
A Numerical Study on the Parallelization of Dual Decomposition-based
Distributed Mixed-Integer Programming

Mario Klostermeier1, Vassilios Yfantis1, Achim Wagner2 and Martin Ruskowski1,2

Abstract— The shift from centralized to decentralized systems is
increasing the complexity of many problems in control and op-
timization. However, it also presents the opportunity to exploit
parallelized computational schemes. This paper shows how the
solution process of mixed-integer problems, which often arise in
areas like production scheduling or logistics, can be supported
by employing parallel computations. To this end, dual variables
are introduced that enable the decomposition of these complex
problems into subproblems that can then be solved in parallel.
The presented dual decomposition-based approach provides a
lower bound for the optimal solution of the original problem,
which can support the overall solution process. The focus of this
paper is on the parallelizability of the computation of this lower
bound. The bounds from three different dual decomposition-
based distributed optimization algorithms are compared to the
lower bounds provided by several commercial solvers within
their branch-&-cut framework.

I. INTRODUCTION

The digital landscape continues to evolve from central to
decentralized structures. As a result, the relevance of multi-
agent systems continues to increase. Such systems consist of
several agents that pursue a common goal, achievable only
through the cooperative and coordinated efforts of the agents.
At the same time, each agent also pursues its own goal. The
global goal of the system is broken down into subproblems,
which are then assigned to an agent. The autonomy of
the agents is crucial here, further improving the overall
system’s flexibility and resilience. Potential applications of
these systems span areas such as manufacturing [1], network
systems [2], the process industry [3], and aerospace [4].
Many practical applications in these areas consist of both
continuous and discrete components. The resulting mixed-
integer problems can be challenging due to their combinato-
rial nature and inherent non-convexity. Often, these problems
are solved using the branch-&-cut (B&C) algorithm. In
practice, this approach incurs significant computational and
memory overheads, as an optimization problem must be
solved at each node. With increasingly complex problems
and the ever-growing volume of data [5], this effort inten-
sifies. Hence, efficient methods are crucial for solving such
problems. Enhancing the efficiency of B&C can be achieved
by finding better problem bounds. Particularly in cases of
weak relaxations, searching for a lower bound becomes a
bottleneck in the solution process. This paper provides a

1The author is with the Chair of Machine Tools and Control
Systems, Department of Mechanical and Process Engineering, Univer-
sity of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany (e-mail:
mario.klostermeier@rptu.de)

2 The author is with the German Research Center for Artificial Intelli-
gence (DFKI), Kaiserslautern D-67663, Germany

numerical study on the parallelizability of the computation of
lower bounds for constraint-coupled mixed-integer programs
via dual decomposition-based distributed optimization. The
remainder of this paper is structured as follows: Sec. II
introduces dual decomposition for Mixed-Integer Program-
ming (MIP) as well as the examined distributed optimization
algorithms. Sec. III presents a case study in the form of
a quadratic order slotting problem. Numerical results are
presented in Sec. IV and the paper is concluded in Sec. V.

II. DUAL DECOMPOSITION FOR MIP
This paper focuses on problems of the form

min
∑
i∈I

fi(xi, zi) (1a)

s. t.
∑
i∈I

Cixi + Dizi ≤ b (1b)

xi ∈ Xi, zi ∈ Zi ∀i ∈ I, (1c)

which are composed of a set of subproblems, denoted by
I = {1, . . . , NS}. Each individual subproblem has its own
objective function

fi(xi, zi) =
1

2
xT
i Qx,ixi + qT

x,ixi +
1

2
zTi Qz,izi + qT

z,izi (2)

and its own variables xi ∈ Rnxi and zi ∈ Znzi . The individual
subproblems are coupled by global constraints (1b). These
can be interpreted as the consumption and production of
shared limited resources. Cixi + Dizi, with Ci ∈ Rnb×nxi

and Di ∈ Rnb×nzi , reflects the consumption or production of
resources by the subsystem i as a function of xi and zi. The
global availability of resources is represented by b ∈ Rnb .
An example of such a resource would be energy which
must be shared between several machines in a production
environment. The subproblems are also subject to local con-
straints xi ∈ Xi and zi ∈ Zi, where Xi and Zi are compact
polyhedral sets. The objective of the entire system results
from the sum of all objectives of the subproblems. One way
to decompose such a problem is the dual decomposition
method. For this, the dual variables λ ∈ Rnb are introduced
and the Lagrange function for the problem is formulated as

L(x, z,λ) :=
∑
i∈I

fi(xi, zi) + λT
∑
i∈I

(Cixi + Dizi)− λT b.

(3)
Through this, the global constraints are relaxed and weighted.
Based on the Lagrange function, the dual function

d(λ) := inf
x,z

L(x, z,λ) (4a)

s.t. xi ∈ Xi, zi ∈ Zi, ∀i ∈ I (4b)

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2717



can then be defined. A key property of the dual function,
utilized in this work, is its provision of a lower bound to the
objective function of the system-wide problem (1) [6]. Thus,
the dual function provides a bound for the optimal solution,
x∗, z∗. To find the optimal lower bound for problem (1), the
dual optimization problem

max
λ∈Rnb

d(λ) (5a)

s. t. λ ≥ 0 (5b)

has to be solved. The original problem (1) is referred to
as the primal problem. The solution of the dual problem is
amenable to distributed computations since the dual function
can be evaluated by solving the optimization problems

min fi(xi, zi) + λT (Cixi + Dizi) (6a)
s. t. xi ∈ Xi, zi ∈ Zi (6b)

in a distributed manner. Note that the term λT b is known
only to the coordinator. Depending on the dual variables,
certain local constraints may become active or inactive. If
the set of active constraints changes, nondifferentiabilities
in the dual function arise [7]. The following sections present
different algorithms for the soultuon of the dual problem (5).

A. Subgradient Method

A subgradient is a generalization of the gradient for non-
smooth functions. For the dual function a subgradient can
be computed when solving problem (5) by evaluating the
coupling constraints (1b). In the k-th iteration, this depends
on the optimal solutions x∗

i (λ
(k)), z∗i (λ(k)) of the subprob-

lems,

g(λ(k)) =
∑
i∈I

(Cix∗i (λ
(k)) + Diz∗i (λ

(k)))− b (7)

The primal and dual variables are then updated in each
iteration k according to

λ(k+1) = λ(k) + α(k)g(λ(k)). (8)

The step size in the direction of the subgradient is denoted
by α(k). A clear advantage of this method is its simplicity,
as it is easy to implement and requires a small amount of
computing capacity and memory.

B. Bundle Trust Method

Another approach is the Bundle Trust Method (BTM), which
belongs to the bundle methods. In this group of algorithms,
the dual function is approximated by a piece-wise linear
function, which is also called a cutting plane model. The
basis of this model is the information from the previous
iterations which is stored in a bundle

B(k) = {(λ(j), d(λ(j)), g(λ(j))) ∈ Rnb × R× Rnb |
1 ≤ j ≤ k} (9)

The cutting plane model

d̂(k)(λ) = min
j∈J (k)

d(λ(k))+gT (λ(j))(λ−λ(k))−β(j,k), (10)

with the linearization error

β(j,k) = d(λ(k))− d(λ(j))− gT (λ(j))(λ(k) − λ(j)) (11)

is based on the set J (k) ⊂ {1, . . . , k}.
The aim of the BTM is to find a search direction s ∈ Rnb in
each iteration.
Given its piece-wise linear characteristics, the optimization
problem is convertible into a smooth quadratically con-
strained direction-finding problem [8]:

max v (12a)

s. t. ∥s∥22 ≤ α(k) (12b)

gT (λ(j))s − β(j,k) ≥ v, ∀j ∈ J (k) (12c)

λ(k) + s ≥ 0. (12d)

C. Quasi-Newton Dual Ascent

Another approach that approximates the dual function is
the Quasi-Newton Dual Ascent (QNDA) method. The dual
function is approximated at the current iterate λ(k) as

d̃(k)(λ) =
1

2
(λ− λ(k))T B(k)(λ− λ(k))

+ gT (λ(k))(λ− λ(k)) + d(λ(k)). (13)

To determine the matrix B, the established Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method is used [9].
In each iteration k, the matrix B(k) is updated with

B(k) = B(k−1) +
y(k)y(k),T

y(k),T s(k)
− B(k−1)s(k)s(k),T B(k−1),T

s(k),T B(k)s(k)
,

(14)
Where y describes the change in the subgradient and s the
change in the dual variables.

yk = g(λ(k))− g(λ(k−1)) (15a)

sk = λ(k) − λ(k−1) (15b)

The resulting function from equation (13) is then a smooth
approximation of the dual function. Based on this, the update
problem for the dual variables λ(k) can be formulated as

max
λ∈Rnb

d̃(k)(λ), (16a)

s. t. d̃(k)(λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)), (16b)

∀j ∈ J (k),

∥λ− λ(k)∥22 ≤ α(k) (16c)

λ(k) ≥ 0. (16d)

Constraints (16b) are refered to as bundle cuts and they are
used to take the non-smoothess of the dual function into
account while employing a smooth approximation [7].

III. QUADRATIC ORDER-SLOTTING PROBLEM

In the following section, the parallelization capabilities of
the algorithms presented earlier will be assessed through a
case study. For this purpose, the mathematical formulation
of the problem instances is presented first. Then, the strategy
for generating different benchmark problem instances is
outlined.

2718



A. Mathematical Model

The case study deals with the distribution of orders within
a modern production network, inspired by the concept of
shared production detailed in [10]. In this model, the net-
work is comprised of a multitude of producers, each acting
as an autonomous agent within a centralized coordination
framework tasked with order allocation. In this illustrative
example, each agent represents an individual factory within
the network. The collective aim is to efficiently allocate a
set of orders, denoted by P , across these factories, F . Each
factory is equipped with a specific number of production
slots, S, to which orders can be assigned. The primary
decision variable in this model is the discrete quantity
of goods produced from order p in slot s of factory f ,
represented by zfsp ∈ N0. This variable captures the essence
of the allocation and production process within the network.
The production of a unit of order p in factory f neces-
sitates a specific amount of production capacity, denoted
by Capfp. This capacity requirement varies based on the
production processes and machinery employed within each
factory, reflecting the unique operational characteristics of
each production site. The total utilized production capacity
of slot s in factory f is denoted by the continuous variable
xfs ∈ R+

0 and is modeled as

xfs =
∑
p∈P

zfsp · Capfp, ∀f ∈ F , s ∈ S. (17)

Each individual agent then utilizes a capacity for each of
their slots s. This means that only a limited amount of goods
can be produced in each slot, depending on the maximum
available capacity:

xfs ≤ Capmax
fp , ∀f ∈ F , s ∈ S, p ∈ P. (18)

The objective of each agent consists of several objectives
which are presented in the following. The first objective is to
maximize turnover, which depends on the order. A turnover
Tp is achieved through the production of a unit of each
product. Since the entire problem is to be formulated as a
minimization problem, a minus sign is applied to the term.
At the same time, the costs for the production of each order
are to be minimized. These costs Costfp depend on the type
of product and also differ between factories.

o1,f = −
∑
s∈S

∑
p∈P

zfsp · (Tp − Costfp).∀f ∈ F (19)

The previous targets maximized profit for the entire produc-
tion network. The quality of the products should also be
improved. From the past, it is already known which producer
f produces which product p with which quality level Qualfp.
Additionally, a target quality level Qualtarget

p is determined
for each order. A quadratic objective can then be used to
minimize the deviation from the target quality,

o2,f =
∑
s∈S

∑
p∈P

(zfsp·(Qualfp−Qualtarget
p )2),∀f ∈ F . (20)

To avoid overproduction, a constraint is defined for each
order, depending on the demand Demp of the respective

product: ∑
f∈F

∑
s∈S

zfsp ≤ Demp,∀p ∈ P. (21)

This is the coupling constraint that connects the systems with
each other.

B. Data generation

The quantity of factories, denoted as |F|, and consequently
the number of subproblems, were varied to suit different
experimental setups. Each factory was allocated |S| = 3
time slots, and a total of |P| = 100 orders were required
to be fulfilled across the network. To introduce variability
and complexity into the problem, all other parameters were
generated using random distributions: continuous uniform
distributions, denoted by Uc[a, b], and discrete uniform dis-
tributions, represented as Ud{a, ..., b}. The specific distribu-
tions employed for each parameter are detailed in Table I.

TABLE I: Distributions for the randomly generated Mixed-
Integer Quadratic Programming (MIQP) parameters.

Name Parameter Distribution
Capacity Capfp Uc[5, 10]
Max Capacity Capmax

fp Uc[10, 20]

Turnover Tp Uc[50, 100]
Cost Costfp Uc[1, 10]
Quality level Qualfp Ud{1, ..., 10}
Quality target Qual

target
p Ud{1, ..., 10}

Demand Demp Ud{20, ..., 50}

IV. NUMERICAL RESULTS

In the following, the algorithms presented in Sec. II are
evaluated using the model presented in Sec. III. To evaluate
the decomposition-based approach, a lower bound was first
determined by a MIP solver during the solution process of
the original problem (1). Subsequently, the problem was
decomposed and then a lower bound was determined by
the decomposition. For better comparability, the respective
subproblems (6a) were also solved with the same solver.
The commercial solvers Gurobi V.10 [11], CPLEX V.22.1.1
[12] and Mosek V.10 [13] were used as MIP solvers in this
experiment. The default parameters of the MIP solvers were
always used. These solvers employ a B&C algorithm and
thus also compute a lower bound from the QP relaxations.
The goal is to compare the lower bound obtained within
the B&C algorithm to the bounds computed by the dual
decomposition-based distributed optimization algorithms and
assess the impact of parallelization on the latter. The al-
gorithms were implemented in the Julia programming lan-
guage [14] and all involved optimization problems were
modelled with the JuMP [15] package. An Intel 13900K with
128GB@5600MHz RAM with 24 physical cores was used
for the calculation. To illustrate the potential of the previ-
ously presented method regarding its parallelizability, exper-
iments with a different number of workers were conducted
to assess the benefits of parallelization for the presented
algorithms. The available cores were equally distributed
among the workers which solve the subproblems (6) in

2719



parallel. All algorithms were initialized with λ(0) = 0 and
an initial step size/trust region of α(0) = 0.5, which was then
varied according to

α(k) = α(0)/k. (22)

The maximum size of the bundle for the BTM and QNDA
was set to 25 and the approximated Hessian of QNDA was
initialized with the negative identity matrix.

A. Impact of the problem size

The size of the problems is decisive for their complexity
and also complicates the solvability of many problems. The
decomposition method shown above is intended to help with
problems that are difficult to solve due to their sheer size.
To demonstrate this, 15 different problems were created with
different numbers of subproblems |F| ∈ {150, 200, 250}.
Fig. 1 illustrates the mean difference between the bound
found by the MIP solvers in the B&C algorithm while
solving the original problem (1) and the bound found by
the three dual decomposition-based algorithms by solving
the dual problem (5) after 100 sec. For this experiment, 24
workers were selected so that each had exactly one core to
solve the subproblems. The percentage difference between
the bounds was determined as follows:

bDiff = (1− bC
bDD

)× 100. (23)

Here, bDD denotes the best bound which was found with
the decomposition-based method and bC the best bound
which was found with the respective MIP solver. Note that
for the problems with |F| = 250 factories (subproblems),
Gurobi could not find a bound as the root node could
not be solved within the given time limit. The subgradient
method and the QNDA algorithm provide similar bounds
which are consistently better than the bounds provided by
the solvers. Furthermore, the relative difference between the
bounds increases as the number of factories increases. In the
case of BTM the quality of the bound decreases compared to
the relaxation-based one as the subproblems increase. More
subproblems also increase the number of dual variables,
which could indicate that the BTM is more suitable for
problems with few variables.
Fig. 2 shows the average time needed to find a better
bound for the different algorithms. Again, the values for
Gurobi are missing for |F| = 250 subproblems because no
comparison was possible. Note that the dual decomposition-
based algorithms can provide a bound in these cases. The
values for the BTM algorithm are also missing here if the
Mosek solver was used to solve the subproblems because no
better bound could be found within the 100 sec. Similarly,
no better bound could be found at |F| = 250 with the
BTM algorithm when CPLEX was used. It can be seen
that the time increases with the number of factories as more
subproblems have to be solved in each step. It is noticeable
that when using the Gurobi and CPLEX solvers, the time
increases less when more subproblems have to be solved
than with the Mosek solver. As can be seen in Sec. IV-D, the

Fig. 1: Difference in bound between solving the original
problem and the three algorithms for each of the three
solvers.

Mosek solver is least suitable for solving the subproblems.
This could be because the Mosek solver requires more CPU
cores to solve the problems. However, this is only the case
with the subgradient method and QNDA. These two also
took less time to solve the subproblems. It should be noted
that the solvers also need more time to find the bound of the
original problem due to the higher complexity of the problem
and the resulting harder problems in the root node and the
nodes of the B&C tree.

Fig. 2: Time needed to find a better lower bound for each
algorithm depending on the number of subproblems

B. Parallelizability of the subproblems

An advantage of the dual decomposition approach is that
the solution of the subproblems can be parallelized, which
facilitates their distribution among different computational
units. To investigate this behavior, the lower bound was again
computed for in a second experiment for 15 problems with

2720



|F| = 200. A lower bound was first computed by the three
commercial MIP solvers which had the 24 threads of the
CPU at their disposal. Note that state-of-the-art MIP solvers
exploit parallelism in several ways, e.g., by parallelizing
the solution of the node problems. The subproblems were
then solved in parallel with the Julia distributed computing
package. The number of workers and the number of threads
per worker were varied. The threads were distributed equally
among all workers. Thus, the number of threads per worker
decreases when more problems are solved in parallel. The

Fig. 3: Time needed to find a better lower bound for each
algorithm depending on the number of workers

QNDA algorithm and the subgradient method also showed
their advantages in this experiment. Fig. 3 shows the average
time needed to find a better lower bound. For the Gurobi
and the CPLEX solver it can be seen that with more
workers a better bound can be found faster. This indicates
that the subproblems can be solved quickly and with less
computational effort. This means that they can be parallelized
well. This is not the case for Mosek with 24 workers,
which indicates the benefit of parallelization is offset by the
increased solution times of the subproblems when only a
single core is used per worker. Another advantage is that
the QNDA algorithm and the subgradient method deliver
more consistent results compared to the BTM, as shown
in Fig. 4. The figure indicates the difference between the
best lower bound found with dual decomposition and the
lower bound found with the solver when solving the original
problem. When using the BTM, the result can be improved
by using more workers with CPLEX and Gurobi. Mosek
initially improves by increasing the number of workers, but
with 24 workers with one thread each, the result deteriorates
again.

C. Solving subproblems

The difference between the solvers can also be seen in the
number of subproblems they solve per second. By solving the
subproblems faster, more iterations of the three algorithms
can be executed and a better bound can be found faster.

Fig. 4: Comparison of the bound depending on the number
of workers.

Likewise, a better bound can also be found overall. The
results are shown in Fig. 5, where the number of workers
was also varied. It was shown that the Gurobi solver could
solve the most subproblems in this case, regardless of the
number of workers. The number of subproblems solved per
second increases with the number of workers. The CPLEX
solver shows the same behavior. However, it solves fewer
problems than the Gurobi solver. This also applies to the
Mosek solver. This also stands out because it solves fewer
subproblems with more workers.

Fig. 5: Comparison of the solvers regarding their ability to
solve the subproblems as fast as possible.

D. Communication rounds

To compare the decomposition-based algorithms, an impor-
tant property is how many iterations they require to find
a good lower bound. The more iterations are needed, the
more subproblems have to be solved, which leads to a higher
computational effort and thus resource consumption. If the

2721



subproblems are distributed to physically separated comput-
ing units, communication between them is also necessary
in each iteration. Therefore, an efficient algorithm should
need as few iterations as possible to find a better bound. To
investigate this, problems were generated with |F| = 150
subproblems and then again a bound was first sought with
the MIP solvers. Then the number of iterations required by
the algorithms to find a better bound was measured. For this,
24 workers were used. The results for this can be seen in
Tab. II. Since the BTM algorithm with the Mosek solver
could not find a better solution, the value is missing here.
It can be seen that the QNDA algorithm requires the fewest
iterations. In comparison, the subgradient method requires
the most iterations. Fig. 1 and 2 are also interesting, as they
show that the two methods provided similar results in terms
of the quality of the bound and the time required to find a
better bound.

TABLE II: Required number of iterations to find a better
lower bound.

Sub BTM QNDA
CPLEX 382 272 249
Gurobi 1198 862 446
Mosek 47 – 41

V. CONCLUSION AND OUTLOOK

In this paper, lower bounds for MIP problems consist-
ing of multiple subproblems were computed using dual
decomposition-based distributed optimization algorithms. It
was described how such systems can be decomposed by
introducing dual variables and how the resulting non-smooth
optimization problem can be solved by the subgradient
method, BTM or the QNDA algorithm. This approach was
examined on a problem from the field of production plan-
ning, where different production orders are to be allocated
to production slots in different factories. The results were
compared with the solution of three commercial MIP solvers
(CPLEX, Gurobi, Mosek). Here, the subgradient method and
the QNDA algorithm show that a better bound for such
problems can be found more quickly than with the MIP
solvers. The BTM algorithm showed the worst performance
of the three algorithms. This could be due to, among other
things, the case study under consideration, as the BTM algo-
rithm approximates the dual function by a piecewise linear
function. However, since the case study involves a quadratic
problem, this can result in a high approximation error. At
the same time, an optimization problem must be solved
in each iteration which means that each iteration requires
significantly more time than with the subgradient method.
Additionally, the algorithms were able to find a better lower
bound than the three solvers within the same computation
time. It was also investigated which of these solvers is best
suited for the application of the dual decomposition method.
A decisive characteristic for this is the ability of the solver
to solve the subproblems quickly, as well as good scalability
when solving them. In a real application, it would make sense

to solve the subproblems on a computing cluster. In such a
system, the communication between the computing nodes
would be crucial. To minimize this, an algorithm should
be selected which can find a good bound with the fewest
iterations. It was shown that the QNDA algorithm is best
suited for this, as it requires the least iterations on average.
In the future, it will be investigated how such a bound can
improve the solution process of integer problems. The use
of a custom lower bound in the solution process of a solver
can lead to a less efficient search within the tree in the
B&C procedure. However, the lower bound can still be used
without affecting the B&C search by including a custom
termination criterion based on the achieved duality gap. This
provides a worst-case distance to the global optimum, similar
to the integrality gap used by MIP solvers. Furthermore, dual
decomposition could be used as a heuristic within specific
nodes of the search tree to quickly compute bounds and
potentially prune the branch if the obtained bound is tighter
than the bound provided by the relaxation and larger than
the incumbent.

REFERENCES

[1] J. Popper, V. Yfantis, and M. Ruskowski, “Simultaneous Production
and AGV Scheduling using Multi-Agent Deep Reinforcement Learn-
ing,” Procedia CIRP, vol. 104, pp. 1523–1528, 2021.

[2] F. Bullo, Lectures on Network Systems. Kindle Direct Publishing
Seattle, DC, USA, 2020, vol. 1.

[3] M. Baldea, T. F. Edgar, B. L. Stanley, and A. A. Kiss, “Modular man-
ufacturing processes: Status, challenges, and opportunities,” AIChE
Journal, vol. 63, no. 10, pp. 4262–4272, 2017.

[4] T. Lei, Z. Min, Q. Gao, L. Song, X. Zhang, and X. Zhang, “The
Architecture Optimization and Energy Management Technology of
Aircraft Power Systems: A Review and Future Trends,” Energies,
vol. 15, no. 11, p. 4109, 2022.

[5] M. Niño, F. Sáenz, J. M. Blanco, and A. Illarramendi, “Requirements
for a big data capturing and integration architecture in a distributed
manufacturing scenario,” in 14th International Conference on Indus-
trial Informatics (INDIN), Jul. 2016, pp. 1326–1329.

[6] J. Nocedal and S. Wright, Numerical Optimization, ser. Springer Series
in Operations Research and Financial Engineering. Springer New
York, 2006.

[7] V. Yfantis, S. Wenzel, A. Wagner, M. Ruskowski, and S. Engell, “Hi-
erarchical distributed optimization of constraint-coupled convex and
mixed-integer programs using approximations of the dual function,”
EURO Journal on Computational Optimization, vol. 11, p. 100058,
2023.

[8] M. Mäkelä, “Survey of Bundle Methods for Nonsmooth Optimization,”
Optimization Methods & Software - OPTIM METHOD SOFTW,
vol. 17, pp. 1–29, 2002.

[9] D. Bertsekas, Nonlinear Programming, 2003.
[10] M. Simon, J. Hermann, S. Jungbluth, A. Witton, M. Volkmann,

A. Belyaev, C. Urban, C. Diedrich, P. Rübel, and M. Ruskowski,
“Realisierung einer Shared Production: Integration von Plattform
Industrie 4.0 und Gaia-X-Konzepten,” atp magazin, vol. 65, no. 6-
7, pp. 99–109, 2023.

[11] “Gurobi Optimizer Reference Manual.” Gurobi Optimizer LCC, 2023.
[12] “IBM ILOG CPLEX Reference Manual,” IBM Corporation, 2023.
[13] “Mosek Reference Manual,” MOSEK ApS, 2023.
[14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A

Fresh Approach to Numerical Computing,” Jul. 2015.
[15] M. Lubin, O. Dowson, J. D. Garcia, J. Huchette, B. Legat, and J. P.

Vielma, “JuMP 1.0: Recent improvements to a modeling language
for mathematical optimization,” Mathematical Programming Compu-
tation, vol. 15, no. 3, pp. 581–589, Sep. 2023.

2722


