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Abstract— This paper presents a software stack named
setcmas, for Simulation and Experiments in Teaching Control
of Multi-Agent Systems. It aims at facilitating simulations and
experiments for teachers and students involved in Control
Engineering curricula. The stack is available online and can
be used freely for Control Education purposes. It leverages
the advantages of ROS, the robot operating system, without
requiring any knowledge of it to be used. Control algorithms
for multi-agent systems can be implemented in simple Python
scripts, and then simulated and validated through experiments
with ground mobile robots. The paper presents the content of
the stack, the possible architecture used for experiments, and
some usages already made for teaching, demonstration, and
research work.

I. INTRODUCTION

Many curricula in control engineering now include lectures
or modules devoted to multi-agent systems, and more specif-
ically to control architectures and algorithms for multi-agent
systems. Many industrial applications have indeed motivated
this development of academic and education activities related
to modeling and control of network systems, distributed
control or state estimation, etc. These applications are for
example smart grids, autonomous vehicles, sensor networks,
or other applications related to IoT.
Control of multi-agent systems is sometimes taught from
the automatic control point of view, as it is the case in
Control Engineering curricula. In that case, the effort is often
put on theory and analysis, fundamental algorithms such as
consensus, etc. with applications in simulations. Sometimes
it is taught from the robotics point of view, when related to
curricula on robotics or autonomous vehicles. In that case,
the emphasize is put on algorithms such as platooning, for-
mation control, etc. with applications in experiments (mobile
ground robots [1], scale model autonomous cars [2], drones
[3], etc.).

This paper focuses on the context of teaching control
of multi-agent systems in Control Engineering curricula,
where robotic applications can nevertheless be considered
to motivate students, but still by considering the algorithms
from the control theory point of view.
In control engineering curricula, teachers and students are not
always familiar with simulators and experimental platforms
from the robotics community. Sometimes they find too
much time consuming to invest in the understanding, use,
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development of experiments to be integrated as practical
work sessions.

It is of course always possible to rely on existing sim-
ulators which are widely used and well documented, eg.
Webots, Gazebo, MORSE, ARGoS, etc. (see [4], [5] for
main features and comparison). They are mainly developed
by and for the robotics community and are designed to
be representative of the physics of the robots and emulate
their sensors. Simulating a multi-robot system for testing
control algorithms of multi-agent systems may not always
be easy or could require computers with large computational
capabilities when the number of simulated robots increases.
Although very efficient for research, they can be more
difficult to use for control education purposes, especially on
students’ laptops where specific configuration requirements
and installation procedures should remain limited.
Development of simulators more dedicated to education
purposes has been investigated, see eg. [6], [7]. But interface
to real hardware for experiments is sometimes not accounted
for, or very specific platforms (eg. developed by the authors)
are considered making it not easy to replicate [8].
Frameworks such as ROS1, the Robot Operating System,
have enabled to decrease the difficulty of moving from
simulations to experiments on real hardware (”sim-to-real”).
It has motivated the development of software stacks to be
used with ROS for education in robotics or autonomous
vehicle [9], [10]. A very interesting recent work considered
the development of a software stack for multi-aerial vehicles
[11]. Although these works provide very valuable material,
they can be found difficult to be used by teachers or students
from Control Engineering curricula, that may not be familiar
with ROS.

The main objective and contribution of this paper is
to provide to the Control Engineering education commu-
nity an easy-to-use framework to facilitate Simulations and
Experiments in Teaching Control of Multi-Agent Systems
(setcmas). It leverages the advantages of ROS but without
requiring any knowledge on it by teachers or students.
The stack offers the possibility to implement control algo-
rithms in simple Python scripts, just by implementing the
”mathematical part”, and perform simulations. The proposed
simulator is lightweight, allowing to be run for multi-robot
systems on classical computers and on a Virtual Machine,
which is a solution often well appreciated because not
requiring any intrusive installation on students’ computers.
The proposed software stack also enables to run experiments

1https://www.ros.org/
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with real ground mobile robots. The robots considered in
the experiment architecture described in this paper are the
Turtlebot32. This choice is motivated by the fact that this type
of platform (or previous versions) is often available in many
laboratories or universities, and that it is an open source and
well-documented platform, which is helpful for people not
familiar with robotics and ROS. Note that use of other ground
mobile robots would be possible. The stack also provides
different examples of control algorithms for multi-agent
systems such as distributed consensus, formation tracking
or, at a more advanced level, event-triggered distributed
consensus.
The setcmas stack presented throughout this pa-
per is available online at https://github.com/
bertrandsylv/setcmas and can be used freely for
Control Education purposes.

The paper is organized as follows. The next section
presents in details the content of the stack and describes its
packages related to simulation, control algorithms, experi-
mentation and data visualization. Examples of usages already
made of the stack are then presented, illustrating possibilities
offered for teaching, demonstrations and research work.

II. CONTENT OF THE STACK

The setcmas software stack has been developed in
Python, building upon ROS (ROS1 Noetic distribution). It
is composed of three packages which correspond to the
simulator, the control algorithms, and the experiments. The
control algorithms can be run either in simulation, or using
real robots during experiments. In addition, some scripts
are provided to visualize and process data recorded during
simulations or experiments.
As previously mentioned, no knowledge in ROS is required
to work with these package, develop and test distributed
control algorithms in simulations or experiments. Only some
basic knowledge in Linux/ROS are required for installation
of the experimental setup, but the documentation of the
Turtlebot3 platforms offer a very comprehensive guide
that can be followed by anyone. As explained later in
Section III-B, a Virtual Machine provided by the author
can be used for working in simulation, hence requiring no
specific knowledge for the user.
The next sections describe the simulation package
(setcmas_simu), the package implementing distributed
control algorithms (setcmas_ctrl), and the one for
experiments (setcmas_expe). Some indications are
finally provided on how to record, process and visualize
data.

A. Simulation

The setcmas_simu package allows for simulation of
one or several TurtleBot3 ground mobile robots. Contrary
to existing simulation packages available for Turtlebot3 that
make use of realistic simulators such as Gazebo, accounting
for collisions and sensors, the choice has been made here

2https://emanual.robotis.com/docs/en/platform/
turtlebot3/overview/

Fig. 1. Visualization in RViz of a simulation of distributed event-triggered
consensus with 8 robots.

to develop a very lightweight simulation code. Written in
Python it simply implements unicycle dynamics for the
robot. No sensor are emulated, nor physics such as inertia,
friction or collisions. The objective is to keep the code as
simple as possible, so that it can easily be used and modified
by students. In addition, it can be run without requiring a
powerful computer. Use in Virtual Machine is also made
possible (see Section III-B), without requiring Linux instal-
lation on teachers’ and students’ PCs. 3D visualization of
the robots and of their trajectories is made possible (but not
mandatory) using RViz3. A color code for the robot and its
trajectory is automatically assigned from its number (0: red,
1:green, 2: blue, 4: yellow, etc.). This color code is also used
in visualization of recorded data (see Section II-D). The code
enables to work with a number of robots ranging from 1
to 8, but this maximum number can be easily changed by
modifying the code.
The syntax to launch a mono-robot simulation is: ”roslaunch
setcmas_simu simu_mono_robot.launch” . For a multi-
robot simulation with 8 robots: ”roslaunch setcmas_simu

simu_multi_robots.launch nb_robots:=8” . The number
of robots is specified as argument. Therefore only one line of
command is required from the teacher(s)/student(s) to launch
a simulation, without any specific knowledge of ROS.
An example of 3D visualization of a simulation with 8 robots
is given in Figure 1, with the color code used for each robot
and its trajectory. Recording and exploiting simulation data
is made possible using one very simple command line based
on the rosbag4 tool from ROS and scripts provided with
the simulation package setcmas_simu (see Section II-D).

B. Control algorithms

1) Controller structure: In simulation or experiment, a
control law will be evaluated by each robot. The package
setcmas_ctrl provides scripts written in Python to define
the structure of the controller and the control algorithms.
Control inputs of the Turtlebot3 robots, and of their unicycle
dynamical model used for simulation, are the linear speed
V and angular velocity ω. The objective of this work is to

3http://wiki.ros.org/rviz
4http://wiki.ros.org/rosbag
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facilitate application of control algorithms for multi-agent
systems. Therefore, it has been chosen to allow for usage
of alternative control inputs, in terms of Cartesian velocity
vector v = [vx vy]

T . A 2D single integrator dynamics can
therefore be considered for control design, which is the type
of dynamical model that is very often used when introducing
distributed control algorithms for multi-agent systems to stu-
dents. A Python script (si_to_uni.py) is used to convert
v into the robot control inputs, by classically assigning V
from the module of v, computing a desired orientation from
the direction of v and finally using a proportional control law
to compute ω from the error between the actual orientation of
the robot and the desired one. This script can be modified by
teachers and students if needed. It acts as a ”low level” con-
troller enabling to implement distributed control algorithms
at a higher ”guidance” level, by considering control laws
for multi-agent systems with single integrator dynamics. In
terms of pedagogy, it also enables to introduce to students
different concepts usually found in Control Engineering, such
as control design considering simplifying models/assump-
tions, verification/analysis considering the original system
(i.e. without simplifying assumptions), guidance and control,
inner and outer control loops.
Control algorithms can then be implemented on dedicated
scripts. These scripts written in Python only contain math-
ematical expressions, no code related to ROS. They are the
main ”interface” proposed to teachers and students. A script
consists in a single function which follows the following
template:

d e f c o n t r o l ( robotNo , nbRobots , poses , t ) :
# . . .
# . . . c o n t r o l a l g o r i t h m
# . . .
r e t u r n vx , vy

The name of the script can be chosen by the user and
will be used to run the algorithm. An instance of the script
will be run in a distributed way for each robot, to compute
its control inputs vx, vy , which will then be converted to
V and ω. Different arguments of the function can be used,
if required, in the algorithm to be implemented by the
control function:

• robotNo: index of the robot which is evaluating its
control input.

• nbRobots: total number of robots in the multi-agent
system.

• poses: array with poses information (i.e. positions and
orientations) of all the robots. Note that knowledge
of the poses of all the robots relates to a centralized
strategy. But distributed strategies can be realized by
considering in this array only the components corre-
sponding to neighbor agents, that is the information
locally available to the current agent (robotNo) com-
puting its control input. That can eg. be realized by
defining a communication graph between the agents by
specifying its adjacency or Laplacian matrix and making
use of it in the control algorithm.

• t: current time instant.

Fig. 2. Examples of simulations with different control algorithms: WP
navigation and trajectory tracking for a single robot (respectively top-left
and top-right), leader-follower formation and consensus for multi-robots
(respectively bottom-left and bottom-right).

As mentioned before, only maths are to be implemented
in such script which can be run either in simulation or in
experiment with real robots in a totally transparent manner,
by teacher(s) and student(s), without knowledge in ROS nor
robotic platforms. The name of the script is to be chosen
by the user, so that different algorithms can be implemented
and easily tested. The name of the script is used as argument
of the single command line that has to be run to launch the
control algorithm.

2) Examples for single and multi-agent control:
For example, for a single robot case, the command
line ”roslaunch setcmas_ctrl ctrl_mono_robot.launch

algo:=nav_wp ” will run a script named nav_wp.py
implementing WayPoint navigation control for a single
robot. The command line ”roslaunch setcmas_ctrl

ctrl_mono_robot.launch algo:=traj_tracking” will
run a script named traj_tracking.py implementing
trajectory tracking control for a single robot. Visualization
of simulations running these two algorithms, provided as
examples in the setcmas_ctrl package, are presented
in the top line of Figure 2. The actual pose, 3D model
and past trajectory of the robot are represented in red. The
yellow dot and yellow trajectory are visualization markers
that can be defined directly, by the user, in an easy way and
with pure Python syntax, using ad-hoc functions proposed
in the setcmas_ctrl package.

Two other examples of simulations involving distributed
control algorithms for multi-agent systems are presented
in the bottom line of Figure 2, respectively implementing
leader-follower formation control with 5 agents (bottom-left)
and consensus with 8 agents (bottom-right). In addition
to the command line running the simulator with the
ad-hoc number of robots (see Section II-A), the two
following command lines have respectively been used:
”roslaunch setcmas_ctrl ctrl_multi_robots.launch

nb_robots:=5 algo:=leader_follower_formation” and
”roslaunch setcmas_ctrl ctrl_multi_robots.launch

nb_robots:=8 algo:=consensus” . They refer to the
Python scripts leader_follower_formation.py
and consensus.py also provided as examples in the
setcmas_ctrl package.
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Fig. 3. Event-triggered consensus: trajectories of the robots.

3) Moving to more advanced multi-agent control algo-
rithms: The setcmas_ctrl package also enables to work
with a class of more advanced control strategies that ac-
counts for communication exchanges between the agents
of the network. Event-triggered strategies [12] enable to
implement communication decisions and reduce the number
of communications compared to periodic communications.
They are widely used in control of multi-agent systems and
more specifically in distributed schemes, where each agent
decides when to broadcast a communication to its neighbors
by evaluating a Communication Triggering Condition (CTC),
based on information locally available to that agent.
In addition to a script defining the control law of the
agent, another Python script (ctc.py) can be completed
by teacher(s)/student(s) to implement the CTC to be eval-
uated by each agent. When the condition is verified, the
agent communicates its current state information. When
not, last received information is used instead (zero-hold) by
the control algorithm. An example of CTC implementation,
provided in the setcmas_ctrl package, is:

d e f c t c ( pos , l a s t p o s , t ) :
i f ( numpy . l i n a l g . norm ( pos − l a s t p o s ) >0 . 2 5 ) :

r e t u r n True
e l s e :

r e t u r n F a l s e

A communication is triggered by the agent that evaluates
its condition whenever the norm of the difference between
its current position and its last transmitted one becomes
greater than a given threshold. Note that this is a simple and
naive condition, provided here as example, but which can be
provided as a starting point to students, to compare with
periodic communications and before implementing more
efficient CTCs [12].
An example of distributed event-triggered consensus is pro-
vided in simulation for 8 agents. Trajectories of the robots,
time evolution of their position components and communi-
cation instants are presented respectively in Figures 3 and
4. These figures have been obtained as explained later in
Section II-D.

Fig. 4. Event-triggered consensus: communication instants of each robot
(0: no communication, 1: communication).

C. Experiments

Instead of simulation, experiments with real robots can
be launched using the setcmas_expe package. Similarly
to what is done in simulation, only one command line is
required to launch an experiment. The control algorithm
is also launched by the same command. For example
”roslaunch setcmas_expe expe_ctrl_mono_robot.launch

algo:=nav_wp” for an experiment with one robot running
the Way Point navigation control algorithm, or ”roslaunch
setcmas_expe expe_ctrl_multi_robots.launch

nb_robots:=8 algo:=consensus” for an experiment with 8
robots running the distributed consensus control algorithm.
Excepted from the installation of the experimental setup,
that is detailed below, no knowledge in ROS is required
from the user (teacher or student) who would like to run an
experiment.

The experiment setup is the one classically used, with
an external system providing some localization information
(pose, odometry), as presented on Figure 5. A Motion
Capture system has been used composed of a network of
external IR cameras and markers mounted on top of the
robots. A PC receives data flow from the camera network and
broadcast high-frequency accurate localization information.

As presented in Figure 5, a Wi-Fi router is used in the
architecture of the experiment setup. It ensures network
connection between the motion capture system, the robots

Fig. 5. Architecture for simulation and experiments.
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and a laptop. This laptop is used by teacher(s) and student(s)
to develop, simulate, and then experiment their control
algorithms5. Additionally, a joypad can be connected to the
PC to start and pause the experiment more easily.

D. Data recording and processing

Since the proposed software packages rely on ROS,
and since the objective is to make it easy-to-use by
teachers/students who do not have experience in ROS, some
scripts are also provided to transform ROS data messages
to a format easy to read and process.
ROS messages can be recorded and replayed in a very
efficient way using the rosbag tool.When performing a
simulation or an experiment, teacher(s) or students can
therefore record all the information related to the poses of
the robots, control inputs, exchanges of messages, etc. using
a simple and single command line (”rosbag record
-a"). A first script (bag_to_csv.py) provided with the
setcmas_simu package allows then to convert the ROS
messages into simple standard CSV data files. A second
script (csv_to_plot.py) can then be used to draw plots,
such as the ones presented in Figures 3 and 4.
Therefore, the proposed setcmas software stack leverages
the advantages of the ROS data system but simplifies its use
and exploitation by teachers/students that are not familiar
with ROS.
As presented in Figure 5, the interfaces to
teacher(s)/student(s) are indeed only Python scripts for
the implementation of the control laws, CSV files for the
data and visualizations (3D visualization and plots). Of
course, students can also be encouraged to take video
records of simulations and experiments with real robots.
Only simple command lines are required to run each step of
the process (initiate simulation or experiment, run control
laws, record and visualize data), making the software
package suitable for use within the context of an academic
module by teachers and students (eg. in practical work
sessions or labs). Some examples of usages are presented in
the next section.

III. EXAMPLES OF USAGES OF THE SETCMAS
STACK

Three examples of usages of the setcmas stack are
provided. They illustrate several possibilities for teaching,
demonstrations, but also for research.

A. Teaching

The core of setcmas has been used in its initial versions
for two modules in the Control Engineering curriculum of
CentraleSupélec, graduate school of engineering in France.
These modules, given at Master 1 and Master 2 levels,
concern fleet control and control architectures of multi-agent
systems.
The controller architecture from setcmas has been used

5Note that although simulations can be launched from a Virtual Machine,
it is preferable to launch experiments from a Linux/ROS distribution
installed on a computer.

Fig. 6. Distributed consensus of 6 robots during practical work sessions
of a Control Engineering curriculum at CentraleSupélec [3], [13].

to make students experiment with Turtlebot3 ground mobile
robots and develop and validate in practice their own case
study (eg. exploration, target tracking, artistic performances
or games with robots, etc.) [3], [13]. The same paradigm
has been used to make students implement control laws in
pure Python scripts, and allow them to move from simulation
to experiments without any knowledge on ROS. A picture
of an experiment with 6 robots implementing a distributed
control law for consensus is presented in Figure 6. It has been
realized in the flight arena of CentraleSupélec, equipped with
an Optitrack motion capture system.

B. Demonstration during Workshop

The setcmas_simu package has been developed for the
Workshop ”Guidance, navigation and control strategies for
small-scale robotic platforms” at the 21st European Control
Conference in 2023 [14].
The objective was to provide attendees of the Workshop with
a Virtual Machine containing all the codes for simulation
of distributed control algorithms for small ground mobile
robots. The instructions to download, install and use the
Virtual Machine are available in an online document6. It
contains the previous version of the code made available
with this paper (package for experiments is not included).
Its packages are named ecc3_* instead of setcmas_*.
During the Workshop, presentation of how to implement
distributed control laws in the Python scripts has been done.
Different experiments have been made with the attendees
of the Workshop in the conference room equipped with
Qualisys motion capture cameras mounted on tripods (see
Figure 7). The following experiments have been done with 3
Turtlebot3 robots: leader-follower formation control based
on relative positions or distances, consensus, way point
navigation, trajectory tracking.

C. Research

The controller structure and codes for Way Point nav-
igation and leader-follower formation tracking of the
setcmas_ctrl package have been used along with the
configuration files of the setcmas_expe package to per-
form experiments in the context of a PhD thesis work.
A fleet of 5 Turtlebot3 robots has been used to perform

6http://bit.ly/ecc23_vm
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Fig. 7. Distributed formation control experiments with 3 robots in
a conference room during the Workshop on ”Guidance, Navigation and
Control Strategies for Small-Scale Robotic Platforms” at ECC 2023 [14].

formation navigation, playing the role of intruders in an area
monitoring scenario with a sensor network composed of low-
cost cameras mounted on tripods (see Figure 8). This reduce-
scale mock-up has been used to successfully demonstrate in
practice the performance of new distributed state estimation
algorithms. A link to the video of the experiments can be
found in [15].

Fig. 8. Distributed formation control with 5 robots in an experiment for
research work on distributed state estimation by sensor networks (picture
from [15]).

IV. CONCLUSIONS
This paper has presented a software stack named

setcmas which aims at facilitating simulations and experi-
ments in teaching control of multi-agent systems. It leverages
advantages of ROS, the Robot Operating System, but without
requiring any knowledge on it for teacher(s) or student(s)
using it. Implementation of control algorithms for multi-
agent systems is easily done via simple Python scripts.
It allows for simulations and experiments with Turtlebot3
mobile robots, and can easily be integrated into practical
work sessions of Control Engineering curricula.
Future work will concern update of the experiment package
to help working with low-cost localization systems (eg. based
on QR Codes, on-board sensors of the robots, etc.). Use
of the stack in other curricula dedicated to robotics will be
also considered. Collecting feedback from students and other
teachers is also intended, to evaluate further the stack and
its possible benefits for Control Education.
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