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Abstract— This paper considers a target attack defense sce-
nario where the attacker aims to reach the target while avoiding
the defender, and the defender wants to protect the target by
intercepting the attacker. While most of the prior works assume
the target to be known to the defender, in our setting the
defender has access to only the current states of the attacker at
any instant, and is not aware of the target coordinates. A novel
approach is proposed in this work to leverage past data of the
attacker states to construct a future trajectory of the attacker.
The defender deploys a model predictive control scheme to
minimize the discrepancy between its own future trajectory
and the predicted future trajectory of the attacker. Simulation
results show that use of estimated future trajectories helps
in more effective protection of the target compared to when
only current state of the attacker is used. The effectiveness of
the proposed approach is also highlighted in the presence of
obstacles.

I. INTRODUCTION

Games of conflict between two or more agents, known as
pursuit-evasion games continue to receive a lot of attention
due to their relevance in applications such as predator-
prey models in biology [1], combat scenarios in aerospace
[2], mobile robotics [3] and defense [4]. Starting from the
seminal work by Isaacs in 1965 [5], many variations of this
class of problems have been examined in the framework of
differential games; examples include target-attacker-defender
(TAD) problems [6], [7] , multiplayer problems [8]–[11],
games with bounded rationality [12], [13], cooperative de-
fense problems [14]–[16], range limited pursuit-evasion [17],
[18], games over heterogeneous dimensions [19]–[21], and
perimeter defense problems [22], [23]. An interesting survey
of the recent developments related to these topics is presented
in [2].

In most of the above settings, each player solves a
continuous-time optimal control problem, and the analyti-
cal methods, largely based on Hamilton-Jacobi-Issacs (HJI)
equation, suffer from the curse of dimensionality [24]. Thus,
various geometrical approaches based on intersection of
isochrones have been studied and used extensively by re-
searchers [24]–[26]. These approaches are complex in nature
and rely heavily on intuition and brute force geometry.

In contrast with continuous-time optimal control, model
predictive control (MPC) is a promising online optimisation
technique that facilitates feedback implementation of optimal
control using finite prediction horizon. It has been applied
in solving pursuit-evasion problems in many recent works
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[27]–[33] due to its intrinsic ability to deal with constraints,
disturbances, obstacles and stability. Most of these works
have assumed that complete information of the opponent is
available which includes its states, and the control strategy
used by the opponent.

A closely related work [34] assumes the x−y coordinates
of the opponent to be known and the orientation is estimated
by the other player. It is argued that the performance of a
player does not improve considerably even if the estimated
heading is used. In [31], a target defense scenario is con-
sidered where the defender is trying to track a reference
which is set to be a convex combination of the attacker’s
and target’s position. Meanwhile, the attacker is trying to
reach the target while avoiding the defender by treating it
as a dynamic obstacle. This work assumes that the target of
the attacker is known to the defender. However, it is possible
that in a large city or establishment, the attacker’s target may
not be fixed, or the defender may not be exactly aware of
it. Authors in [33] employ an inverse optimal control (IOC)
based technique to estimate the opponents cost function by
observing its trajectories for some time. This work uses an
offline approach to study a large number of trajectories using
Monte-Carlo simulations. This is a fundamental limitation
since availability of such data is difficult in real-time target
defense settings.

In view of these potential limitations, we present an
approach to estimate the attacker’s future trajectory online
by leveraging its recent past trajectory information. The
estimated future trajectory of the attacker is then used
in a MPC based TAD formulation of the defender. The
proposed approach does not require the defender to have the
knowledge of the target coordinates and attacker’s control
strategy. We demonstrate through simulations that having the
estimates of the attacker’s future trajectory helps in more
effective protection of the target compared to the case when
only current states are used. Furthermore, we highlight the
effectiveness of the proposed scheme in the presence of static
obstacles in the paths of both players. The remainder of
the paper is organized as follows. The formulation of TAD
problem is presented in Section II, followed by the controller
design using MPC in Section III. The algorithm to estimate
attacker’s future trajectory is presented in Section IV, while
the simulation results and relevant discussions are given in
Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION

This section presents the TAD setting. One of the agents
is an attacker (A), while the other agent is a Defender (D).
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The Defender aims to reach a static target (T ), which is
represented by its Cartesian position pT = (xT , yT ). Agents
A and D are represented by unicycle models, relevant in
many applications, such as non-holonomic mobile robots.
Following the standard models presented in [35], [36], the
states of agent i ∈ {A,D}, denoted by zi = [xi, yi, θi]

⊤,
evolve according to the dynamics

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = ωi,

(1)

where (xi, yi) denote the Cartesian position, θi denotes the
orientation, and the control inputs are the linear and angular
speeds denoted by vi and wi, respectively. We assume that
the position of both agents as well as the target are contained
in a subset of R2.

The defender aims to pursue the attacker and protect the
target, while the attacker wants to reach the target quickly
while avoiding the defender. The game terminates if any of
the following conditions are satisfied.

1) The distance between the attacker and defender reduces
below a threshold value denoted by RAD, i.e,√

(xA − xD)
2
+ (yA − yD)

2
< RAD.

2) The distance between the attacker and target reduces
below a threshold value denoted by RAT , i.e,√

(xT − xA)
2
+ (yT − yA)

2
< RAT .

3) The defender prevents the attacker from reaching the
target for a sufficiently long duration.

III. MODEL PREDICTIVE CONTROL STRATEGIES

MPC is an online optimization technique that computes
the optimal sequence of control inputs that minimize a cost
function over a finite prediction horizon subject to constraints
that include system dynamics, as well as constraints on input
and state variables [37]. The system is excited with the first
element of the sequence while the rest are discarded. At
every decision instant, the prediction horizon is shifted one
step and the process is repeated to obtain the new optimal
control sequence. The weighing matrices for terminal cost
and running state and control costs are tuned to stabilize
the system and improve performance. We now formulate the
MPC problem for the attacker and the defender.

A. MPC Formulation for the Attacker

Let uA,[1:N ] := {uA(1), uA(2), . . . , uA(N)} represent the
sequence of control inputs of the attacker over a prediction
horizon of length N . We assume that the attacker can observe
its own current states and the current position of the defender,
denoted by (x̄D, ȳD). The attacker solves the following finite
horizon optimal control problem:

min
uA,[1:N],zA,[1:N]

JA(uA,[1:N ], zA,[1:N ]; pT ) (2)

s.t. zA(k + 1) = f (zA(k), uA(k)) , (3)

zAmin
≤ zA(k) ≤ zAmax

, (4)
uAmin

≤ uA(k) ≤ uAmax
, (5)√

(xA(k + 1)− x̄D)
2
+ (yA(k + 1)− ȳD)

2 ≥ RAD, (6)

where the constraints hold for all k ∈ [N ] := {1, 2, . . . , N}.
The cost function is given by

JA(uA,[1:N ], zA,[1:N ]; pT ) = ∥pA(N)− pT ∥2QNa

+

N−1∑
k=0

∥pA(k)− pT ∥2Qa
+ ∥uA(k)∥2Ra

, (7)

where QNa, Qa and Ra are positive definite matrices of ap-
propriate dimensions and ∥w∥Q := w⊤Qw, pA = (xA, yA)
denotes the Cartesian coordinates of the attacker which is
a subset of the state vector zA and pT is the position of
the static target. The constraint given by (3) represents the
discretized version of the dynamics stated in (1). The limits
on state and control variables are expressed in equations (4)
and (5) respectively. The constraint (6) requires the attacker
to avoid the defender assuming that the defender will remain
in its current position over the prediction horizon. This is a
reasonable assumption for the attacker since it is focused on
reaching the target and does not bother about the defender
until it is close enough to cause any harm.

B. MPC Formulation for the Defender

Two cases are presented for defender’s control strategy
using NMPC. In the first case, the defender is only aware
of the attacker’s current state while in the second case, the
defender has an estimate of attacker’s future trajectory. We
start with the first setting.

Let uD,[1:N ] := {uD(1), uD(2), . . . , uD(N)} represent
the sequence of control inputs of the defender over a predic-
tion horizon of length N . We assume that the defender can
observe its own current states and the current state of the
attacker (zA) at the sampling instant. The defender solves
the following finite horizon optimal control problem:

min
uD,[1:N],zD,[1:N]

JD(uD,[1:N ], zD,[1:N ]; zA) (8)

s.t. zD(k + 1) = f (zD(k), uD(k)) , (9)
zDmin

≤ zD(k) ≤ zDmax
, (10)

uDmin
≤ uD(k) ≤ uDmax

, (11)

where the constraints hold for all k ∈ [N ]. The cost function
is given by

JD(uD,[1:N ], zD,[1:N ]; zA) = ∥zD(N)− zA∥2QNd

+

N−1∑
k=0

∥zD(k)− zA∥2Qd
+ ∥uD(k)∥2Rd

, (12)

where QNd, Qd and Rd are positive definite matrices of
appropriate dimensions. As before, the constraint given by
(9) represents discretized version of the equation (1). The
limits on the state and control variable are expressed in
equations (10) and (11) respectively.

We now consider the second setting where we assume that
the defender is aware of the predicted state trajectory of the
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attacker over the horizon, which is denoted by ẑA,[1:N ]. The
defender’s cost function makes use of the predicted trajectory
of the attacker, and is defined as

ĴD(uD,[1:N ], zD,[1:N ]; ẑA,[1:N ]) = ∥zD(N)− ẑA(N)∥2QNd

+

N−1∑
k=0

∥zD(k)− ẑA(k)∥2Qd
+ ∥uD(k)∥2Rd

. (13)

The above cost function is minimized subject to the same
set of constraints as given in (9)-(11).

Remark 1: The above MPC formulations allow us to
tackle presence of obstacles in the environment on which
the agents operate. Specifically, if an obstacle, approximated
as a point mass, is present at coordinates pO = (xO, yO),
then the following set of constraints√

(xi(k + 1)− xO)
2
+ (yi(k + 1)− yO)

2 ≥ RO, k ∈ [N ],

may be added to the MPC problem for i ∈ {A,D} where
RO represents the safe distance.

IV. ATTACKER TRAJECTORY PREDICTION USING PAST
SAMPLES

We now discuss our approach for estimating the future
state trajectory of the attacker based on past data. At a given
time t, the defender observes the current state of the attacker,
and computes the change in attacker states from their values
k time steps earlier for k ∈ [N ]. Formally, let βk ∈ R3

denote the difference between the current state of the attacker
and the state of the attacker k steps prior to the current time.
For each k ∈ [N ], the defender collects Ns number of such
samples or scenarios denoted by βk

[1:Ns]
= {βk

1 , . . . , β
k
Ns

}
from past Ns time points, and computes the sample mean as

β̄k :=
1

Ns

Ns∑
j=1

βk
j . (14)

The sample mean β̄k is now used to predict the state of the
attacker k step ahead as

ẑA(t+ k) = zA(t) + β̄k ∀k ∈ [N ], (15)

where zA(t) denotes the state of the attacker at current
time instant t. The sequence of predicted states {ẑA(t +
1), . . . , ẑA(t+N)} results in the predicted trajectory ẑA,[1:N ]

which is then used by the defender in its MPC cost function
(13) at time t.

V. RESULTS AND DISCUSSION

In this section, the performance of the pursuit strategy of
the defender under the proposed trajectory prediction scheme
is compared with baseline strategies via simulations. The
simulations are carried out in MATLAB environment. An
open source software Interior point optimizer (IPOPT) is
interfaced to solve the MPC problems defined in Sections
III-A and III-B. The following three cases are compared.

1) Defender predicts the future trajectory of the attacker
as described in the previous section.

2) Defender has access to the complete MPC solution of
the attacker which includes its future trajectory. While
this assumption is impractical, it serves as a baseline
against which the performance of the proposed scheme
is compared.

3) Defender is only aware of the current state of the
attacker, and optimizes the cost function (12). This
setting was considered in [34] where the authors argued
that in pursuit-evasion settings, if the defender uses only
the current information regarding the attacker states, it
achieves comparable performance compared to when it
uses future trajectory of the attacker in the MPC cost
function.

The thresholds RAD and RAT are chosen to be 0.3m
and 0.1m, respectively. The safe distance RO for obstacle
avoidance is assumed to be 0.2m. The sampling time is
chosen as 0.05 seconds and the prediction horizon is set as
N = 15. The states of both the players are constrained in the
range [−10,−10,−∞]⊤ to [10, 10,∞]⊤. The orientations
are considered to be unconstrained in our simulations. The
constraints on the control input are as chosen as follows:

uDmin = [0,−10π]⊤, uDmax = [7, 10π]⊤,

uAmin = [0,−10π]⊤, uAmax = [5, 10π]⊤,

i.e., the defender is allowed to have a larger longitudinal
speed compared to the attacker. The weighing matrices are
tuned and set as follows:

Ra = diag[0.1, 0.01], Qa = diag[1, 0.1], QNa = 100Qa,

Rd = diag[0.1, 0.01], Qd = diag[1, 1, 0.1], QNd = 100Qd.

The weight on the angular speed is set to be higher than the
weight on the linear speed which reflects that longitudinal
motion is often easier compared to lateral motion. Similarly,
weights on the position are kept larger compared to the
weights on orientation. A large weight on the terminal cost
is imposed as well.

The initial state of the defender and the attacker are set to
be [−2,−8,−π/4]⊤ and [6,−6,−π/4]⊤ respectively. The
target location xT is set at [−2,−2]⊤. The target is present
North of the defender, and the attacker must move towards
it to reach the target. The target location is unknown to the
defender, which is strategically beneficial for the attacker.
Thus, knowledge of the attacker’s trajectory or the target
in could potentially result in more efficient capture of the
attacker. The simulations terminate in three possible ways as
discussed in Section II. The simulation stops at 80 seconds
unless the attacker has reached the target or the defender has
reached the attacker prior to it.

Figure 1 shows the trajectory of both the attacker and
the defender in the Cartesian plane as well as the respective
angular velocities of both players under two conditions: (i)
defender is aware of the future trajectory of the attacker
obtained by solving the MPC problem for the attacker (left
panel), and (ii) defender is only aware of the current state
of the attacker (right panel). In the first case, the defender is
able to neutralize the attacker before it reaches the target as
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(a) Defender has access to at-
tacker’s MPC solution trajectory

(b) Angular speed of both players
for case (a)

(c) Defender has access to only
attacker’s current states

(d) Angular speed of both players
for case (c)

(e) Distance between attacker and
defender for case (a)

(f) Distance between attacker and
target for case (a)

(g) Distance between attacker
and defender for case (c)

(h) Distance between attacker
and target for case (c)

Fig. 1: Target defence with knowledge of attacker’s MPC trajectory versus only current state information. The knowledge of
the attacker’s future trajectory over the horizon (its MPC solution) if available, helps the defender to neutralise the attacker
before it reaches the target. The defender fails to protect the target when it is only aware of current states of the attacker.

(a) Trajectory for Ns = 5 (b) Trajectory for Ns = 10 (c) Trajectory for Ns = 12 (d) Trajectory for Ns = 20

(e) Angular speed for Ns = 5 (f) Angular speed for Ns = 10 (g) Angular speed for Ns = 12 (h) Angular speed for Ns = 20

(i) Distance between attacker
and defender for Ns = 5

(j) Distance between attacker
and defender for Ns = 10

(k) Distance between attacker
and defender for Ns = 12

(l) Distance between attacker
and defender for Ns = 20

Fig. 2: Trajectory and angular velocity of the players when the defender uses the predicted mean trajectory of the attacker
with past sample data of different lengths Ns. The defender is successful for Ns = 10 and Ns = 12 while it does not suceed
when Ns is either too small or too large.
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(a) Current State of Attacker (b) Future State of Attacker (c) Predicted State of Attacker, Ns = 10

(d) Distance between attacker and
target for case (a)

(e) Distance between attacker and
defender for case (b)

(f) Distance between attacker and de-
fender for case (c)

Fig. 3: Comparison of trajectories of attacker and defender in presence of obstacles. When the defender is only aware of the
current state of attacker (left), the attacker reaches the target. The defender wins when it uses the future state of the attacker
given by MPC solution of attacker (middle) and predicted future state of attacker using past data with Ns = 10 (right).

shown in Figure 1a in approximately 45 seconds. However,
the defender fails to protect the target if it follows the attacker
using its current states as shown in Figure 1c. The simulation
terminates in 70 seconds when the attacker reaches the
target. The angular velocity figures (Figures 1b and 1d) show
that in the first case, the defender turns towards the target
before the attacker does, leading to successful interception.
In the second case, the defender turns too late, and ends
up following the attacker without being able to catch up.
This case study shows that knowledge of the attacker’s
future trajectory plays a significant role for the defender
to achieve its desired objective even when the target is
unknown. The instantaneous distances between the attacker
and the defender for the two cases are shown in Figure 1e and
1g respectively, while the distances between the attacker and
target are shown in Figure 1f and 1h respectively. It is clear
from the figure in the first case (defender having access to
complete future trajectory), that the distance between attacker
and defender is below the threshold at the end of the game
while the attacker has not yet crossed the threshold distance
to hit the target. However, in the second case (defender
having access to only current states), the attacker crosses
the threshold distance to reach the target while the defender
is very close to the threshold for successful interception.

We now examine the performance of the proposed strategy
which uses predicted future trajectory of the attacker using
the approach presented in Section IV. The accuracy of
prediction is highly sensitive to the length of the past data
sample Ns. The trajectories of both players for different

values of Ns is shown in Figure 2. For a very small sample
length i.e Ns = 5, the defender takes a wrong path ahead of
the attacker, thus allowing it to reach the target successfully
as shown in Figure 2a. This is because limited past data is
not sufficiently rich to yield reasonable prediction of future
trajectory. When a large sample length is chosen (Ns = 20),
the defender follows the attacker for some time but then
diverts from the right path enabling the attacker to reach the
target. In this case, the predicted trajectory is dominated by
the shape of attacker trajectory farther away from the current
time-instant. In both of these cases, the attacker is able to
reach the target. When Ns = 10 and 12, the performance of
the defender is found to be excellent. When Ns = 10, Figure
2b shows that the defender dominates the space containing
the target, thus forcing the attacker to divert from the target.
When Ns = 12, the defender promptly takes a turn at
the appropriate position and manages to quickly capture the
attacker. The instantaneous distance between the attacker and
the defender in each of the cases presented in Figure 2i-2l
shows that the defender is able to hit the attacker within the
threshold distance only when the sample data lengths are
chosen as Ns = 10 and Ns = 12.

The performance of the proposed approach is also ex-
amined in the presence of obstacles. Figure 3 shows the
result for the proposed approach at Ns = 10 in presence
of obstacles in the path of both players. It is seen that the
defender is successful in protecting the target even when
obstacles are placed in the path of both the players.
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VI. CONCLUSION

This paper proposes a new approach to improve the
performance of the defender in TAD game when the target
position is unknown. This approach is used to estimate the
mean trajectory of the attacker which is further used by the
defender in its MPC formulation. It is shown via simulations
that the proposed approach helps in improved capture and
target defence when target as compared to a few past
works that make use of only current states of the attacker.
Despite its simplicity, this work offers hope that learning
the attacker’s trajectory could lead to improved performance
for the defender. We believe that the trajectory prediction
could be considerably improved in future by employing
tools from learning theory such as reinforcement learning
or probabilistic approaches such as stochastic MPC. Future
work will thus explore alternative approaches to estimate
unknown target position and improve attacker’s trajectory
prediction, and extend the current work to include multiple
attackers and defenders.
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