such
techniques are instrumental in forecasting tumor trajectories
[7], [8] and discerning their probabilistic behavior [9].

Leveraging mathematical models and control algorithms
can enhance drug delivery. For instance, the study in [10]
employs a PID controller to orchestrate chemotherapeutic
regimens. Similarly, the research presented in [11] adopts
a two-degree-of-freedom fractional order PID system for
drug dosing. Furthermore, the work in [12] integrates linear
quadratic regulators to refine chemotherapy-centric cancer
treatments.
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This work is focused on Model Predictive Control (MPC),
a well-established control strategy for dynamical systems.
MPC employs a mathematical model to predict the future
trajectory of system variables and optimize an objective
function subject to constraints on both input and output
variables along a prediction horizon [13], which renders it apt
for safety-critical applications. For instance, MPC is used to
compute the optimal thermal dose employed in the ultrasonic
heating treatment of cancer in [14], [15].

Generally, MPC controllers using linear models achieve
satisfactory results, even when dealing with non-linear sys-
tems. However, in some cases where the non-linearities
are particularly severe, the response obtained through a
linear MPC is unacceptable. In such cases, non-linear MPC
(NMPC) formulations are required [16]. In this way, some
NMPC approaches have been utilized in biomedical systems.
For instance, in reference [17], a dosing strategy for a
combined regimen of chemotherapy and immunotherapy is
carried out. Also, an NMPC in tandem with a moving-
horizon estimator to achieve an optimal drug administration
scheme is proposed in [18].

NMPC typically involves solving computationally inten-
sive optimization problems that are nonconvex. An alter-
native to address this issue is to incorporate Sequential
Quadratic Programming (SQP) into MPC, which is recog-
nized as an essential improvement, particularly in managing
non-linear applications, as seen in [19], [20]. The SQP-
MPC approach is an iterative technique that solves an
approximation of the non-linear problem. At each time step,
the solution is obtained by replacing the objective function
with a quadratic approximation and replacing the non-linear
constraints with their linear approximations [21]–[23].

Another issue when developing a control strategy for
cancer therapy is to address stochastic uncertainties that
may significantly impact therapy outcomes. This fact leads
to Stochastic MPC (SMPC) methodologies. Among SMPC
techniques, Chance-constrained MPC (CC-MPC) is notewor-
thy for its ability to manage the probabilistic constraints
inherent in the optimization problem [24], translating them
into their deterministic equivalent concerning risk violation.
The biomedical domain has highlighted the effectiveness of
this approach, as seen in works like [25], which employs this
kind of controller to calculate chemotherapy dosage.

The main contribution of this work is the combination
of SQP-MPC with CC-MPC applied to tumoral growth, re-
sulting in improved effectiveness of chemotherapy treatment.
The goal is to optimize the therapeutic impact, minimize side
effects, and safely reduce tumor size as much as possible.
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Compared to previous works mentioned above, this article
attempts to bridge the gap between handling non-linear ma-
thematical models and accounting for the stochastic nature of
biological systems. It is important to note that this proposed
methodology is intended to aid practitioners in designing and
administering chemotherapy. Further study and validation on
real subjects would be required before its use in clinical
treatment.

This article is organized as follows. Section II describes
the non-linear mathematical model detailing tumor dynamics,
the pharmacokinetics of tamoxifen (TM), and its associated
side effects. Section III develops the formulation of the SQP
CC-MPC to deal with uncertainties. Section IV highlights
the advantages of the controller by comparing it with other
alternative treatments. Conclusions and future directions are
discussed in Section V.

II. NON-LINEAR MATHEMATICAL MODEL OF THE
SYSTEM

The non-linear mathematical model presented below an-
alyzes different aspects of cancer treatment. Firstly, it is
essential to note that the model is based on TM cycles
administered to a common mouse with an advanced tumor.
As mentioned above, the equations of this model, alongside
their parameters, have been taken from the work in [26].

The first part of the model relates to the cellular growth
of the cancerous cells in the tumor. This process is divided
into three stages for mathematical simplicity, as stated in
reference [27]: Xg , which corresponds to the volume of
cells in the quiescence and growing states; Xs, which is the
volume of cells in the DNA synthesis state; and Xm, which
represents the volume of cells in mitotic preparation and in
mitosis itself. They are described according to the following
equations:

Ẋg(t) = −kgXg(t) ln

(
Θ

N(t)

)
+ 2kmXm(t) ln

(
Θ

N(t)

)
−

kdXg(t)

(
X2

V
+ c

X3

V

)
, (1)

Ẋs(t) = −ksXs(t) + kgXg(t) ln

(
Θ

N(t)

)
, (2)

Ẋm(t) = −kmXm(t) ln

(
Θ

N(t)

)
+ ksXs(t), (3)

with kg , km, and ks being the transfer rates between the
three stages. Moreover, Θ is the plateau population, kd is the
chemotherapy-induced cellular death rate, V represents the
total blood volume, and c corresponds to the higher efficiency
of X3. All of the values for these parameters can be consulted
in [26]. Moreover, the total tumor size is represented by

N(t) = Xg(t) +Xs(t) +Xm(t). (4)

The pharmacokinetics of TM are modeled in four stages: X0,
X1, X2, and X3. The set of equations describing this part

of the model are:

Ẋ0(t) = −k01X0(t) + uc(t), (5)

Ẋ1(t) = −k12X1(t) + k01X0(t), (6)

Ẋ2(t) = −kr2X2(t)− k23X2(t) + k12X1(t), (7)

Ẋ3(t) = −kr3X3(t) + k23X2(t), (8)

where uc(t) is the daily injected dose of chemotherapy, each
kxx represents the transfer between different stages of the
metabolization, and krx are the consumption rates for X2

and X3. It is important to note that the daily dose of TM
should not exceed 800 µg.

As mentioned above, chemotherapy is not a selective
treatment, meaning the drug will also affect healthy cells.
One of TM’s most potentially dangerous side effects is the
degradation of the immune system. This work considers
circulating lymphocytes as an indicator of this degradation,
following the evolution described by the following equation:

Ċ(t) = αC − βCC(t)− kCC(t)

(
X2(t)

V
+ b

X3(t)

V

)
. (9)

Here, C(t) is the quantity of circulating lymphocytes, which
should always remain above 40% of its initial value (C(0) =
107) to ensure the safety of the treatment [26]. Furthermore,
αC and βC respectively represent the natural generation and
death of lymphocytes, kC is the TM-induced lymphocyte
death, V is the total blood volume, and b represents the
increased effect of X3 when compared to X2. As stated
above, these values can be found in [26].

III. SQP CC-MPC APPROACH APPLIED TO TUMOR
GROWTH THROUGH CHEMOTHERAPY

In order to obtain a control-oriented model, to compute the
law control of the MPC, and to integrate the SQP method,
the non-linear mathematical model presented in Section II
has been discretized using the Backward Euler method with
a sample time of one hour. This non-linear system can be
expressed as:

x[k + 1] = f(x[k], u[k], k), (10a)
y[k + 1] = g(x[k], u[k], k) + ỹ[k], (10b)

where f and g are non-linear functions, u[k] represents the
manipulated variable, in this case, the daily dose of TM (in
µg), and the uncertainties of the system are described by
ỹ[k]. The set of state variables in this non-linear model is
x[k], while y[k] denotes the outputs of the system, which
are expressed, respectively, as:

x = [Xg Xs Xm C X0 X1 X2 X3]
T ,

y = [N C X2 X3]
T .

The control action u[k] is calculated daily with the use
of a linear CC-MPC; this implies that the non-linear system
presented in Equation (10) needs to be linearized and can be
written as:

x[k + 1] = Akx[k] +Bku[k], (11a)
y[k] = Ckx[k] + ỹ[k]. (11b)
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Matrices Ak, Bk, and Ck are obtained through lineariza-
tion for each operating point (op = [xk, uk, k]) at which the
MPC controller is invoked [28]:

Ak =
∂f

∂x

∣∣∣∣
op
, Bk =

∂f

∂u

∣∣∣∣
op
, Ck =

∂g

∂x

∣∣∣∣
op

(12)

subject to
0 ≤ uc[k] ≤ 800 µg. (13)

Furthermore, the output variables have to fulfill the following
constraints, which reflect the biological requirements and
limitations of the chemotherapy administration design [26],
[29]:

X2[k] ≥ 0 µg/mL, (14a)
X3[k] ≥ 0 µg/mL, (14b)

N [k] ≥ 0 mm3, (14c)

C[k] ≥ 4× 106. (14d)

The main goal of this work is to implement an automatic
controller that achieves the largest tumor reduction compliant
with the system’s safety constraints. In that sense, the cost
function for the optimization problem can be defined as:

J(y[k], u[k]) =(yref − y[k])TRy(yref − y[k])+

u[k]TQuu[k], (15)

where yref is the reference array for the output variables, Ry

is the weight matrix for each output’s error signal, and Qu is
the weight factor for the input variable. All of these values
were adjusted by trial and error.

A. SQP-MPC formulation

Integrating SQP into MPC represents a considerable ad-
vance in managing complex and non-linear optimization
challenges. As stated above, MPC operates on a strategy that
utilizes an internal model for predicting a system’s future
behavior. However, non-linear dynamics in many systems
complicate this process, necessitating a more sophisticated
approach. This way, SQP breaks the more significant pro-
blem into smaller and more manageable segments. All in all,
establishing a sequence of quadratic approximations, each
designed to move closer to the most favorable outcome,
ensuring a systematic approach to problem-solving [30].

To implement this control scheme, it is necessary to
calculate, employing Equation (12), a linear model around
the current state vector (xk), resulting in a linear time-varying
model [31]. Thus, this approach allows for incorporating
linear formulations of an MPC controller in non-linear dy-
namical systems.

Once matrices Ak, Bk, and Ck are known for the predic-
tion horizon, the optimization problem to be solved by the
SQP-MPC controller at each k can be formulated as:

min
u[k:k+Np−1]

k+Np−1∑
l=k

J (y[l], u[l]) , (16)

subject to (11)-(14), ∀l ∈ [k, k + Np − 1], where Np is
the prediction horizon, in this case 7 days. The SQP-MPC
strategy applied is described in Algorithm 1.

Algorithm 1 SQP-MPC scheme.

1) Use Equation (12) at time k along with the current
state vector xk and control variable uk to calculate the
Jacobian matrices of the linear model.

2) Solve the optimization problem defined in Equation
(16).

3) Apply the first element of the sequence u[k : k+Np−
1].

4) Repeat the process for k + 1.

B. Chance-Constraint formulation

One key issue to consider is the stochastic nature of
the system at hand. The closed-loop control of tumoral
growth is affected by the error associated with the measuring
process of the system’s output variables. Thus, output va-
riables yj have been modeled as normal independently and
identically distributed stochastic process, ȳj∼ N (0, σ2

j ) with
j ∈ {1, 2, 3, 4} and a standard deviation of σj .

The use of the CC-MPC deals with the stochastic nature of
the system. This proposed control strategy assumes a certain
risk of violating the constraints affected by uncertainty
described by the following inequality:

P [yj [k] ≥ yj,min] ≥ 1− δy,

Here, P[·] is the probability operator, yj,min is the minimum
acceptable value of output yj , and δy represents the risk
violation of the constraints. In this study, δy has been set
to 0.1, which allows for constraint violations up to 10%
of the time. This value is a compromise between tumor
reduction speed and safety, achieved through trial and error.
Moreover, this probabilistic constraint can be transformed
into its deterministic equivalent according to this process
[32]:

P
[
yj [k] ≥ yminj

]
≥ 1− δy ⇔

P
[
C(j) x[k] + ỹj [k] ≥ yminj

]
≥ 1− δy ⇔

P
[
ỹj [k] ≥ yminj − Ck(j) x[k]

]
≥ 1− δy ⇔

P
[
ỹj [k] < yminj

− Ck(j) x[k]
]
< δy ⇔

ϕj

(
yminj

− Ck(j) x[k]
)
< δy ⇔

yminj
− Ck(j) x[k] < ϕ−1

j (δy) ⇔
Ck(j) x[k] ≥ yminj

+ ϕ−1
j (1− δy) . (17)

Here, Ck(j) represents row j of the matrix Ck, which
corresponds to each output yj . Additionally, ϕj is the cu-
mulative distribution function of the uncertainty impacting
each output. Equation (17) can then be applied to each time
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TABLE I: Comparison among the different controllers employing KPIs.

Controller KPI1 mm3 KPI2 mg KPI3
Open-Loop 115.13 (9.68) 255.50 (0) 3.59 · 106 (5 · 104)

MPC 148.66 (10.33) 231.36 (1.07) 4.11 · 106 (6 · 104)
SQP-MPC 164.78 (11.17) 219.51 (0.64) 4.23 · 106 (6 · 104)

SQP CC-MPC 175.34 (8.65) 215.63 (0.56) 4.26 · 106 (5 · 104)

Controller KPI4 mm3/mg KPI5 h−1 KPI6
Open-Loop 3.463 (0.038) 3.67 · 105 (1 · 105) 70.42 (0.11)

MPC 3.680 (0.044) 1.38 · 105 (8.8 · 104) 52.48 (2.78)
SQP-MPC 3.805 (0.055) 1.08 · 105 (7.4 · 104) 34.14 (1.30)

SQP CC-MPC 3.824 (0.040) 5.21 · 104 (4.47 · 104) 9.23 (0.46)

instant along the prediction horizon i ∈ [0, Np − 1] and be
rewritten as:

C(j) x[k + i] ≥ yminj + ϕ−1
j,i (1− δy) . (18)

Finally, the optimization problem can be redefined using
the operator E[·], which is the expected value of the cost
function described in Equation (15):

min
u[k:k+Np−1]

k+Np−1∑
l=k

E [J (y[l], u[l])] , (19)

subject to (11), (13)-(14), (18), and ∀l ∈ [k, k + Np − 1].
During the one-year treatment, this process is carried out
daily for each linearization step.

IV. RESULTS AND DISCUSSION

This section presents the results obtained for the con-
trol strategy shown above. Four different scenarios were
evaluated: (i) aggressive open-loop treatment (consisting of
a daily administration of 700 µg of TM), (ii) an MPC
controller based on the linearized state-space model at the
initial operating point of the system (Xg = 900 mm3,
Xs = 50 mm3, Xm = 50 mm3, C = 107, X0 = 0 µg,
X1 = 0 µg, X2 = 0 µg, X3 = 0 µg ), (iii) an SQP-MPC,
and (iv) the SQP CC-MPC.

Furthermore, 300 one-year simulations have been per-
formed for the different approaches. To carry out these
control strategies, the standard deviation values for each
output variable are σ1 = 20 mm3, σ2 = 105, σ3 =
0.001 µg/mL, and σ4 = 0.001 µg/mL, which are based
on [26]. Moreover, the values of the reference vector are
yref = [0 mm3, 107, 0 µg/mL, 0 µg/mL].

Furthermore, the weight matrix Ry has the following
values for each output variable: 2.9 · 1017, 0.001, 10−5, and
10−5, respectively. The matrix Qu has a factor of 10−5.
Several Key Performance Indicators (KPI) have been defined
to characterize each case’s behavior:

• KPI1: Final tumor size.
• KPI2: Total use of TM.
• KPI3: Final quantity of lymphocytes.
• KPI4: Volume of N(t) eliminated per mg of TM.
• KPI5: Number of lymphocyte constraint violations for

every case in which these occur.

• KPI6: Percentage of hours in constraint violation. This
metric tracks constraint violations regardless of severity;
i.e., one lymphocyte below constraint is equivalent to
one million in this case.

Table I shows the values of each KPI for each case as well
as their standard deviation in parentheses. The best behavior
for each KPI is bolded. For instance, the results obtained for
KPI1 demonstrate that the SQP CC-MPC approach is more
conservative than the other control strategies (it presents
the highest value of the final tumor size). However, the
SQP CC-MPC obtains the best results for every other KPI.
Moreover, KPI3, KPI5, and KPI6 demonstrate how this
approach offers the safest treatment regarding side effects.
For instance, KPI3 shows how the SQP CC-MPC has, on
average, the highest final value of lymphocytes, while KPI5
indicates that this last algorithm achieves the lowest mean
magnitude of constraint violation. Furthermore, as evidenced
by KPI6, this controller can keep the percentage of violation
below 10%, as intended by the value set for δy . Additionally,
as seen by KPI2 and KPI4, the implementation of the SQP
CC-MPC results in lower TM consumption and higher drug
administration efficiency, respectively. Therefore, the SQP
CC-MPC controller facilitates efficient drug administration
to the mouse and significantly reduces the amount of drug
needed for comparable tumor volume reduction.

To illustrate an example of the constraint violation, Figure
1 represents the evolution of the lymphocytes, C(t), for all
simulations. It can be appreciated how, in the case of the
open-loop system, the number of lymphocytes falls below
the safety threshold (Figure 1a). As evidenced by KPI6 in
Table I, Figure 1d shows how the SQP CC-MPC controller
achieves fewer constraint violations, rendering a much safer
treatment for the patient.

After analyzing different approaches, it is clear that open-
loop oncologic treatment is highly aggressive and can result
in uncontrollable side effects. However, MPCs can help
improve the results, even if they achieve slightly lower
tumorous cell elimination. It is important to note that the
deterministic SQP-MPC cannot fully account for the stochas-
tic nature of the system. Since mathematical modeling and

865



(a) Open-Loop constraints (b) MPC constraints

(c) SQP-MPC constraints (d) SQP CC-MPC constraints

Fig. 1: Constraint compliance map.

Fig. 2: Evolution of the treatment (SQP CC-MPC).

control of biological systems are affected by uncertainty, it
is crucial to consider this uncertainty while attempting to
control it.

Finally, Figure 2 portrays the evolution of one of the
300 SQP CC-MPC-controlled one-year chemotherapeutic
treatments. The first subplot illustrates the change in tumor
size, N(t), during the one-year treatment. As seen in the
figure, approximately 80% of the tumor during the TM cycle,
represented by uc(t), is eliminated. It is also worth pointing
out that the controller uses an already-established strategy

of administering a loading dose of TM during the first 70
days of treatment. This drug administration scheme could
significantly improve the chemotherapeutic cycle’s prognosis
and reduce its associated risks. This is portrayed in the last
subplot, which represents the evolution of the lymphocytes,
C(t).

V. CONCLUSIONS AND FUTURE WORK

Implementing Stochastic SQP-MPC controllers represents
a crucial step forward in achieving a significant reduction
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in tumor volume, while also maintaining strict adherence to
essential safety standards throughout treatment. This control
algorithm improves the effectiveness of therapeutic protocols
and may limit severe side effects that often accompany
chemotherapy.

The results presented in this work point to the conclusion
that the SQP CC-MPC can limit the degradation of the
patient’s immune system while achieving an impressive
reduction in tumor size and a significant decrease in the ad-
ministered drug. This approach can lower the economic costs
associated with oncologic treatment, freeing up resources and
increasing treatment availability to patients.

All in all, employing SQP-MPC jointly with chance
constraints allows a more appropriate investigation of the
stochastic aspects of biological systems, leading to more
reliable, safe, and practical strategies in drug dosing related
to cancer therapy. It is important to note that these strategies
can lead to more adaptive treatments, offering a robust
drug dosing scheme that adjusts to changes in the patient’s
condition.

Future works will be aimed at the sophisticated evolution
of Stochastic SQP-MPC controllers within cancer therapy.
A key goal is to expand the scope of mathematical models
by considering essential aspects, such as genetic indicators,
metabolic data, and immune system responses. These are
expected to have a significant impact on the effectiveness
of treatments. Moreover, there is an imperative for creating
advanced algorithms with the capacity for real-time respon-
siveness to the nuances of patient reactions.
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