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Abstract— The problem of data driven recursive computa-
tion of receding horizon LQR control through a randomized
combination of online/current and historical/recorded data, is
considered. It is assumed that large amounts of historical
input-output data from a system, which is similar but not
identical to the current system under consideration, is available.
This (possibly large) data set is compressed through a novel
randomized subspace algorithm to directly synthesize an initial
solution of the standard LQR problem, which however is sub-
optimal due to the inaccuracy of the historical model. The first
instance of this input is used to actuate the current system and
the corresponding instantaneous output is used to iteratively re-
solve the LQR problem through a computationally inexpensive
randomized rank-one update of the old compressed data. The
first instance of the re-computed input is applied to the system
at the next instant, output recorded and the entire procedure
is repeated at each subsequent instant. As more current data
becomes available, the algorithm learns automatically from the
new data while simultaneously controlling the system in near
optimal manner. The proposed algorithm is computationally
inexpensive due to the initial and repeated compression of
old and newly available data. Moreover, the simultaneous
learning and control makes this algorithm particularly suited
for adapting to unknown, poorly modeled and time varying
systems without any explicit exploration stage. Simulations
demonstrate the effectiveness of the proposed algorithm vs
popular exploration/exploitation approaches to LQR control.

I. INTRODUCTION

Conventional system identification involves collecting
input-output (I/O) data through controlled experiments and
thereafter estimating model parameters from this data using
any one among a rich variety of available algorithms (e.g.
see [1], [2] and references therein). Any model based control
algorithm can only be started after this required phase of
parametric identification is completed successfully. However,
the model thus formed is traditionally linear time invariant
while the actual system might be more complex, non-linear,
time varying or simply might have changed marginally due
to wear and tear from the time it was last identified. In such
a situation, re-identification is the recommended procedure,
which however implies extra cost, effort and postponement
and/or stoppage of the actual controlled operation. Moreover
conventional re-identification of model parameters is com-
putationally expensive and may only be done after sufficient
new data is collected. All these issues predicate that even
when re-identification is absolutely essential, that it is done
at a rate which is several orders of magnitude slower than
the time constants of the controlled system. This leads to
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accumulation of errors in the control sequences, sub-optimal
performances and in extreme cases, might lead to instability
of the closed loop. To address the above issues, we propose
a compressed data driven iterative technique to directly
compute the optimal control at each instant by seamlessly
combining past recorded data with the “online” I/O data
as and when it becomes available at the current instant
of time. The inbuilt data compression combined with the
iterative nature of the control sequence computation makes
our technique computationally inexpensive enough to be
implemented in real time on current control hardware.

A recently proposed paradigm at the boundary of sys-
tem identification and transfer learning theory [3] involves
the estimation of system models using a combination of
historical/recorded data from a similar/auxiliary model as
well as the current model [4]–[9]. This method effectively
addresses the common problem of shortage/unavailability
of data and/or difficulties in I/O data collection for the
current, to-be-controlled system. The primary advantage of
such a procedure is the increased robustness of the parameter
estimation process to noise due to increased data size, while
increased errors might result due to the mismatch between
the auxiliary and the current system. Recursive corrections
to the model with streaming data and simultaneous control
updates has also been investigated [10]–[13]. However, these
methods are computationally expensive.

On the other hand, another recent paradigm in control (and
model predictive control in particular) is the use of I/O data
directly to design a controller without explicitly identifying
the underlying model [14]–[17]. These techniques have been
widely studied for the implementation of predictive control
techniques such as receding horizon, iterative or infinite
horizon LQR [18], [19].

While both transfer learning and data driven controller
synthesis are especially well suited for complex and time
varying environments, their implementations with limited
computational resources, such as in robotics, cyber physical
systems, networked control systems, automotive control etc,
where small onboard computers are common, are difficult
due to the requirement of relatively large computing power.
Hence in this paper we propose a computationally efficient
amalgamation of the above two ideas. We use randomized
(Gaussian) data compression matrices to efficiently learn
from “large” historical I/O databases [20], [21] and simulta-
neously update this compressed data with online or current
data as they become available. The updating of the data is
done using a pure iteration with negligible computational
cost. Thereafter the updated data is used to directly compute
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a receding horizon LQR control sequence without identifying
any model. It turns out that the LQR control sequence com-
putation can also be implemented as a pseudo-iteration based
on the underlying iterative computation of the compressed
data matrices and a rank one update of an intermediate QR
factorization [22]. Due to the compression of the histori-
cal (long) database to conveniently small sizes, the entire
operation is computationally extremely efficient. Moreover
the iterative nature of all the major computations makes it
fast enough for real time implementations in situations with
limited computing resources.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following discrete LTI system
x(t+ 1) = Ax(t) +Bu(t) + e(t), y(t) = Cx(t) (1)

Here e(t) ∈ Rn is the process noise and is assumed to be a
white noise sequence with zero mean and finite covariance
i.e. E{e(t1)eT (t2)} = ηδt1t2 for all time instants t1 and t2,
where, η ∈ Rn×n > 0 and δ is the Kronecker delta function.
The system parameters {A,B,C} are of appropriate dimen-
sions: A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. We assume
that the state information can be measured directly [18] (i.e.
C = In and p = n). In the next subsection we briefly review
batch and receding horizon LQR formulations based on [23].

A. Linear Quadratic Regulator

Let us consider the deterministic version of the model
(1) for simplicity. We define the following quadratic cost
function over a finite horizon kp as:

J(x0,U0) = x(kp)
TPx(kp)+

kp−1∑
i=0

x(i)TQx(i)+u(i)TRu(i)

where Q = QT ≽ 0, P = PT ≽ 0 ∈ Rn×n and R ≻ 0 ∈
Rm×m, x(0) = x0 and U0 = [u(0)T u(1)T ... u(kp−1)T ]T .
Consider the finite time optimal control problem:
J∗
0 (x0) = min

U0

J(x0,U0)

s.t. x(t+ 1) = Ax(t) +Bu(t) ∀t = 0, 1, . . . , kp − 1
(2)

The cost function J(x0,U0) can be rewritten as (see Ch. 8,
[23]):

J(x(0),U0) = X T
0 Q̄X0 + UT

0 R̄U0 (3)

where X0 =
[
x(0)T x(1)T . . . x(kp)

T
]T ∈ Rn(kp+1),

Q̄ = blockdiag{Q,Q, . . . , Q, P} ∈ Rn(kp+1)×n(kp+1) and
R̄ = blockdiag{R,R, . . . , R} ∈ Rkpm×kpm. The optimal
input sequence is given by:

U∗
0 (x(0)) = −(Su

T

∗ Q̄Su∗ + R̄)−1Su
T

∗ Q̄Sx∗x(0) (4)

where Sx∗ =
[
I AT (A2)T . . . (Akp)T

]T ∈
Rn(kp+1)×n, Su∗ ∈ Rn(kp+1)×kpm s.t.

[
Su∗ 0n(kp+1),m

]
has lower triangular Toeplitz structure with elements
{0n,m, B,AB, . . . , Akp−1B}, 0n(kp+1),m is a zero matrix of
size n(kp + 1)×m and U0 ∈ Rkpm. The structure of these
matrices are omitted due to space constraints (for details see
pp. 164 in [23]). The optimal cost J∗

0 (x(0)) can be easily
calculated by substituting the above result in (3).

As opposed to the open loop formulation described above,
a similar but closed loop version of (4) is used in the
receding horizon framework. The optimal input sequence at
ith- sampling instant is given by:

U∗
i (x(i)) = −(Su

T

∗ Q̄Su∗ + R̄)−1Su
T

∗ Q̄Sx∗x(i) (5)

The above optimal input sequence works perfectly under the
scenario where we know the system dynamics, and hence
Sx∗ and Su∗ , exactly.

B. Problem Formulation

Let the dynamics of a similar system be given by

x(t+ 1) = Ãx(t) + B̃u(t) + e(t), y(t) = x(t) (6)

where, Ã = A+∆A, B̃ = B +∆B, the pair (A,B) is our
actual system while the pair (Ã, B̃) represents the similar
system with (∆A,∆B) being the unknown perturbation
matrices. The other variables in the equation are identical to
those defined in the original system (1). We assume that we
have access to the I/O data generated previously by the above
system, either through separate identification experiments or
through regular controlled use. The generated I/O data set is
denoted by {ũ(i), ỹ(i)}Nt−1

i=0 .
Problem 1: Design a data-driven “efficient” method to

iteratively compute the receding LQR solution given in (5)
by leveraging the data set {ũ(i), ỹ(i)}Nt−1

i=0 recorded from the
similar system (6) and online data available at each iteration
on application of (5) on the actual system (1).
Some assumptions standard in the system identification lit-
erature are listed below.

Assumption 1: [1], [2] The following are assumed:
1) The input u(t) is persistently exciting.
2) The input u(t) is uncorrelated with e(t).

III. COMPRESSED DATA DRIVEN LQR SYNTHESIS

In this section we present the two basic building blocks
for the proposed method, namely the computation of Sx and
Su directly from I/O data and the same computation based
on compressed I/O data.

A. Data driven learning of Sx and Su: Subspace approach

Given input-output time-series data sequence {u(i), y(i)}
∀i ∈ {0, 1, . . . , Nt−1}. First, a horizon k = kp+1 is chosen
where kp is the prediction horizon for the LQR problem and
the block size N := Nt − 2k + 2 is defined. Let us denote
a block Hankel matrix based on input sequence {u(i)} as
follows:

Ui|i+k−1 :=

 u(i) u(i+1) ... u(i+N−1)
u(i+1) u(i+2) ... u(i+N)

...
...

. . .
...

u(i+k−1) u(i+k) ... u(i+k+N−2)

 (7)

Now, the past input block Hankel matrix is defined as
Up := U0|k−1 ∈ Rkm×N by substituting i = 0 above,
while the corresponding future input matrix is defined as
Uf := Uk|2k−1 ∈ Rkm×N (substituting i = k). Simi-
larly we define the output block Hankel matrices Yp, Yf ∈
Rkn×N using the past/future output data {y(i)}. Although
no recordings of noise are assumed to be available, for the
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sake of notational convenience, similar matrices are also
defined for the corresponding past and future innovations
processes: Ep, Ef ∈ Rkn×N . The past input and output data
is combined into Wp :=

[
UT
p Y T

p

]T ∈ Rk(m+n)×N . Let
Xf ∈ Rn×N denote the future state sequence defined as
Xf :=

[
x(k) x(k + 1) . . . x(k +N − 1)

]
∈ Rn×N .

Recursively using (1) and data matrices defined above we
get,

Yf = SxXf +
[
Su 0kn,m

]
Uf +ΦkEf . (8)

where Φk ∈ Rkn×kn is noise impulse response Toeplitz
matrix having lower triangular structure with elements
{0n, In, A, . . . , Ak−2},

[
Su 0kn,m

]
∈ Rkn×km and 0kn,m

is zero matrix of size kn × m. Let Ā := A − C, B̄ :=
B, Υk :=

[
Āk−1B̄ Āk−2B̄ . . . B̄

]
∈ Rn×km be the

modified reversed extended controllability matrix and Υe
k :=[

Āk−1 Āk−2 . . . I
]
∈ Rn×kn be the modified reversed

extended stochastic controllability matrix. Then, under the
assumptions listed above and for large prediction horizons
k it can be shown [24] that Xf = LpWp for Lp :=[
Υk Υe

k

]
∈ Rn×k(m+n). Thereby (8) reduces to

Yf = SxLpWp +
[
Su 0

]
Uf +ΦkEf . (9)

Under assumption 1, the projection Yf onto the joint span
of Wp and Uf becomes:

Yf/

[
Wp

Uf

]
= SxLpWp +

[
Su 0

]
Uf (10)

Now Yf orthogonally projected onto the joint span of Wp

and Uf can also be written as,

Yf/

[
Wp

Uf

]
= Yf/Uf

Wp + Yf/WpUf = L̄pWp︸ ︷︷ ︸
:=ζ

+LUf
Uf (11)

where ζ := Yf/Uf
Wp ∈ Rkp×N is known as the oblique

projection of Yf onto Wp along Uf . On comparing (10) and
(11) we get L̄p = SxLp, LUf

=
[
Su 0

]
. Define ζ =

L̄pWp ∈ Rkp×N . An efficient way to calculate the oblique
projection is by using the QR decomposition.

1) QR step: Perform LQ decomposition on H :=[
UT
f WT

p Y T
f

]T ∈ R2k(m+n)×N to obtain the decom-
position of Yf as shown in (9).

H =

Uf

Wp

Yf

 =

R11 0 0
R21 R22 0
R31 R32 0


︸ ︷︷ ︸

L

QT
1

QT
2

QT
3


(12)

From (12),

Yf/

[
Wp

Uf

]
= R32R

†
22Wp + (R31 −R32R

†
22R21)R

−1
11 Uf

(13)
On comparing (10) and (13),

L̄p = R32R
†
22[

Su 0
]
= (R31 −R32R

†
22R21)R

−1
11

(14)

Now it can be shown using (8), (10) and (11) that

SxXf︸ ︷︷ ︸
theoretical

= L̄pWp = R32R
†
22Wp︸ ︷︷ ︸

data

=: ζ. (15)

2) SVD step: Next we calculate the SVD of ζ as follows:

ζ =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T
1

V T
2

]
= U1Σ1V

T
1 + U2Σ2V

T
2︸ ︷︷ ︸

noise

≈ U1Σ1V
T
1 = U1Σ

1/2
1 T︸ ︷︷ ︸

Sx

T−1Σ
1/2
1 V T

1 (16)

where T ∈ Rn×n is an arbitrary similarity transformation
matrix. The second term is ignored assuming that the noise
component is negligible as compared to the system contribu-
tion. Therefore, Sx and Su can be computed directly from
input-output data up to similarity transforms. Consequently,
the optimal input U∗ using (5) becomes:

U∗
i (x(i)) = −(Su

T

Q̄Su + R̄)−1Su
T

Q̄SxT−1x(i) (17)

In order to use the above feedback law, we need to compute
T . It is easy to see that on comparing Sx∗ (see (4)) and Sx,
the first n-rows of Sx forms T i.e. T = Sx(1 : n, :).

B. Efficient learning: Randomized approach

We propose randomized data compression based compu-
tation of Sx and Su.

1) Data Compression: Recall that the matrix H :=[
UT
f WT

p Y T
f

]T ∈ R2k(m+n)×N and define Nc :=
2k(m + n) + l where, l > 0 is commonly known as the
oversampling parameter [25]. Define C ∈ RN×Nc to be a
random matrix whose elements are iid gaussian with (C)ij ∼
N (0, 1

Nc
). We further define, Ūf := UfC, Ūp := UpC,

Ȳp := YpC, Ȳf := YfC, W̄p := WpC =
[
ŪT
p Ȳ T

p

]T
and

H̄ := HC =
[
ŪT
f W̄T

p Ȳ T
f

]T ∈ R2k(m+n)×Nc .
2) LQ Decomposition: In the uncompressed case, the first

step to compute Sx and Su is to perform QR on HT (see
(12)). Since, we need only the R-factor from the QR step,
hence instead, we propose to perform QR on the compressed
matrix H̄T ∈ RNc×2k(m+n). This step reduces the QR
computation cost significantly since Nc << N . However
for this method to work, we must show that the projection
can still be used to extract the desired subspace even after
data compression.

First, note that an equation similar to (13) can be obtained
for the compressed case using QR decomposition of H̄T :

Ȳf/

[
W̄p

Ūf

]
= R̄32R̄

†
22W̄p + (R̄31 − R̄32R̄

†
22R̄21)R̄

−1
11 Ūf (18)

where (̄.) denote the equivalent matrices for the compressed
case. Now, we right multiply (9) by C

Ȳf = L̄pW̄p +
[
Su 0

]
Ūf +ΦkĒf (19)

Note that, the L̄p remains the same as in the uncompressed
case due to multiplication from the right by C on (9). Under
assumption 1, the orthogonal projection of Ȳf onto the joint
span of W̄p and Ūf is

Ȳf/

[
W̄p

Ūf

]
≈ L̄pW̄p +

[
Su 0

]
Ūf (20)
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The above result ensures that we can use the projection to
extract the desired subspace under assumption 1 (similar to
the uncompressed case). Recall that the oblique projection
ζ := Yf/Uf

Wp ∈ Rkp×N and define the compressed version
ζ̄ := Ȳf/Ūf

W̄p ∈ Rkp×Nc . Then the following result can be
proved along the lines of [20], [21] and is not included here
in the interest of space.

Lemma 1: R(ζ̄) = R(ζ) almost surely.
Therefore, various projections of Ȳf onto Ūf and W̄p as

shown in (20) can be calculated from the compressed QR
factors

(
R̄ij ∀i, j ∈ {1, 2, 3}, see (18)

)
. Using the above

Lemma and comparing (13) and (18), we get

ζ̄ = R̄32R̄
†
22︸ ︷︷ ︸

L̄p

W̄p (21)

3) Projection: SVD Step: As mentioned in previous sub-
section, after computing the oblique projection ζ ∈ Rkp×N

(see (15)), the next step is to perform SVD according to (16).
Since, we are interested to compute Sx using only the left
singular vectors of ζ, we show that an equivalent operation
can be performed on ζ̄.

Theorem 1: There exists a decomposition of ζ̄ = L̄pW̄p =
S̄xX ∈ Rkp×Nc such that R(S̄x) = R(Sx) a.s. where S̄x ∈
Rkp×n and X ∈ Rn×Nc .

Proof: The proof is similar to Theorem 2 in [21]
Therefore SVD can be performed on ζ̄ to compute Sx upto
similarity transform. This step reduces the computation-cost
as we use ζ̄ ∈ Rkp×Nc to compute S̄x instead of ζ ∈ Rkp×N .
The matrix Su can be easily estimated using (18)[

Su 0
]
= (R̄31 − R̄32R̄

†
22R̄21)R̄

−1
11 (22)

The above Theorem proves that even after data compression
we can use appropriate projections to learn Sx and Su up
to similarity transforms.

IV. RANDOMIZED ITERATIVE LQR (RILQR)

The methods described in the previous section allows for
efficient computation of the LQR control directly from large
quantities of I/O data. This efficiency is essential to learn
from the potentially large sized similar system data. However
we would like to continuously update the optimal control
based on the online data generated in real time from the
actual system being controlled. This calls for a iterative
method to update Sx, Su and ideally U∗

i (x(i)) in (17) based
on the newly available data at each time instant. We propose
a method to partially achieve this objective in this section.

A. Learning control from similar system

Recall the dynamics of the similar system given in (6)
which has previously generated the I/O data set denoted by
{ũ(i), ỹ(i)}Nt−1

i=0 . We formulate data matrices from this I/O
data, denote them as Up(−1), Uf(−1), Yp(−1), Yf(−1) and de-

fine H−1 :=
[
UT
f(−1) WT

p(−1) Y T
f(−1)

]T
∈ R2k(m+n)×N .

Following the same notation as in section III-A, the past and
future input Hankel matrix using data from similar system
can be defined as Up(−1) := Ũ0|k−1 and Uf(−1) := Ũk|2k−1

respectively. Let us define ũp(−1) as the last column of
Up(−1) so that ũp(−1) = [ ũ(N−1)T ũ(N)T ... ũ(k+N−2)T ]

T ;
and ũf(−1) as the last column of Uf(−1) so that
ũf(−1) = [ ũ(k+N−1)T ũ(k+N)T ... ũ(2k+N−2)T ]

T . Similarly,
ỹp(−1) and ỹf(−1) can be defined. Therefore the last column
of H−1 is defined as h−1 := [ ũT

f(−1) ũT
p(−1) ỹT

p(−1) ỹT
f(−1) ]

T ∈
R2k(m+n).

Following the same notation as in section III-B, the
compressed version of H−1 is denoted by H̄−1 = H−1C−1.
Using this H̄−1 and our knowledge of the initial state x(0) of
the to-be-controlled system (1), the optimal control U∗

0 (x(0))
can be computed using Sx and Su as shown above. The first
instance of this control input sequence (say u∗(0)) is applied
at the starting instant t = 0 of the controlled operation of
system (1). The output y(0) is recorded.

B. Update of H

Assume that we receive the new data (u∗(0), y(0))
generated at time t = 0 from the actual system. This new in-
formation can be used to augment the I/O data matrices given
by Up(0) :=

[
Up(−1) up0

]
and Uf(0) :=

[
Uf(−1) uf0

]
where up0 = [ ũ(N)T ũ(N+1)T ... ũ(k+N−1)T ]

T and
uf0 = [ ũ(k+N)T ũ(k+N+1)T ... ũ(2k+N−2)T u∗(0)T ]

T

respectively. Similarly Yp(0) and Yf(0) can also be
augmented. So, the updated new column to be added to
H−1 can be written as h0 =

[
uT
f0 uT

p0 yTp0 yTf0
]T

where
uf0 denotes the last column of Uf(0) and so on. Therefore,
H0 =

[
H−1 h0

]
. Now following the same notation as in

section III-B, we perform data compression on H0 leading
to:

H̄0 = H0C0 =
[
H−1 h0

] [C−1

cT0

]
= H−1C−1 + h0c

T
0 = H̄−1 + h0c

T
0

(23)

From time instant t = 1 onwards the compressed data matrix
at the tth instant can be obtained from the data matrix at the
(t−1)th instant through an iteration identical to (23) above.

H̄t = H̄t−1 + htc
T
t (24)

where ht is the last column of Ht augmented with the
current data point (u∗(t), y(t)) as shown above, and ct is
a iid Gaussian vector of appropriate size. Therefore the new
information can be included by iterating with the previously
compressed data matrix. Note that the size of the compressed
matrix remains invariant even after addition of infinite data
points.

C. Update on QR decomposition: Iterative rank-1 update

Once we have computed H̄t, the next step would be to
perform QR decomposition (H̄T

t ) followed by SVD and the
subsequent steps described in the previous section. In this
section, we show that the QR decomposition can be iterated
directly without computing H̄t explicitly. Clearly (24) is a
rank-1 update on H̄t−1 ∈ Rs×Nc where s := 2k(m + n).
Therefore we can directly iterate on the Q and R factors
using the following update equation:

Qt = Qt−1Zt; Rt = ZT
t Rt−1 +∆Rt (25)
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where Zt = LG
t L

J
t , ∆Rt = LG

t ||zt||2e1cTt , zt = QT
t−1ht,

LG
t and LJ

t are product of rotation matrices, for more details
see [22].

It is well known [22] that the above rank-1 QR update
requires O(s2) computation. Hence, the above algorithm
requires O(s2) computation at each iteration as compared
to O(s3+s2l) in case of repeated QR decomposition on H̄t.
It is important to note that if we had not compressed Ht,
then the required QR on HT

t would have required O(s2N)
computation at each instant making it prohibitively large due
to N >> s. Moreover, in such an uncompressed scenario, the
data size (N ) would grow with time making this computation
even more intractable. Therefore, there is significant saving
in computation in this step due to iterative compression and
the rank-1 update of the compressed QR factors.

The proposed pseudo-iterative control scheme (RiLQR) is
summarized in two algorithms: Algorithm 1 describes the
process of learning the initial optimal control by leveraging
data from a similar system, while Algorithm 2 iteratively
learns the modified control by augmenting old information
from the similar system with online data from the actual
system.

Algorithm 1: Learning control from similar system

1 Input: Load input-output data from similar system.
2 Formulate data matrices Up(−1), Uf(−1), Yp(−1) and

Yf(−1) from input-output data. Stack them to form

H−1 =
[
UT
f(−1) UT

p(−1) Y T
p(−1) Y T

f(−1)

]T
.

3 Store the last column of H−1 as h−1 = H−1(:, end).
4 Generate random Gaussian iid matrix C−1 ∈ RN×Nc .
5 Perform randomized data compression on H−1 using
C−1 defined as H̄−1 := H−1C−1.

6 Perform QR decomposition on H̄T
−1 = Q−1R−1.

7 Extract L̄p and Su−1 from R−1 obtained above using
(21) and (22) respectively.

8 Perform SVD using L̄p and W̄p to estimate S̄x−1 (16).
9 Compute U∗

−1 using (17). Store first input sequence
from U∗

−1 as u∗(0).
10 Output: Sx−1, Su−1, Q−1, R−1, h−1 and u∗(0).

D. Efficiency of the proposed algorithm

The computation complexity of the proposed algorithm
is presented in Table I. Except the initial data compression
step, all other steps of the proposed algorithm is O(k2Nc) ≈
O(k3).

TABLE I
COMPUTATION COMPLEXITY OF RILQR

Steps Proposed

1 Initial data compresssion
H̄−1 = H−1C−1

O(k2N)

2 Initial QR decomposition
H̄−1 = Q−1R−1

O(k3)

3 Rank-1 QR update O(k2)
4 Sx O(k3)
5 Su O(k3)
6 U∗ O(k3)

Algorithm 2: Learning control from similar system
and actual system

1 Initialize: t← 0
2 while t ̸= Titer do
3 Input: Sxt−1, Sut−1, Qt−1, Rt−1, ht−1 and u∗(t).
4 Generate output data y(t) using u∗(t) from actual

system (A,B). Record the I/O pair as
(u∗(t), y(t)).

5 Update ht based on ht−1 using current
measurement from actual system (u∗(t), y(t))
(see section IV-B).

6 Generate random Gaussian vector ct.
7 Iteration on QR decomposition to obtain Rt using

Qt−1, Rt−1, ht and ct using (25).
8 From Rt obtained above compute Sxt and Sut as

performed in Algorithm 1.
9 Compute U∗

t based on Sxt and Sut using (17).
Store first sequence from U∗

t denoted by
u∗(t+ 1)

10 Output:. Sxt , Sut , Qt, Rt, ht and u∗(t+ 1).
11 t← t+ 1;

V. NUMERICAL EXAMPLE

We illustrate the advantage of using historical data set
obtained from a similar system in the proposed method,
over the standard exploration-exploitation approach, where
the system is unknown. Consider the following discrete-time
systems (a) Actual system (A,B) and (b) Similar system
with perturbed eigenvalues (Ã, B̃), given as

A =

[
1.0 0.40
0.005 −0.99

]
;B =

[
0.2
0.5

]

Ã =

[
0.80 0.30
0.105 −0.89

]
; B̃ =

[
0.21
0.6

]
Firstly, as part of the exploratory phase in the standard

approach, a Gaussian iid white noise sequence of variance
σ2
uE

is used to drive the system forward in open loop through
Texplore = 50 time-steps, and the generated I/O data set
{ũ(i), ỹ(i)}50i=0 is used to identify the system using the Mul-
tivariable Subspace Identification: MOESP [26] algorithm.
The variance of the noise sequence e(t) is kept around 0.01
in all the experiments. The model based LQR controller
uses the estimated system matrices to compute the optimal
feedback gain [23] with a prediction horizon kp = 4 and
is run in closed loop for Texploit = 100 time-steps as part
of the exploitation phase. The total run time is: Titer =
Texplore + Texploit. For the similar system experiment, without
loss of any generality, the input signal used is u ∼ N (0, 1)
with data length Nt =100,000. Algorithm 1 is applied on
the similar system data collected and then the actual system
(A,B) is run in closed loop in conjunction with Algorithm 2
for the same Titer = 150, where the RiLQR controller learns
from the actual system outputs in real time and generates the
optimal input sequence. The state and input penalty matrices
are chosen as Q = P = I2 and R = 1 respectively.
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For the proposed algorithm, the total optimal cost (JRiLQR)
is computed using (3) over Titer time-steps. The total cost
for the model based LQR method (mLQR) is summed over
the exploration and exploitation phases: JmLQR = Jexplore +
Jexploit. The variance of the input noise during the explore
phase, denoted by σ2

uE
, also affects the accuracy of the

estimated system parameters and hence the control. For
very low σ2

uE
, the system is misidentified by the MOESP

algorithm owing to low excitation; which is reflected in the
worsening control performance for very low values of σ2

uE
.

Hence a very low σ2
uE

may decrease the Jexplore but will
increase the Jexploit. We repeat the model based experiment
described above for several values of σ2

uE
. It can be seen

from Table II, that the variation of JmLQR vs σ2
uE

is as
expected. The input and the state trajectories for the model
based control vs the proposed algorithm are shown for
σ2
uE

= 0.83 (see Fig. 1).

TABLE II
COST VARIATION WITH RESPECT TO INPUT VARIANCE

Cases σ2
uE

SNR Jexplore Jexploit JmLQR JRiLQR

1 1.15 98.90 625.16 20.0 645.16 5.62
2 0.83 79.95 232.18 16.17 248.36 6.25
3 0.08 9.21 79.83 3.15 82.98 4.72
4 0.001 0.08 53.05 2.92 55.97 5.69
5 3.2e-5 3.7e-3 53.25 2.02 55.27 5.40
6 9.5e-8 8.4e-6 28.60 55.68 84.29 5.05
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Fig. 1. State response comparison for mLQR and RiLQR for
Titer = 150 with SNR = 79.95

VI. CONCLUSIONS
A data driven iterative LQR which seamlessly combine

past and online data through randomized compression, is pre-
sented in this paper. While not included in this preliminary
study, it is expected that discrepancies with the historical
model and/or rapid real time variations in model parameters
will adversely affect the efficacy of the computed control
sequence. The performance of the proposed algorithm vs
more sophisticated exploitation-exploration scheme should
be investigated in the future.
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