
An alternating peak-optimization method for optimal trajectory
generation of quadrotor drones

Wytze A.B. de Vries, Ming Li, Qirui Song and Zhiyong Sun

Abstract— In this paper, we propose an alternating opti-
mization method to address a time-optimal trajectory gen-
eration problem. Different from the existing solutions, our
approach introduces a new formulation that minimizes the
overall trajectory running time while maintaining the polyno-
mial smoothness constraints and incorporating hard limits on
motion derivatives to ensure feasibility. To address this problem,
an alternating peak-optimization method is developed, which
splits the optimization process into two sub-optimizations:
the first sub-optimization optimizes polynomial coefficients for
smoothness, and the second sub-optimization adjusts the time
allocated to each trajectory segment. These are alternated
until a feasible minimum-time solution is found. We offer a
comprehensive set of simulations and experiments to showcase
the superior performance of our approach in comparison to
existing methods.
A collection of demonstration videos with real drone fly-
ing experiments can be accessed at https://youtu.be/
SgHXavVu7rU.

I. INTRODUCTION

A quadrotor is a special type of unmanned aerial vehicle,
which has received significant attention in recent years owing
to its cost-effective design, ease of maintenance, and impres-
sive maneuverability. Due to these advantages, quadrotors
have found a wide range of applications, including envi-
ronmental monitoring [1], agriculture [2], and search and
rescue operations [3]. However, its operation with only four
independent thrust forces leads to an underactuated system.
The inherent nature of the quadrotor, compounded by its
complex nonlinear dynamics, strong coupling, and multi-
variable actuation, presents a significant challenge when one
seeks to optimize its motion for time efficiency [4].

Generally, time-optimal trajectory generation refers to the
challenge of pushing a quadrotor to its theoretical limits, en-
abling the most aggressive motion possible. Within existing
research, the continuous-time polynomials [5], [6], [7] serves
as a prevalent approach for planning quadrotor trajectories.
In particular, the trajectories are expressed as polynomial
functions of the quadrotor’s output variables, effectively
leveraging the quadrotor’s differential flatness property [5].
However, this approach has one major limitation, i.e., fixed

This work was supported in part by a starting grant from Eindhoven
Artificial Intelligence Systems Institute (EAISI), Eindhoven, the
Netherlands; in part by EU-Horizon2020 - Marie Skłodowska-Curie
Actions (MSCA SE) grant No.101086228.

The authors are with the Department of Electrical Engineering, Eindhoven
University of Technology, and also with the Eindhoven Artificial Intelligence
Systems Institute, PO Box 513, Eindhoven 5600 MB, The Netherlands.
{w.a.b.d.vries, q.song}@student.tue.nl
{m.li3, z.sun}@tue.nl

Fig. 1. Composite image of a single drone completing a trajectory generated
by the proposed peak-optimization method.

running time, where the trajectory’s overall running time is
predetermined and not optimized for achieving the shortest
possible duration, which means it is not time optimal. As
an improvement, a novel time-optimal trajectory generation
method is introduced in [8]. This method optimizes both the
overall running time and trajectory polynomials, resulting in
the generation of rapid and aggressive trajectories. However,
this method fails to take control input limits into account,
which is of great significance for many applications [9].
Furthermore, during the optimization process, it would stop
when encountering a local minimum or reaching the limit of
the maximum motor thrust. While this approach ensured that
the drone utilized its maximum performance at a particular
point in the trajectory, it did not guarantee the full utilization
of available performance throughout the entire trajectory.

In this paper, a novel time-optimal trajectory optimization
is formulated, and a peak-optimization approach is proposed
to address the time-optimal trajectory generation problem
within the framework of continuous-time polynomials. A
composite image of the drone flying in a physical world is
exhibited in Fig. 1, which showcases that our method can be
implemented on an actual flying platform. Different from the
formulation in [8], our proposed optimization involves mod-
ifying the cost function to focus on minimizing the overall
trajectory running time. While the polynomial coefficients
are constrained to satisfy smoothness requirements, they are
not optimized. Additionally, we explicitly set limits on the
motion derivatives as hard constraints in the optimization.
This guarantees that the generated time-optimal trajectories
are feasible and can be executed by a given platform.
To solve the optimization problem, an alternating peak-
optimization method is developed. Specifically, the new op-
timization formulation is divided into two sub-optimization
problems. For the first optimization problem, the overall
running time is fixed and then the polynomial coefficients are
deliberately selected to satisfy the smoothness constraints.
For simplicity, we employ Mellinger’s solution [5] directly
to generate smooth polynomial trajectories in our implemen-

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3260

tation, as they inherently satisfy the required smoothness
constraint. In the second optimization step, the polynomial
coefficients remain fixed, while the time allocated to each
segment of the trajectory is adjusted via a peak optimiza-
tion technique. This adjustment process changes the time
intervals between segments, ensuring that the control input
reaches its maximum limit, but does not exceed it to ensure
feasibility. To demonstrate the advantages of our approach
for generating time-optimal trajectories, our approach is
compared with the existing trajectory generation methods
through numerous simulation and experiment results via a
platform called Crazyflie [10].

The structure of this paper is as follows. In Section II,
we introduce the pertinent drone dynamics, explore the
concept of differential flatness, and provide a framework for
continuous-time polynomial trajectory optimization. The pro-
posed new method to optimize the segment times is presented
in Section III. Comparisons and performance of time-optimal
trajectories generated by different methods are evaluated in
Section IV. Experimental results of the proposed methods
are presented in Section V and the paper is concluded in
Section VI.

II. PRELIMINARY ON TRAJECTORY OPTIMIZATION

A. Polynomial trajectory optimization

When assessing the evaluation of a flat output variable
denoted as σ =

[
r, ψ

]⊤
, with the position r =

[
x, y, z

]⊤
,

within a time interval t = [0, τ] defined by a polynomial
P (t) connecting two points in the flat output space, each flat
output and segment trajectory are represented by a polyno-

mial P (t) =
N∑
i=0

pit
i. The optimization of the coefficients

for this polynomial can be achieved by minimizing a cost
function J given by:

J =

∫ t=τ

t=0

c0P (t)
2+c1Ṗ (t)

2+c2P̈ (t)
2+...+cNP

(N)(t)2dt,

(1)
where ci, i = 0, · · · , N denotes the weight of each derivative.
This allows minimization of the total speed, acceleration,
jerk, or snap present during the trajectory.

This cost function can be rewritten into a quadratic form
as

Jk = p⊤
k Qkpk, (2)

where pk is a vector that contains the coefficients of the
polynomial and Qk is the cost matrix. The computation of
the cost matrix in the quadratic form was explained in [8].
Since trajectories often consist of multiple segments, a more
comprehensive cost function is necessary to encompass all
coefficients and cost matrices. This extended cost function
can be succinctly expressed as:

J(p) =

p1

...
pK

⊤ Q1

. . .
QK

p1

...
pK

 , (3)

where p = [p⊤
1 , · · ·p⊤

K]⊤, and K denotes the number of
the polynomial segments. By concatenating the desired con-
straints on the initial and final derivatives of the polynomial,
we have a standard quadratic programming (QP) problem:

min
p

J(p) (4a)

s.t. Ap− b = 0 (4b)

where A and b are used to constrain the start, end or any
intermediate positions, velocities or other derivatives and is
also used to ensure continuity of any derivative.

B. Optimal trajectory with alternating optimization

The previously discussed method does not guarantee the
minimal possible cost for the given problem since the
segment times were initially fixed to construct the cost
function. A solution with lower costs could probably be
found by redistributing the time among the segments dif-
ferently. Hence, it becomes essential to optimize both the
time distribution and polynomial coefficients to achieve
the most cost-effective solution. Mellinger and Kumar [5]
(referred to as the “Mellinger method” hereafter) proposed an
alternating optimization approach to address this challenge.
This approach employs a gradient descent method, starting
with an initial estimate of the segment times and iteratively
optimizing the polynomial coefficients.

min
t

f(t) (5a)

s.t.

K∑
k=1

tk = T, (5b)

tk ≥ 0, (5c)

where f(·) is the cost function with the optimised coeffi-
cients, t = [t1, · · · , tK]⊤, and T is the total time.

C. Optimal trajectory with aggressive motion

An improved method to obtain aggressive motion was pro-
posed by Bry et al. [8] (hereon referred to as “Bry method”).
It removes the total time constrained in Eq. (5) so that the
total time would decrease. Then the optimization function
was reformulated so that both the polynomial coefficients
and the segment times are optimization variables. The cost
function was expanded and a cost was placed upon the total
time, which was described by

J =

p1

...
pK

⊤ Q1(τ1)

. . .
QK(τK)

p1

...
pK

+ ct

K∑
k=1

τk,

(6)
where ct is a weighting coefficient on the total time. This
would lead to an increase in total jerk or snap, but a
lower total time, which results in more aggressive and faster
trajectories. The weighting coefficient could be increased if
a more aggressive trajectory was desired and lowered if a
trajectory with less total snap was desired.

3261

It should be noted that the most aggressive and feasible
trajectory is inherently non-smooth and would therefore
not be achievable using continuous-time polynomial tra-
jectories. Some other form of optimization such as time-
optimal planning is required to achieve the most aggressive
trajectory possible as was demonstrated by Foehn, Romero,
and Scaramuzza in [4]. This approach does however require
a very complex and accurate model of the drone, while
the continuous-time polynomial trajectories require far less
information and are therefore easier to implement.

III. A NOVEL TRAJECTORY OPTIMIZATION
FORMULATION AND THE PEAK-OPTIMIZATION METHOD

In this section, we introduce a new time-optimal trajectory
formulation that prioritizes minimizing the overall trajectory
running time while preserving polynomial smoothness con-
straints. We also establish limits on the motion derivatives
as hard constraints, which ensure the feasibility of generated
time-optimal trajectories. To improve the efficiency of our
optimization approach, we propose the “peak optimization”
method, which splits the problem into two sub-optimization
steps. First, a continuously smooth trajectory with a fixed
time segment time is generated, followed by a an opti-
mization that optimizes the segment times using a gradient
descent approach. Then the two sub-optimizations are al-
ternated until a feasible solution is found that achieves the
minimal total running time.

A. A novel formulation of time-optimal trajectory optimiza-
tion

We define the most aggressive trajectory possible as the
trajectory that reaches all waypoints in the shortest time
while staying within the limitations of the drone. There
are multiple limitations that the feasible trajectories have
to respect, such as maximum thrust, aerodynamic drag and
the bandwidth of the low level controllers. These limitations
can be mathematically expressed in motion derivatives by
leveraging the property of differential flatness. Our goal
is to obtain a trajectory that is both time-optimal, smooth
and feasible. Therefore a new optimization formulation is
presented as follows

min
t,p

K∑
k=1

tk

s.t. ρs − ∥∂
srk(t)
∂ts

∥2 ≥ 0 ∀s,

Ap − b = 0,

(7)

where tk is the time duration of segment k = [1, · · · ,K], s
is the order of the motion derivative and ρs is the limit of
the sth motion derivative. Here, the cost is placed only on
the total time, but the constraints ensure the feasibility and
smoothness of the trajectory.

The solution to this problem would require that the time
and polynomial coefficients be optimized simultaneously.
This is however a very difficult problem to solve analytically
as it is non-linear and non-convex. Therefore we adopt the

alternating approach that was introduced by Mellinger as
discussed in Section II, splitting the optimization into two
sub-optimization problems involving the iterative optimiza-
tion of polynomial coefficients pk and segment times tk.
Specifically, we introduce the alternating peak-optimization
method in the next subsection.

B. Alternating peak-optimization approach

Generally, the alternating peak-optimization approach in-
volves splitting the optimization problem in Eq. (7) into two
distinct optimization processes.

1) First sub-optimization problem: For the first optimiza-
tion, the segment times are fixed and then the polynomial
coefficients are selected to satisfy the second constraint of
Eq. (7). Mellinger’s optimization as described in Eq. (4) is
used to generate a new smooth polynomial trajectory, as it
inherently satisfies the smoothness constraints.

2) Second sub-optimization problem: For the second op-
timization, the polynomial coefficients are fixed and the
segment times are then updated by solving the following
problem using gradient descent

min
t

K∑
k=1

tk

s.t. ρs − ∥∂
srk(t)
∂ts

∥2 ≥ 0 ∀s,

(8)

This is the same problem as Eq. (7), but with the second
constraint removed that was already satisfied by the first
sub-optimization problem. The segment times can either
be decreased to minimise the cost function of Eq. (7),
or be increased to ensure feasibility by satisfying the first
constraint of Eq. (7).

The complexity of checking the constraint of Eq. (8) can
be significantly decreased by reducing the time dependent
norm of the motion derivative to a single scalar per segment
by first computing the peak magnitude of each motion
derivative during each segment. This peak κk is normalised
with the limit ρs and calculated for each segment k by

κk(s) =
max(∥∂srk(t)

∂ts ∥2)
ρs

, (9)

where s ∈ {1, 2, 3, 4} as the motion derivatives up to the
fourth order are considered. Therefore κk > 1 when its limit
is exceeded and κk < 1 when it is below its limit. These
peak values are then used to update the current segment
times tk,old to the new segment times tk,new ensuring that the
trajectory is as close to its most restrictive limit as possible
using

tk,new = tk,old · (1− δ1 · (1−max(κk))), (10)

where κk = [κk(1), · · · , κk(4)]⊤ and δ1 is the first step size.
The step size was added as the shape of the trajectory (and
with it the shape its derivatives) will change in non-linearly
when the segment times are adjusted. Therefore the segment
times are adjusted in smaller steps during each iteration.
The step size can be increased to improve computational

3262

Fig. 2. Motion derivatives of an example trajectory.

efficiency, and reduced to ensure convergence. The two sub-
optimization problem are alternated until the segment times
can not be further reduced without violating the constraints.

C. Discussions on the alternating optimization and imple-
mentation

The effect of the proposed peak optimization will be
illustrated by comparing trajectories generated by an initial
guess of the segment times and the Peak optimization. Both
trajectories will have their polynomial coefficients optimized
for minimal jerk and their total time will be 8 seconds. The
set of waypoints selected for this comparison, as shown in
Fig. 4 was chosen for this example, because the quadcopter
has to manoeuvre a tight section at the start that will show
large values for jerk and snap, while the rest of the trajectory
requires a lot of acceleration and speed, but not a lot of jerk
and snap due to the long straight sections and gentle curves.
Fig. 2 shows motion derivatives of a trajectory generated
using an initial guess for the segment times. The initial
guess for the segment times is proportional to the euclidean
distance between the waypoints. The limits on jerk and
snap are exceeded during the first second, which will make
the trajectory infeasible. It is however far below any limit
during the latter 4 seconds of this trajectory. The figure
shows that the trajectory that is generated using the Peak
optimization method is feasible and over 2.6 seconds faster
than the infeasible initial guess. Fig. 3 show that it is done
by allocating more time to the tight and twisty first four
segments while reducing the segment times for the latter
segments. Therefore the large peaks in jerk and snap are
reduced for the first segments, and the acceleration and
speeds are significantly increased for the latter segments.

Remark 1. The acceleration is limited by the thrust the
drone is able to produce. Due to gravity, the drone is able
to accelerate slower in the positive z direction and faster
in the negative z direction. Therefore κk(2) from Eq. (9) is
adjusted to make it represent the mass normalised force that
the drone has to produce to execute the trajectory. This is

Fig. 3. Iterative optimized segment times of an example trajectory.

Fig. 4. Iterative optimized example trajectory.

therefore represented by

κk(2) =
max(

√
(∂

2xk(t)
∂t2)2 + (∂

2yk(t)
∂t2)2 + (∂

2zk(t)
∂t2 + g)2)

ρs
,

(11)
where g is the gravitational constant.

Remark 2. The continuity constraints make the solution of
a segment depend on its neighbouring segments. Therefore it
would be beneficial to not only ajust the segment time during
the current segment, but also its neighbouring segments. This
is done according to

tk±1,new = tk±1,old · (1− δ2 · (1−max(κk))), (12)

where δ2 is the second step size.

Remark 3. Increasing the segment time does not guarantee
a decrease in all of the motion derivatives. This can be
solved by scaling all the segment times uniformly when any
of the limits are exceeded. This preserves the shape of the
trajectory, while uniformly lowering all the derivatives. This
is done according to

tnew = told · (1− δ1 · (1−max(κ))), (13)

where tnew and told are vectors of all the new and old
segment times respectively, and κ = [κ1, · · · ,κnsegments] is a
matrix of all the limit normalised peak values for all motion
derivatives and all segments.

IV. COMPARISON IN SIMULATION

The peak optimization method was implemented and
compared to Mellingers method and the initial guess. The
waypoints and initial total times are the same as described in
the previous sections. The trajectories shown were generated

3263

Fig. 5. Comparison of minimum jerk (left) and minimum snap (right)
trajectories.

Fig. 6. Motion derivatives of minimum jerk (left) and minimum snap
(right) trajectories.

to achieve the lowest total running time and were validated
to be feasible during experiments which will be discussed in
the next section. The limits for the peak optimization method
are difficult to obtain analytically due to the large complexity
of the system. Therefore these limits were determined exper-
imentally. All trajectories used fifth order polynomials. The
method proposed by Bry et. al. was not taken into account as
the code available through the UAV toolbox from MATLAB
[11] could not be used as it returns a 10th order polynomial
while the Crazyswarm system uses 8th order polynomials.

A. Minimum jerk trajectories

The peak optimization was generated using the limits of
5 m/s, 14 m/s2, 58 m/s3 and 400 m/s4 and resulted
in a total time of 5.3 seconds. The Mellinger optimization
used a total time of 6.8 seconds, and the initial guess used
a total time of 7.8 seconds. All the resulting trajectories
are shown in Fig. 5. The peak optimization methods shows
lower magnitudes of speed, acceleration, jerk, and snap
during the first seconds compared to the other methods
as shown in Fig. 6. However these magnitudes decrease
significantly after that for the initial guess and the Mellinger
optimization, while the magnitudes for the peak optimization
are significantly higher. The reason for this can explained
with the segment time distribution as shown in Fig. 7. The
peak optimization allocates significantly less time to the
latter segments and more time to the first four segments.

Fig. 7. Segment time distribution of minimum jerk (left) and minimum
snap (right) trajectories.

Here it is also shown that the time segment distribution
from the Mellinger optimization does not differ greatly from
the initial guess. It should be noted that the Mellinger
optimization is reliant on a good initial guess as it does not
give guarantee of global optimality due to its gradient descent
based approach. The maximum speed reached with peak
optimization is 95% and 96% higher than the initial guess
and the Mellinger optimization respectively. This results in
a theoretical reduction of the total time by 32% and 21%
compared to the initial guess and the Mellinger optimization
respectively.

B. Minimum snap trajectories

The results are similar for when the polynomial coeffi-
cients are optimised for minimum snap. Here, the limits of
5 m/s, 13.7 m/s2, 58 m/s3 and 400 m/s4 were found
to be feasible and resulted in a total time of 5.9 seconds.
The Mellinger optimization used a total time of 7.3 seconds,
and the initial guess used a total time of 7.8 seconds, these
trajectories are all shown in Fig. 5. The peak optimized
method is again able to generate a faster feasible trajectory by
allocating significantly more time to the first four segments
and less to the latter segments as shown in Fig. 7, therefore
operating significantly closer to its limit for the second half
of the trajectory as shown in Fig. 6. The peak optimization
methods generates a shorter total time than the initial guess
and the Mellinger method by 24% and 19% respectively.

V. IMPLEMENTATION AND RESULTS

The trajectories shown in the previous section were flown
using the crazyswarm [12] package combined with the
VICON motion capture system and the Crazyflie 2.1 drones.
The position controller used was the Mellinger controller [5]
and a Kalman filter was used for state estimation. The mo-
tion derivatives are calculated by differentiating the position
recorded by the VICON system, which was sampled at
100Hz, and smoothed using a 5 point averaging filter for each
differentiation step. More results were shown and discussed
in [13].

A. Minimum jerk trajectories

The peak optimised trajectory, where the polynomial
coefficients were optimized for minimum jerk was 15%
faster than the Mellinger optimization and 25% faster than
the initial guess. The total times are summarised in Table
I and the motion derivatives are shown in Fig. 8. The

3264

Fig. 8. Experimental results, motion derivatives of minimum jerk (left)
and minimum snap (right) trajectories.

generated trajectories are used as a time dependent reference
point in space and the drone uses a cascaded PID position
controller, combined with a feed forward term to track this
reference. The drone starts to lag behind over time when
very aggressive trajectories are used, which results in non-
negligible position error. The RMS position errors were
13.1 cm, 13.0 cm and 10.2 cm for the peak optimization,
Mellinger optimization and the initial guess, respectively.

B. Minimum snap trajectories

As indicated by Table I, the peak optimised trajectory
is 16% faster than the Mellinger optimization and 20%
faster than the initial guess when the polynomial coefficients
are optimized for minimum snap. Fig. 8 shows that the
differences between the time optimization methods are sim-
ilar as when the polynomial coefficients were optimised for
minimum jerk. The RMS errors are 11.2 cm, 8.4 cm and 9.2
cm for the peak optimization, Mellinger optimization and the
initial guess respectively.

TABLE I
TIME TAKEN TO COMPLETE THE FULL TRAJECTORY.

Minimised derivative / segment times
optimization method Jerk [s] Snap [s]

Initial guess 8.09 7.95
Mellinger optimization 7.16 7.6
peak optimization 6.09 6.37

C. Discussions

It can be concluded from the previous section that the most
aggressive trajectories possible with the discussed methods
can be generated using the peak optimization method where
the polynomial coefficients are optimised for minimum jerk.
The peak optimization does not guarantee feasibility while
providing the most aggressive trajectories possible as differ-
ent limits for acceleration and jerk had to be used for jerk
optimized and snap optimized trajectories. It is not possible
to give a guarantee of feasibility when flying on the limit due
to the thrust being coupled to both the acceleration and the

snap. The limits also change over time due their dependency
on the state of charge of the battery and external factors
such as wind. However, when it is not required to obtain
the most aggressive trajectory possible, the limits could be
lowered and generate a guaranteed feasible trajectory, this
would also lower the RMS position error.

VI. CONCLUSION

A new optimization method for time-optimal trajectory
generation under the framework of continuous-time polyno-
mials approach was presented. This new method focuses gen-
erating minimal time feasible trajectories. This is achieved
by optimising the segment times and polynomials in an alter-
nating fashion. It generates trajectories that are consistently
close to the limits of the drone for each motion derivative
up to the fourth order, which are directly linked to the
control inputs by differential flatness. The new and existing
methods were implemented in simulation and proven by real
world experiments using the Crazyflie platform. The peak
optimization can achieve the lowest total running time for
all the compared continuous time polynomial optimization
methods.

REFERENCES

[1] S. S. Mansouri, C. Kanellakis, E. Fresk, D. Kominiak, and G. Niko-
lakopoulos, “Cooperative coverage path planning for visual inspec-
tion,” Control Engineering Practice, vol. 74, pp. 118–131, 2018.

[2] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial
systems for precision agriculture: a review,” Precision agriculture,
vol. 13, pp. 693–712, 2012.

[3] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair,
I. L. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully
autonomous UAV: Research platform for indoor and outdoor urban
search and rescue,” IEEE Robotics & Automation Magazine, vol. 19,
no. 3, pp. 46–56, 2012.

[4] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p.
eabh1221, 2021.

[5] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, 2011, pp. 2520–2525.

[6] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[7] G. Ryou, E. Tal, and S. Karaman, “Multi-fidelity black-box optimiza-
tion for time-optimal quadrotor maneuvers,” The International Journal
of Robotics Research, vol. 40, no. 12-14, pp. 1352–1369, 2021.

[8] A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of
fixed-wing and quadrotor aircraft in dense indoor environments,” The
International Journal of Robotics Research, vol. 34, no. 7, pp. 969–
1002, 2015.

[9] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[10] G. Silano, E. Aucone, and L. Iannelli, “CrazyS: a software-in-the-
loop platform for the crazyflie 2.0 nano-quadcopter,” in 2018 26th
Mediterranean Conference on Control and Automation (MED). IEEE,
2018, pp. 1–6.

[11] Mathworks, “UAV toolbox,” 2024, https://nl.mathworks.com/help/uav/
index.html?s tid=CRUX lftnav [Accessed: 15-3-2024].

[12] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2017, pp. 3299–3304.

[13] W. A. B. de Vries, M. Li, Q. Song, and Z. Sun, “An alternating peak-
optimization method for optimal trajectory generation of quadrotor
drones,” 2023, https://arxiv.org/abs/2312.02944.

3265

