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Concurrent Li-ion Battery Parameter Estimation and Open-Circuit
Voltage Reconstruction via L1-Regularized Least Squares

Yang Wang, Riccardo M.G. Ferrari and Michel Verhaegen

Abstract— Identification of lithium-ion (Li-ion) battery mod-
els is essential for enhancing the operation of electrical vehicles.
This paper develops a novel approach for estimating the
equivalent circuit model (ECM) of Li-ion batteries and recon-
structing the open-circuit voltage (OCV) and state of charge
(SOC) relationship. We formulate the OCV-SOC relation as
a piecewise affine (PWA) function and estimate its coefficients
and the Markov parameters (impulse response) of the ECM via
l1-regularized least squares. The state space model of the ECM
is derived through the Ho-Kalman algorithm. Experiments with
simulated and real-life battery data demonstrate the method’s
effectiveness and advantages with respect to the state of the art.

I. INTRODUCTION

Electrical vehicles (EVs) have become indispensable in
the quest for sustainable transportation [1] [2]. Lithium-ion
(Li-ion) batteries, owing to their high energy density, effi-
ciency, and extended service life, have been widely adopted
in EVs [3]. To guarantee application safety and optimize
performances, an accurate battery model is fundamental.

Equivalent circuit models (ECMs), owing to an attractive
balance between accuracy and computational costs, have
been widely used [4]. ECMs emulate electrochemical dy-
namics by interconnecting elements such as resistors, capac-
itors, and voltage sources. This approach avoids the use of
expensive Partial Differential Equation (PDEs), leading to a
low-order system of Ordinary Differential Equations (ODEs).

Identification of the ECM dynamics presents known chal-
lenges, such as distinct timescales, parameter dependency
on battery aging and working conditions, and the nonlinear
relationship between the cell’s open-circuit voltage (OCV)
and the state of charge (SOC). The OCV-SOC relationship
is instrumental in the on-line estimation of the SOC [5]: how-
ever, the OCV is not measurable during battery operation.

One solution is to conduct dedicated, static tests to de-
termine a set of OCV-SOC value pairs. The remaining
part of the model can then be identified via linear system
identification techniques, such as subspace methods [6], [7].
These approaches, however, are time-consuming as they
require extended cell resting time [8]. In addition, the OCV-
SOC relation depends on temperature and the cell’s aging.

To tackle these issues, online OCV estimation was pro-
posed. In [5], [9], for instance, recursive least squares (RLS)
are used to track the OCV value during battery operation.
These approaches, however, assume the OCV value to be
constant across consecutive sampling instants, leading to an
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oscillatory estimation and being sensitive to measurement
noise.

Contributions: In this paper, we develop a novel approach
for ECM parameter estimation and OCV-SOC reconstruction
using cells’ operational data, without the need for dedicated
OCYV tests. We formulate the OCV-SOC relationship as a
piecewise affine (PWA) function. The PWA coefficients,
along with the Markov parameters [10] of the ECM linear
part, are jointly identified by solving an [;-regularized least
squares problem [11]. With the obtained Markov parameters
we derive the state space model of the ECM using the Ho-
Kalman algorithm [12]. The effectiveness of the developed
method is verified on a simulated battery cell and the fidelity
of the OCV estimation is compared to that of existing RLS
methods. Our approach is further demonstrated on real-life
cell data from simulated EV driving conditions.

The rest of the paper is structured as follows. Section II de-
scribes the ECM of Li-ion batteries and the PWA formulation
for OCV-SOC reconstruction. Section III presents our param-
eter estimation approach. Section IV verifies the proposed
method on a simulated and on a real NMC/Graphite Li-ion
cell. Finally, Section V gives some concluding remarks.

Notations: Throughout this paper, we use the following
notations. AT is the Moor-Penrose pseudo-inverse of A. |||,
||-l1, and ||-||2 are, respectively, the Frobenius norm, /; norm,
and l> norm. Operator o is the element-wise product. diag(-)
returns a diagonal matrix. We use Z] to denote the set {7,7+
L....jhand z(k: k+1) = [z(k), 2(k+1),...,2(k+1)]T
to denote a collection of samples (k) from time & to k + [.

II. LITHIUM-ION BATTERY MODEL

In this work, we employ the widely used second-order
Thevenin model as the ECM for Li-ion batteries, as shown
in Figure 1. This model consists of an ideal voltage source
Voe, an ohmic resistor Ry, and two resistor-capacitor (RC)
circuits. v, represents the open-circuit voltage (OCV) of
the cell and the voltages vy, v across the two RC circuits
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Fig. 1. Second-order Thevenin model
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emulate the diffusion voltages caused by the polarization
process of the battery. 4 is the load current and v, is the
terminal voltage. The current direction is positive when the
cell is being charged. With zero-order hold discretization, we
write the ECM dynamics in the following discrete-time state
space representation,

x(k+1) = Az(k) + Bu(k) W
y(k) = Cx(k) + Du(k) 4 voc(k)
where the state x = [vl vg]T € R? is the vector of
diffusion voltages; the input u = ; and the output y = vy
are respectively the load current and the terminal voltage.
Matrices A € R?*2 and B € R? are the state and the input
matrices of the model,

— TS
e T 0

A=  B=

Ri(1—e ™t )]
Ts Ts )

0 e Rz Ro(l — e B202)

and C' = [1 1] € R? and D = Ry are the output matrix
and the feed-through term. 7 is the sampling time of the
measured data. The OCV is a static nonlinear function of
the state of charge (SOC). The SOC describes the amount
of charge in a cell relative to its total capacity. It can be
computed by integrating the current in discrete time as

nTs .

* 3600 x Q“’(k)

where z € [0,1] is the SOC, n € (0,1) is the charge-
discharge efficiency and () € R™ is the total capacity of the
battery cell in Ampere-hours (Ah). Multiplication by 3600
converts Ah to Coulombs. Throughout this paper, we make

the following assumption about the values of 7 and ) and
the ambient temperature during battery operation:

z2(k+1) = z(k) 2

Assumption 1 The charge-discharge efficiency 0 is approx-
imated to one and the total capacity Q) equals the nominal
capacity. We assume a constant ambient temperature during
battery operation throughout this study.

This assumption is commonly adopted in the literature [13]
[14] as the efficiency of Li-ion batteries is typically high
(over 98%) [15], and the identification is performed for a
fresh cell in a short time of the battery life, which does
not cause significant changes in capacity relative to its
nominal value. The ambient temperature is kept constant for
simplicity and can be achieved using a thermal chamber in
which the cell is operated. We furthermore assume that:

Assumption 2 ECM parameters are constant for the SOC
range from 20% to 80%.

The last assumption is supported by the fact that the pa-
rameter variation within this range is negligible [7] [13].
Nevertheless, we will estimate the ECM parameters that best
represent the overall behavior of battery cells in the mean
square sense within this SOC range.

To reconstruct the OCV-SOC function, we formulate the
OCYV as a piecewise affine (PWA) function of the SOC as

Voo = ch(2) + ¢l (2) x 2, j € Z, 3)

where coefficients ¢, ¢} € R are piecewise constants that
depend on z, and | € ZT is the number of segments that
can be designed by the user. This formulation allows for
incorporating the prior knowledge that OCV has a functional
dependence on the SOC into our identification framework to
provide an enhanced OCV estimation.

The battery modeling problem aims to estimate the system
matrices (A, B,C, D) of the ECM (1) and the piecewise
constant coefficients ¢}, c], j € Z' in (3) using the input-
output measurements of the cell. The estimation method is
stated in the next section.

III. BATTERY MODEL IDENTIFICATION

The estimation of the system matrices (A, B,C, D) and
the PWA function coefficients ¢, c] is twofold: first, we
identify the Markov parameters [10] of the ECM and the
affine function coefficients ), ¢] by solving an [y -regularized
least squares problem [11]. Second, the system matrices are
retrieved from the identified Markov parameters using the
Ho-Kalman algorithm [12] and suitable matrix transforma-
tions [16].

A. Estimation of the Markov parameters and OCV function

Based on the state space representation (1), the output at
time k can be written as the convolution between the Markov
parameters and the past inputs u(k — p : k) as

p—1
y(k) = CAPx(k —p) + ZCAi’Bu(k —i—1)+
i=0
Du(k) 4 voe(k) 4)

where p € Z7 is the length of the past time window. Since
the battery system is stable, the first term C APz (k — p) in
(4) converges to zero as the time window p goes to infinity.
For a sufficiently large p, we can approximate y(k) by
p—1
y(k) ~ > CA'Bu(k —i— 1) + Du(k) + voc(k).  (5)
i=0
This formulation decouples the dynamics of the ECM and
the OCV value, enabling a separate treatment for each com-
ponent, yielding a convenient design for OCV estimation.
With the output equation defined in (5), we formulate a
data equation covering the future time window as

Ym = UmG + Voc (6)

where Y,,,, Vo € R™T are sequences of y(k) and v,.(k),

y(k +p) Voc(k + p)
v ylk+p+1) Voc(k +p+ 1)
y(k+p+m) Voc(k +p +m)
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Uy € RMHDX(P+1) i5 the Hankel matrix of u(k),

u(k) u(k+1) u(k +p)
_ u(k +1) u(k +2) u(k+p+1)
u(k+m) u(k—&-.m—i—l) u(k—%—b—l—m)

and G € RP*! is the vector of Markov parameters,

Gww=[D CB CAB cAar-B]", (@)

where subscript “rev”’ denotes reversing the blocks (with D
at the end) to align with the notational convention in system
identification. The data sequence starts with time &k + p such
that the responses of unknown inputs and states before time
k are negligible. In the data equation (6), both G and V.
are unknown parameters. To estimate them, we formulate the
following least squares problem,
m‘l/{lp Hy;n - U’rnG - ‘/OCH%' (8)

By solving this problem, the Markov parameters G' can be
directly identified, while the estimation of V. in this form
may overfit the measurement noise and be less accurate.

To provide a more robust estimation, we incorporate the
prior knowledge that OCYV is functionally dependent on the
SOC into V,. using the PWA function (3). Since the PWA
function is defined over SOC and the V. is defined over
time, we operate the data sequences such that each SOC point
has a unique pair of coefficients regardless of when it appears
in time. To do so, we compute a SOC sequence Z,,, € R™t!
with (2) that covers the same interval as Y,,,, and then we sort
it in descending order into Z:' € R™. Now we define the
vectors of the PWA coefficients, C§',, (2), O, (2) € R™*1,
in (3) for the ordered SOC Z5! for estimation. This ensures
that each pair of coefficients corresponds to a unique SOC
point in Z$! (see Remark 1). By restoring the sequence order,
we can convert Cgt,, Ct", back into the original order of
Zm, aligned with that of the time sequence of V,.. This
procedure results in the V. as

Voe = 1es{C{",,(2)} +1es{C5",,(2)} 0 Zpm, )

where res{-} is the restoring operation that converts the
vector into the original order of Z,,. This can be achieved
by using the sorting index of Z35!.

Remark 1 In this formulation, we assume that the values
of SOC in Z,, are unique. If there exist repeated SOCs,
one can first remove the repetitions and define the coefficient
vectors for the unique SOC sequence. Then, replicate those
that correspond to the same SOCs in their original positions
to retrieve the coefficient vectors of the length of Z,,.

To enforce the coefficients in C§',,, Cf",, to be piecewise
constant, we employ [ -regularization to the finite differences
of ¢,c] to impose that most differences are zeros. Since
in this formulation, the PWA coefficients ¢, ] for each
SOC are considered one unknown parameter, i.e., the OCV-

SOC is an m + 1 pieces affine function, solving for the

coefficients can be computationally expensive for large data
sequences. To speed up the computation, we reduce the
number of free variables by partitioning the OCV-SOC
function into a smaller number of segments and then apply
the [;-regularization on the reduced vectors of coefficients.

To formulate this, we write C§? and C}? . as

Com(2) = PaCii(2), C1lp(2) = PyCii(2),
where Cg(2),C3(2) € R, I < m + 1 are the reduced

vectors of coefficients, and P, € R™+1xL g a block diagonal
matrix

(10)

L
Pq: ’
L

Y

where L = [1,...,1]T € RY is a vector of ones, and

q € Z* is the length of each segment'. Formulation (10)
ensures that the entries in the j-th segment of C¢’ ., C}",,
are all equal to the j-th element of C3f, C3%. The length
decides the number of segments for partitioning the OCV-
SOC function. A larger number gives a denser approximation
to the true function while raising a higher computational cost
for estimating the coefficients.

With the V. formulated in (9)(10), we extend (8) into an

l1-regularized least squares problem as
HgHHYm — UG — 1es{P,C34} — res{P,C{"} © Z |7
+ADEFA + A2 DCT (12)

where © := {G, C§, C;',} is the variable set (dependency
of C§h, C5%, on SOC is omitted for simplicity), A1, Ao € R
are weighting factors for regularization and D € R!=1*!
is a finite difference matrix that computes the differences
between consecutive elements of the vector
1 -1

D= _ 13)
1 -1
The weighting factors A1, Ay control the sparsity of vectors
DCgY, and DCYY, ie., the number of zeros of the elements,
and thus the rate of change of the coefficients over SOC. A
small regularization factor allows for better tracking of the
variation but can lead to weaker enforcement of the piecewise
constant property.

B. System matrix realization using the Ho-Kalman algorithm

The Ho-Kalman algorithm is a systematic procedure for
deriving a state space realization (A, B, C, D) from Markov
parameters [12]. This method is robust to measurement noise
and has an analytical solution that helps avoid potential
pitfalls of local minima and convergence issues.

Let (G be the estimated Markov parameters, then we

UIdeally, g is the quotient of (m + 1)/, and if m + 1 is not divisible by
[, one can put the remainder as an extra length to the last column of Py.
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construct a Hankel matrix H € RST1XP+1 of G as

CB CAB CAMB
. CAB CA2B CAM1B
H= ) . . ) . (14)
CA*B CAs'B CAs+h B

Let H+ be the rightmost h block columns of CABin H s
H~ be the leftmost h block columns in H , and L be the
best rank-n approximation of H~ obtained via singular value
decomposition (SVD), i.e.,

L=0U,V", (15)
where
O A N A AL

and ¥, € R™" is a diagonal matrix containing the n
largest singular values of H~.Let O, and C, be respectively,
the s extended observability and h extended controllability
matrices,

A7)
(18)

Cas] ",
Arp).

O.=[C Ci

6= [B AB
Since H is the product of O, and C;, and with L being an
appr0x1mat10n of H, we estimate O, and Cj, using (15) as

= (U581 ~ 0,6, (19)

From the estimated (’)5, Ch, and G matrices, we can find a
system realization (A4, B, C, D) of the ECM (1) as: Dis the
first element of Grev, C is the first 1 x 2 block of (98, B is
the first 2 x 1 block of Cy; and A = OTH*C].

C. Matrix transformations for system realization of ECM

The obtained system realization in the previous section
is unique up to a similarity transformation [17]. To obtain
system matrices having the same structure as the ECM in
eq. (1), we perform matrix transformations on the estimated
state space realization [16]. First, we conduct an eigenvalue
decomposition on A as

A=VAV~T, (20)
where A is a diagonal matrix containing the eigenvalues of
A. Substituting Ain the estimated state space realization (1)
constructed with (A, B , C , D) with (20), and left multiplying
V=1, we have

V7 le(k4+1) = AV rz(k) + V! Bu(k)
y(k) = (CV)V " a(k) + Du(k).
By letting z = V~'z(k), B = V!B and C = CV, we

obtain a state space model that yields the same input-output
behaviors,

2L
(22)

Az (k) + Bu(k)

= (23)
y(k) = Cz(k) + Du(k).

(24)

Then, we apply a matrix transformation with W = dlag(C)
to the previous model such that z = Wz, A = WAW !,

B = WB, C = CW~'. W is invertible as the ECM is
observable and the 1dent1ﬁed model preserves the observ-
ability, and thus we have C' = cv # 0. Now we obtain an
equivalent state space model in the input-output behaviors as

i(k +1) = Az (k) + Bu(k) (25)
y(k) = Ci(k) + Du(k). (26)
In this model realization, we have C' = [1, 1], and A is a

diagonal matrix, which aligns with the structure of the state
space model of the ECM (1). This allows us to retrieve the
physical parameters. In the next section, we demonstrate the
effectiveness of the developed method for ECM identification
and OCV-SOC reconstruction in simulation experiments and
with real-life cell data.

IV. NUMERICAL EXPERIMENTS WITH SIMULATED AND
REAL-LIFE BATTERY DATA

To illustrate the effectiveness of the developed method for
ECM identification, we apply it first to a simulated cell and
then to real-life data. The dataset used in this simulation is
from the CALCE dataset [18].

A. Experiment on a simulated model

We constructed a simulated cell with the following elec-
trical elements which represent an NMC/Graphite Li-ion cell
as reported in [19],

Ro=007Q, R =0029Q, Ro=0.019,

C1 =500 F, Cy=10000 F. (27)

These elements correspond to a state space representation of
the ECM (1) as

4 [09048 0 5_ [ 00019
T 0o 09900]° 77 [9.9502e — 05

c=[1 1], D =0.07.

To demonstrate the effectiveness of the PWA function for the
OCV-SOC reconstruction, we simulated a piecewise affine
OCV-SOC function (3) with the following coefficients,

co € {3.14,3.24,3.22,3.47,3.52, 3.47, 3.38, 3.26}
c1 € {0.99,0.86,0.89,0.39,0.27,0.44, 0.88, 2.04}.

These coefficients are obtained from the incremental OCV
test, which measures the OCV-SOC value pairs, for a Li-
ion cell recorded in the CALCE dataset by connecting the
value pairs with a piecewise affine function. The input to the
simulated model is the Dynamic Stress Test (DST), which
emulates real-life loading conditions of batteries [18], and
the output of the simulation is added with white noise with
a standard deviation of 5e — 4. The simulated input is shown
in Figure 2.

In this simulation, the /;-regularized least squares problem
(8) was solved in Matlab using the CVX [20] toolbox with the
Mosek [21] solver, commonly used for large-scale optimiza-
tion problems. We set the number of piecewise segments (10)
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Fig. 3. Output fitting to the simulated data

1 =20, and let \; = 5e —4, Ao = le — 4, and p = 300. The
sampling time T is 1 second according to the measurements
in the CALCE dataset. We evaluated the performance of the
estimation with the Root Mean Square Error (RMSE) and
the Variance-Accounted-For (VAF) metrics defined as

_ lly(k) = 9(R)ll2
RMSE = \/ﬁ
=30 lly(k) — @(k)II%)
D DA 11051/

where N € R™ is the data length. VAF has a value between
0% and 100%; A higher VAF indicates a better fit to the
measured data [10].

VAF := (1 —

The performance of the output fitting is shown in Figure
3. The RMSE [V] of the fitting is 5.84e — 04 and the VAF
is 99.99%, indicating a sufficient estimation. Figure 4 shows
the estimated Markov parameters on a logarithmic scale. We
show the first 30 elements as the later terms are near zero and
sensitive to estimation errors. These errors, however, have
limited influences on the identified dominant dynamics.

From the identified Markov parameters, we derived the
ECM system matrices using the Ho-Kalman algorithm (Sec-

% Estimated parameters
2 107%F True parameters E
5

= 10-3

. L _
=

-

CS A

= 1074k . . . . .

5 10 15 20 25 30
Parameter index

Fig. 4. Markov parameter estimation
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o A ¥ 37
S 36F B 1
/' 3.65 r-"—_‘—‘l‘
3.4 L L L L 3.64U L 75— 50
10 20 30 40 50 60 70 80
SOC [%)]
Fig. 5. OCV estimations of the developed and the RLS methods
3.4+ E
RS
Estimated coefficient
3.2F Simulated coefficient 4
110 20 30 40 50 60 70 _80
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Simulated coefficient
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Fig. 6. Estimation of coefficients of piecewise affine OCV function

tion III-B) and matrix transformations (Section III-C) as

: [0.9026 0 . 0.0018
A= [ 0 0.9882} » B= [1.3841e - 04}
c=[ 1], D =0.071.

These estimations are consistent with the true parameters
with only minor errors.

In the following, we illustrate the effectiveness of the
OCV-SOC reconstruction and compare it to the conventional
RLS method [5] [9]. The forgetting factor of the RLS method
was 0.97. This value was selected in favor of the algorithm
to have a balanced performance between tracking speed and
oscillation.

Figure 5 shows the reconstructed OCV-SOC function for
both the developed and the RLS methods. We see that the
developed method generates a smoother and more robust
estimation compared to that of the RLS method.

To examine more closely the effectiveness of the PWA
formulation for the OCV-SOC function, we show in Figure
6 the PWA coefficients, which present a good alignment with
that of the ground-truth parameters.

From this simulation experiment, we verified that the
developed identification method can effectively estimate the
second-order ECM parameters and reconstruct a smoother
OCV-SOC function.

B. Experiment with real-life battery data

In this section, we apply the developed method to real-life
battery data. The battery measurements are from the CALCE
dataset collected on a LiNiMnCo(NMC)/Graphite Li-ion cell
with an 80% initial SOC under the FUDS test at 25°C. The
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Fig. 7. Output fitting to the measured data and the OCV estimation during
the FUDS test at 25 °C

number of OCV-SOC segments was selected as [ = 20, and
the regularization weighting factors were A\; = 2e — 6, Ao =
le — 6. We evaluated the model performance based on the
output fitting and the OCV-SOC reconstruction due to the
lack of ground-truth battery parameters. Figure 7 presents the
estimated output and the reconstructed OCV-SOC function of
the identified model. The RMSE [V] of the estimated voltage
is 0.0016 and the VAF is 100%. The estimated OCV-SOC
function is compared with the RLS method and measured
OCV-SOC value pairs obtained from the incremental OCV
test in the CALCE dataset. This comparison shows that the
developed method presents an improved estimation than the
existing RLS method and is consistent with the tested cell.

The estimated ECM parameters of the battery cell under
test are

; [0.9616 0 . 0.001
A= { 0 0.7013} » B= {4.114& —~ 04}
C=1[ 1], D = 0.0711.

The estimation results demonstrate that the identified cell
model is effective in predicting the cell’s output voltage
and reconstructing a smooth and adequately accurate OCV-
SOC function, which is the most crucial component for SOC
estimation required by a battery cell model used on EVs.

V. CONCLUSIONS

In this work, we developed a novel approach for ECM
parameter estimation and OCV-SOC reconstruction for Li-
ion cells. The OCV-SOC relation was formulated as a
piecewise affine function and estimated simultaneously with
the Markov parameters of the ECM by solving an ;-
regularized least squares problem. The state space model of
the ECM was retrieved from the identified Markov param-
eters using the Ho-Kalman algorithm with suitable matrix
transformations. We showed in simulation experiments that
the developed method can effectively estimate the ECM
parameters and provide a smoother OCV-SOC reconstruction
compared to the conventional RLS method. The developed

method was employed on real-life battery data to derive a
cell model. Future work will consider temperature and SOC-
dependent ECM parameters.
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