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Abstract— Computing the maximal (robust) positive invari-
ant (M(R)PI) set for linear dynamics and a polyhedral con-
straint set is well-known in the literature but, the effects
and limitations of the different methods employed are not
sufficiently clear, especially for high dimensional systems.

In this paper we propose a systematic analysis of the
existing techniques as well as the application of new ideas to
accelerate the computation of the MPI set. This includes new
stop conditions for the set recurrence that spans it. We analyze
and compare these variations over a dynamical system whose
dimension can be arbitrarily increased to draw conclusions
about their relative strengths and weaknesses.

Index Terms— maximal positive invariant set; half-space
description; minimal representation; model predictive control

I. INTRODUCTION

The Model Predictive Control (MPC) algorithm is widely
used in academia and industry because of its capacity to ex-
plicitly account for constraints, cost and model nonlinearities
[1]. Arguably, the main theoretical difficulty with MPC is to
the ensure stability and recursive feasibility [2], [3].

To ensure these properties, modern approaches require a
triplet of local controller, terminal cost and terminal set [4].
For the later, the maximal positive invariant (MPI) set is the
usual choice (for the the robust case, its counterpart, the max-
imal robust positive invariant (MRPI) set is used). Computing
it entails significant effort: the time required to obtain it, the
memory required for storing, and the computational burden
added in the constrained optimization problem associated
with the MPC algorithm [5]. It is worth mentioning that there
are approaches which try to avoid the inherent complexity of
the MPI computations. E.g., by working with implicit forms
via a sequence of sets [6], by fixing the complexity [7] or,
even, by prolonging the prediction horizon sufficiently such
as to avoid the need of a terminal set [8], [9]. Needless to say,
the difficulties of considering nonlinear dynamics increase
exponentially with few existing results in the literature [10].

While the standard recurrence sequence which provides
the MPI set in the linear case is both conceptually simple
and well-understood [6], [11], it is not always clear which
particular variant is superior in what regards computation
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time and complexity of representation. Specifically, we have
identified several common shortcomings:

i) the stop condition in the MPI set recurrence is given as
a set inclusion test; checking it, if not done efficiently,
can be extremely cumbersome;

ii) often the sets involved are symmetric w.r.t. the origin,
fact which is not exploited in the state of the art;

iii) the different implementations give MPI sets which often
have redundant descriptions; this makes them difficult
to store and to integrate into the MPC scheme.

We tackle these issues through the following elements:

i) we use a variant of Farkas’ Lemma to check set in-
clusion using only their half-space descriptions (as has
been done in a different context, e.g., in [12], [13]);

ii) we exploit the sets’ symmetry to reduce the computation
time via a simplified linear program which uses the
cross-polytope’s peculiarities [14];

iii) we propose a quasy-minimal representation scheme
which bridges the gap between the sufficient and exact
stop conditions; we later use the same tools to provide
a MPI set in full minimal representation;

iv) we show how the same ideas may be used for the
bounded-disturbance case for both the minimal and the
maximal robust positive invariant sets.

Fair conclusions cannot really be drawn from small-
dimension examples where the computation time and com-
plexity are muddled by platform specific issues (e.g., function
overhead, particular solver used). Hence, we analyze all
the MPI computation methods discussed over a benchmark
whose dimension can be varied arbitrarily [15].

The rest of the paper is organized as follows. Section II
introduces basic notions about set theory and the standard
MPC problem. Section III details the variants of MPI con-
struction and extensions for the bounded-disturbance case.
Section V analyzes the relative performance of the proposed
schemes and Section VI draws the conclusions.
Notation. Om×n ∈ Rm×n is the matrix with m rows and n
columns whose entries are zero. Whenever m = n, we use
the shorthand notation On. In ∈ Rn×n is the identity matrix
whose diagonal elements are one and zero otherwise. For an
arbitrary matrix G ∈ Rm×n, Gi denotes its i-th column and
G⊤

j its j-th row. For two sets, X and Y , their Minkowski
sum is defined as X ⊕ Y = {x+ y : ∀x ∈ X,∀y ∈ Y } and
their Pontryagin difference is defined as X ⊖ Y = {x ∈ X :
x + y ∈ X,∀ y ∈ Y }. |A|, with A ∈ Rm×n, represents the
element-wise absolute value of A. For a vector x ∈ Rn, its
infinity norm is given as ∥x∥∞ := max(|x1|, |x2|, . . . , |xn|).
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II. PRELIMINARIES

In this section we introduce several standard notions from
set-based control, see [14], [16] for further details.

A. Set prerequisites
A bounded and fully-dimensional polyhedron X ⊂ Rd,

has a dual representation, with both a half-space form [16]

X = {x ∈ Rd : F⊤
X,ix ≤ θX,i, i = 1 . . . nh}, (1)

as an intersection of linear inequalities and a convex sum of
its extreme points (i.e., its vertices)

X = {x ∈ Rd : x =

nv∑
j=1

αjvj ,

nv∑
j=1

αj = 1, αj ≥ 0}. (2)

The pairs (F⊤
X,i, θX,i) ∈ Rd×R denote the inequalities of the

half-space representation and vj ∈ Rd denote the vertices of
the vertex representation. When pairing a dynamical system
with a set, several notions can be described [17].

Definition 1 (robust positive invariance). A set Ω is robust
positive invariant (RPI) for dynamics xk+1 = f(xk, wk)
iff xk ∈ Ω =⇒ xk′ ∈ Ω, ∀k′ > k holds for any
bounded disturbance wk ∈ W . Equivalently stated in set
form, inclusion f(Ω,W ) ⊆ Ω has to hold.
We call Ω, a positive invariant (PI) set when the dynamics
are without disturbances (i.e., xk+1 = f(xk, wk = 0)). ♦

Among the infinity of PI/RPI sets associated with a
dynamic as in Definition 1, we recall the following two cases.

Definition 2. The minimum robust positive invariant (mRPI)
is the RPI set that is contained in every closed RPI set of the
dynamics. Equivalently, it is the fix point of the set recurrence
Ωm

0 = {0}, Ωm
k+1 = f(Ωm

k ,W ), i.e., Ωm
∞ = f(Ωm

∞,W ). ♦

Definition 3. When the state is bounded by a set X , the
largest1 admissible PI (RPI) set contained within it, is called
the maximal (robust) positive invariant (M(R)PI) set. Thus,
Ω ⊆ f(Ω,W ) and Ω ⊆ X have to hold. ♦

B. The MPC problem
Consider the linear discrete-time dynamics

xk+1 = Axk +Buk, (3)

where xk ∈ Rn denotes the state vector, uk ∈ Rm, the
input vector and matrices A ∈ Rn×n, B ∈ Rn×m model the
dynamics. In the model predictive control (MPC) problem,
the control action uk is obtained by repeatedly solving a
constrained optimization [5] of the form:

min
ū0,...,ūN−1

N−1∑
i=0

ℓ(x̄i, ūi, ri) + T (x̄N , rN ) (4a)

s.t. x̄i+1 = Ax̄i +Būi, ∀i = 0, . . . , N − 1, (4b)
x̄0 = xk, (4c)
x̄N ∈ Ω, (4d)
ūi ∈ U , x̄i+1 ∈ X , ∀i = 0, . . . , N − 1. (4e)

1In (6), the sets respect a monotonous inclusion. Thus, the ‘’largest set’
is unambiguously the newest, regardless of the measure considered.

State and input constraint sets X ⊂ Rn, U ⊂ Rm and
terminal set Ω ⊂ Rn are polyhedra, often given in half-space
representation (1). The constrained optimization (4):

• predicts a sequence of states {x̄1, . . . , x̄N}, updated
through dynamics (4b) by a suitable (resulted from
solving (4)) sequence of inputs {ū0, . . . , ūN−1};

• such that it minimizes a stage cost ℓ(x̄i, ūi, ri) (which
usually penalizes a combination of states xk, inputs
uk and references rk) and a terminal cost T (x̄N , rN )
(penalizing the last predicted state w.r.t. reference rN );

• while also verifying stage input/state constraints (4e)
and a terminal state constraint (4d);

• (4) is integrated in the control scheme, by: i) initializing
the prediction with the current plant state value (con-
straint (4c)), and, ii) applying to the plant dynamics (3)
the first element of the input sequence uk ← [ ū0.

While MPC often works well in practice, it still has the
risk of failing to find a solution (i.e., (4) is infeasible). The
standard approach, [4], is to provide a terminal cost, T (·, ·),
and a terminal set, Ω, inclusion condition which is guaranteed
to hold under the local control law, ūi = Kx̄i, ∀i ≥ N ,
after the N steps of the prediction horizon. Assuming that
the terminal set is reachable, i.e., that x̄N ∈ Ω, we may
enumerate the recursive feasibility conditions [4]:

i) Ω is PI for the local controller: (A+BK)Ω ⊆ Ω;
ii) state constraints are respected: Ω ⊆ X;

iii) input constraints are respected under the local control
law ūi = Kx̄i: Kx̄i ∈ U,∀xi ∈ Ω, ∀i ≥ N ;

iv) the stage cost ℓ(x̄N , ūN , rN ) and the terminal cost
T (x̄N , rN ) verify a local Lyapunov function condition:

dT (x̄N , rN )

dt
+ l(x̄N , ūN , rN ) ≤ 0,∀ x̄N ∈ Ω.

Once the local control law is selected, the key element is
the choice of Ω. Condition x̄N ∈ Ω restricts the range of
values for the initial state x̄0, it has to stay in the backward
reachable set of length N , ΨN :

x̄0 ∈ ΨN , Ψi+1 = A−1Ψi ⊕A−1B(−U), Ψ0 = Ω.

Thus, among the infinity of PI/RPI sets, it is reasonable to
select the largest admissible one, i.e., the MPI/MRPI set of
the closed-loop (with the local controller) dynamics.

The intricacies of computing, storing and using the MPI
set are discussed in detail in the rest of the paper.

III. MPI CONSTRUCTION

Recall that at the end of the prediction horizon (k ≥ N ) in
the MPC problem (4), the control action switches to a fixed
feedback law uk = Kxk which has to ensure closed-loop
stability and admissibility (xk ∈ X , uk ∈ U). To simplify
the notation for this section, we note A◦ := A + BK and
X := X ∩ {x : Kx ∈ U} to obtain the LTI dynamics

xk+1 = A◦xk (5)

with matrix A◦ ∈ Rn×n and a set X ⊂ Rn which bounds the
state. Let us recall the standard recurrence for MPI (maximal
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positive invariant) set construction [17], [18]:

Ω0 = X , Ωk+1 = A−1
◦ Ωk ∩ X . (6)

Under mild and reasonable assumptions [6, Thm. 3], recur-
rence (6) is guaranteed to stop by arriving at a fix point
Ωk̄ = Ωk̄+1, for some finite index k̄.

Since by construction (see also (8)) we have that Ωk+1 ⊆
Ωk for all k, it suffices to check that [18]

Ωk ⊆ Ωk+1. (7)

Equivalently, recurrence (6) may be written2 as

Ωk+1 =

k+1⋂
j=0

Yj =
k+1⋂
j=0

A−j
◦ X . (8)

Consequently, the stop condition (7) becomes [6], [17]

Ωk ⊆ Yk+1 ⇔ Ωk ⊆ A
−(k+1)
◦ X . (9)

Often, conditions (7), (9) are replaced by the sufficient
condition (by way of noting that Ωk ⊆ X ) [6], [18]:

X ⊆ A
−(k+1)
◦ X . (10)

A. Stop condition verification

All set inclusion conditions variants ((7), (9) and (10)) may
be verified through multiple methods. To keep the notation
simple, let us consider P,Q where P stands for either Ωk

or X and Q denotes Ωk+1 or A−(k+1)
◦ X .

Considering P,Q polytopic sets defined as in Sec. II,
the classic idea is to check whether the vertices of the left
operand verify the constraints defining the right operand:

F⊤
Q,ivP,j ≤ θQ,i, i = 1 . . . nP ,∀vj ∈ Q. (11)

Well-known is also the result based on Farkas’s Lemma
[16] which involves only the half-space representation of the
polytopes.

Proposition 1. Checking inclusion P ⊆ Q for P,Q given
as in (1) is equivalent with the feasibility of the following
relations:

∃H ≥ 0, HFQ = FP , HθP ≤ θQ. (12)

□

This result is extended to the symmetric case next.

Corollary 1. Assume P = {x ∈ Rn : |F̄Px| ≤ θ̄P } and
Q = {x ∈ Rn : |F̄Qx| ≤ θ̄Q}. Then P ⊆ Q holds iff

∃H̄, H̄F̄Q = F̄P , |H̄|θ̄P ≤ θ̄Q, (13)

with the pairs (F̄P , θ̄P ) ∈ Rq̄P×n × Rq̄P and (F̄Q, θ̄Q) ∈
Rq̄Q×n × Rq̄Q . □

Proof: Re-arranging the matrices of the half-space
representation of P,Q in the form used by Proposition 1
leads to (13). See [19, Prop. 2] for a similar treatment.

2Hereinafter we assume that A is invertible for simplicity. Otherwise,
applying a singular value decomposition and ancillary manipulations allows
to carry the set inclusion tests.

B. Checking inclusion |H̄|θ̄P ≤ θ̄Q

Inclusion |H̄|θP ≤ θQ with H̄ ∈ Rq̄Q×q̄P and θ̄P ∈ Rq̄P
≥0,

θ̄Q ∈ Rq̄Q
≥0 has a deceptively simple form but expressing

it without the explicit use of the nonlinear and non-smooth
module operator is not obvious. As a first step, let us take
H̄⊤

i , the i-th row of matrix H̄ , which has to check |H̄⊤
i |θ̄P ≤

θ̄Q,i, or, equivalently put, has to verify
q̄P∑
j=1

|H̄ij |θ̄P,j ≤ θ̄Q,i. (14)

Using the facts that3 θ̄P ≥ 0 and the module’s product
property (i.e, |ab| = |a| · |b|), we reformulate (14) into

q̄P∑
j=1

∣∣∣∣H̄ij ·
θ̄P,j

θ̄Q,i

∣∣∣∣ ≤ 1. (15)

The lhs of inequality (15) is the 1-norm of the vector H̃⊤
i :=[

. . . H̄ij · θ̄P,j/θ̄Q,i . . .
]⊤

. Hence, all points H̃i ∈ Rq̄P

that verify (15) are those inside the unit ball of the 1-norm
(i.e., the cross-polytope of dimension q̄P , denoted hereafter
with CRq̄P ). Checking H̃i ∈ CRq̄P is clearly linear but with
a caveat. Namely, while usually the number of half-spaces is
significantly less than the number of vertices for a random
polytope, the cross-polytope is the textbook example of the
opposite, that is, CRq̄P has 2q̄P vertices but 2q̄P half-spaces.
Thus, to check H̃i ∈ CRq̄P we prefer to verify that H̃i can
be written as a convex sum of CRq̄P ’s vertices rather than
checking that all constraints are verified. This leads to:

H̃i =

q̄P∑
j=1

V i,−
j αi,−

j + V i,+
j αi,+

j , (16a)

αi,−
j , αi,+

j ≥ 0,

q̄P∑
j=1

αi,−
j + αi,+

j = 1, (16b)

where V i,±
j :=

[
. . . ±θ̄Q,i/θ̄P,j︸ ︷︷ ︸

j-th index

. . .
]⊤

denotes the vertices

of the cross-polytope CRq̄P . Repeating (16) for each of the
q̄Q rows of H̄ concludes the implementation.

Remark 1. The symmetric polytope considered in Corol-
lary 1 may be treated as a generic polytope by taking

FP/Q ← [
[
F̄⊤
P/Q −F̄⊤

P/Q

]⊤
and θP/Q ←[

[
θ̄⊤P/Q θ̄⊤P/Q

]⊤
and applying Proposition 1. Note also the link between the
number of constraints: q̄P = qP /2, q̄Q = qQ/2. Comparing,
we observe that, as illustrated in the table below,

case # vars. # eqs. # ineqs.

eq. (12) qP qQ nqP qQ + qP qQ

eqs. (13) + (16) 3qP qQ/4 (nqP + qQ)/2 (qQ + qP qQ)/2

explicitly exploiting the symmetric case gives a more compact
set of relations (fewer constraints and decision variables)
which, when embedded into a larger optimization problem,
leads to a reduced computational time. ♦

3It comes by having P,Q from Cor. 1 as polytopes containing the origin.
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C. Quasi-minimal representation of the MPI set

Regardless of the stop condition employed or the method
chosen for validating it, the MPI set is the result of recurrence
(6), or, equivalently, (8). In half-space representation, the
end-result is a set having k̄·q constraints (where q denotes the
number of constraints for set X and k̄ is the index at which
the recurrence stops). This is a non-minimal representation
since many of the inequalities may be redundant (they do not
change the shape of the set and could be discarded without
any loss). This is especially problematic for the sufficient
stop condition (10) which often stops at an index k̄′ > k̄.
All blocks of q constraints added in steps k̄+1 . . . k̄′ are fully
redundant (no constraint therein will change the set’s shape)
and should be removed from the set’s description. Hence,
to be fair in comparing the computation times for the MPI
construction, we apply in Algorithm 1 a partial redundancy
check to arrive at the same complexity of representation.

Algorithm 1: Quasi-minimal representation

Input: MPI set Ω =
k̄′⋂
j=0

A−j
◦ X ,

X = {x ∈ Rn : Fxx ≤ θx}
Output: index k̄

1 k = k̄′, flag=1;
2 while flag ̸= 0 do

3 F =
[
F⊤
x . . .

(
Ak−1

◦ Fx

)⊤]⊤,

θ =
[
θ⊤x . . . θ⊤x

]⊤
;

4 for j = 1 to q do
5 if isNotRedundant(F , θ, Ak

◦Fx,j , θx,j) then
6 flag=0;
7 end
8 end
9 k = k − 1;

10 end
11 k̄ = k;

The algorithm tests each block of q constraints going back-
wards from k̄′. As long as the k-th block is fully redundant
(the ‘flag’ variable is never made 0 in step 6), the index
k is decremented (step 9) and the block is removed from
the description at the next iteration (step 3). The exact stop
index k̄ is obtained when exiting the ‘while’ loop (step 11).
The ‘isNotRedundant(F, θ, c⊤, d)’ function called at step 5
checks whether the constraint {c⊤x ≤ d} is redundant with
respect to the polyhedral set {x ∈ Rn : Fx ≤ θ}. This is
done by solving the two linear programs (LPs)

d⋆,± = argmin
x

±c⊤x, s.t. Fx ≤ θ, (17)

and checking whether

min
(
d⋆,−, d⋆,+

)
≤ d ≤ max

(
d⋆,−, d⋆,+

)
holds. If so, the constraint is not redundant and the flag
returns ‘1’. We may reduce to a single LP per constraint
in the case of symmetric polytopes (because d⋆,+ = −d⋆,−).

Remark 2. We call the procedure a ‘quasi-minimization’
because we stop pruning constraints at block k̄. To obtain
a fully minimal half-space representation, we may carry the
check until all redundant inequalities are eliminated (e.g.,
change the ‘while’ stop condition to ‘k ≥ 1’). ♦

Remark 3. Eliminating redundant inequalities needs not
to be a post-processing step. It can actually be carried
during the set recurrence (6), in which case it functions as
another stop condition: whenever the newly added block of
q constraints has no irredundant ones, we stop. ♦

IV. EXTENSIONS

The same reasoning may be applied to the robust case by
extending dynamics (5):

xk+1 = A◦xk + δk, (18)

with δk ∈ ∆ = {x : F∆x ≤ θ∆} ⊂ Rn.

A. The mRPI case

Let us recall the set sequence of RPI approximations of
the minimal robust positive invariant (mRPI) set associated
with dynamics (18), as given in [20].

Proposition 2 (Thms. 1 and 3 from [20]). If 0 ∈ int ∆ and
there exists a pair s ∈ N, α ∈ [0, 1) such that

As
◦∆ ⊆ α∆, (19)

and a scalar ϵ > 0 such that

ϵ = argmin
γ

(
α

1− α

s⊕
ℓ=0

Aℓ
◦∆ ⊆ Bn

p (γ)

)
, (20)

then

Ω(α, s) =
1

1− α

s⊕
ℓ=0

Aℓ
◦∆, (21)

is an RPI approximation to the mRPI set associated with
(18), and inclusion Ω∞ ⊆ Ω(α, s) ⊆ Ω∞ ⊕ Bn

p (ϵ) holds. □

The key (computation-wise at least) element in Prop. 2 is
finding the smallest scalar α such that (19) holds. Fixing s
to a known value and applying Prop. 1 gives

α⋆(s) = min
α

α (22)

s.t. ∃H ≥ 0, HF∆A
−s
◦ = F∆, Hθ∆ ≤ αθ∆.

B. The MRPI case

In the presence of disturbances, the set recurrence (6)
changes to [11]:

Ω0 = X , Ωk+1 =
[
A−1

◦ (Ωk ⊖∆)
]
∩ X , (23)

and (8) becomes

Ωk+1 =

k+1⋂
j=0

Yδ
j =

k+1⋂
j=0

A−j
◦

(
X ⊖

j−1⊕
ℓ=0

Aℓ
◦∆

)
. (24)
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Thus (see [11, Lemma 1] for Pontryagin difference proper-
ties), the corresponding variant of (9) becomes

Ωk ⊆ Yδ
k+1 ⇔ Ωk ⊆ A

−(k+1)
◦

(
X ⊖

k⊕
ℓ=0

Aℓ
◦∆

)
. (25)

Using (21) we obtain a sufficient condition for (25):

Ωk ⊆ A
−(k+1)
◦

(
X ⊖ 1

1− α

s⊕
ℓ=0

Aℓ
◦∆

)
. (26)

Remark 4. By using the RPI approximation (21) in (25) we
decouple the current recurrence step ‘k’ from the number of
iterations ‘s’, used for the mRPI approximation. This allows
us to control the complexity of the right-hand term in (26).

A further approximation, which keeps the complexity of
the original (without disturbance) condition (9), is to find the
smallest µ which verifies Ω(α, s) ⊆ µX . Then, a sufficient
condition (exploiting relation A◦ ⊖ λA◦ = (1− λ)A◦,∀λ ∈
(0, 1)) for (26) is:

Ωk ⊆ (1− µ)A
−(k+1)
◦ X . (27)

Either (26) or (27) may easily be put in the framework of
Section III, or even adapted for condition (10). ♦

V. ILLUSTRATIVE EXAMPLE

For illustration purposes we use here the ‘CSE’ example
from the COMPleib [15] whose state-space representation
is proportional with a parameter that can be changed arbi-
trarily. This will serve us well in the subsequent analysis of
computation time and complexity of representation.

A. CSE example from [15]

The ‘CSE’ dynamics describe a system combining cou-
pled springs, dampers and masses. The mass positions and
velocities define the system state and its input are the two
forces exerted at the ends of the coupled springs chain [15].
The continuous-time model is given by

ẋ =

[
0 I

−M−1
c Kc −M−1

c Lc

]
︸ ︷︷ ︸

A∈R2ℓ×2ℓ

x+

[
0

M−1
c Dc

]
︸ ︷︷ ︸

B∈R2ℓ×2

u (28)

, where Mc = µI , Lc = δI ,

Kc = k



1 −1 · · · 0 0

−1 −2 . . . 0 0
...

. . . . . . . . .
...

0 0
. . . −2 −1

0 0 · · · −1 1


, and Dc =


1 0
0 0
...

...
0 0
0 −1

 .

The numerical values considered are µ = 4, δ = 1, k = 1
and the resulted system is discretized with the forward Euler
method for a sampling time of 1 sec. The state and input
constraints (later used in the MPC) are:

X = {x ∈ R2ℓ : ∥x∥∞ ≤ 1}, U = {u ∈ R2 : ∥u∥∞ ≤ 1}.
(29)

B. MPI analysis

In what follows we check multiple pairs of the stop test
conditions and validation methods for the MPI set’s com-
putation. Specifically, we consider the following scenarios:

stop condition validation method

eq. (11) eq. (12) eqs. (13) + (16)

Ωk ⊆ Ωk+1 S1) S2) S3)

Ωk ⊆ A
−(k+1)
◦ X S4) S5) S6)

X ⊆ A
−(k+1)
◦ X S7) S8) S9)

to which we add:
S10) the default method of MPT3 [21], arguably the state of

the art in Matlab-based MPC computations ( );
S11) the half-space redundancy check, as discussed in Re-

mark 3 ( ).
We construct for each of these scenarios the MPI set

associated with dynamics (28) and constraint set

X := X ∩ {x ∈ R2ℓ : Kx ∈ U}, (30)

using the sets (29) and the stabilizing state feedback K
obtained by solving the LQR problem for the state and input
cost matrices Q = I2ℓ, R = I2. Each scenario run is stopped
after one hour, but we allowed the running of two more
identical scenarios with immediate higher sizes. The results
are illustrated in Fig. 1 over the interval ℓ ∈ {2, . . . , 30} in
a vertical logarithmic scaling. We draw several conclusions:

• small dimensions (ℓ ∈ {2, . . . , 5}) do not exhibit clear
trends due to, most probably, spending more time with
pre-processing steps and function calls;

• regardless of the sets considered, using vertices as in
(11), i.e., scenarios S1), S4) and S7), fails quickly
(ℓ ≈ 7) due to the exponential increase in vertices
with number of constraints and, especially, dimension
(McMullen’s upper bound theorem [14] gives a worst
case of q⌊ℓ⌋ vertices);

• the sufficient condition (10), used in scenarios S7-9), is
significantly faster than either of the exact ones (with an
order of magnitude at ℓ = 15), i.e., at scenarios S4-6);

• exploiting the problem’s symmetry reduces the com-
putation time for the sufficient condition (10), e.g.,

comparing S8) and S9) we observe that
tS8 − tS9

tS8
·

100 ∈ (13, 46)%, with an average of 32%;
• counter-intuitively, for test condition (9), the non-

symmetric scenario, S5), is more efficient than the
symmetric scenario, S6);

• scenario S11) behaves quite efficiently: after ℓ = 6 it
becomes more efficient than any of the other scenarios
tested. As the relative performance depends also on the
complexity of the initial set Ω0 = X , we cannot claim
that S11) will always win.

Not all MPI sets are created equal. That is, while geometri-
cally all scenarios return the same object, its complexity will
differ. The exact stop conditions (7) and (9), employed in
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Fig. 1: MPI computation times for scenarios S1) – S11)

S1)–S6), will iterate until k̄ and the sufficient stop condition
(10), employed in S7)–S9), goes until k̄′ ≥ k̄ in the set
recurrence (6). In all these cases no minimal representation
is sought, hence the number of constraints4 will be either qℓ·k̄
or qℓ ·k̄′ with deleterious effects in solving the MPC problem
in which the MPI set is integrated. On the other hand,
Remark 3 employed in S11) stops at k̄ and directly provides
a minimal (with only irredundant constraints) representation.
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Fig. 2: Number of iterations and constraints for the MPI set.

To better grasp the numbers involved we show in Fig. 2
both the number of iterations (k̄ and k̄′) and the number of
constraints after parameter ℓ. Fig. 2a divides the scenarios

4The number of constraints in X , defined as in (30), depends on the
value of parameter ℓ. Without a redundancy check, and considering box
state/input magnitude bounds, we arrive at qℓ = 4ℓ+ 4.

into those that stop after k̄ iterations (via (7), (9), MPT3 or
Remark 3) and those that stop after k̄′ iterations (via (10)). As
seen in Fig. 2b iterating for additional steps greatly increases
the number of constraints in the description. Even if one of
the exact stop conditions is used, many of the constraints are
still redundant (as shown when comparing the set returned
by S11) with the one returned by either of S1-S6) or S10)).
E.g., at ℓ = 20 we observe that the exact methods stop at
k̄ = 39 and the sufficient one at k̄′ = 135. Furthermore, the
number of constraints is 1492, 3276, 11340 for, respectively,
i) exact and minimal description, ii) exact with redundant
constraints and iii) sufficient with redundant constraints.

Computing a fully minimal representation as from S11)
may prove too much hassle. We may ask what is the cost of a
partial minimization, as the one carried in Algorithm 1 which
eliminates the blocks from k̄ + 1, . . . , k̄′ and thus brings
the MPI sets obtained in S7)–S9) into the form returned by
S1)–S6). We compare in Fig. 3 the computation time for
scenarios S5), S10) and S11) which all stop at iteration k̄
and S8’) in which we add to the time spent in solving S8)
the time spent running Algorithm 1. We observe that, at least
in this case, the quasy-minimization (solid blue line, square
markers) is better than the methods which stop through an
exact condition. The only scenario which is (at least at
higher dimensions) better, is S11) where redundancies are
eliminated at each iteration of (6). Note that we have neither
exploited symmetries nor tweaked the standard LP problems
(17) so further improvements should be possible.

C. MPC implementation

We should recall that the justification for constructing the
MPI set in the first place was its use in the MPC problem
(4). We consider a quadratic cost MPC problem where the
penalty matrices for a stage cost are Q = I2ℓ and R = I2, the
terminal cost penalty matrix P and local control law K are
computed accordingly. The prediction horizon is Npred = 10,
and the simulation horizon is Nsim = 100 steps. The MPC
implements a variant of the scheme proposed in [22].
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Fig. 3: Computation time for exact condition scenarios versus
sufficient scenario plus partial constraint removal.

Thereafter, we consider several cases of implementation
for the MPC problem from the viewpoint of the MPI set:
C1) without the MPI set (this serves as a comparison and

should not be used in general as it lacks the required
recursive feasibility guarantees induced by the MPI set);

C2) with the non-minimal MPI set obtained with one of the
exact stop conditions (thus, the stop index is k̄);

C3) the same as C2) but for the MPI obtained with the
sufficient stop condition (10), i.e., the stop index is k̄′;

C4) with the fully-minimal MPI set (as per Remark 2).
Problem size is not a perfect indicator of computation time
since solver heuristics greatly influence it (e.g., the tolerance
values considered, internal structure of the problem, specific
algorithm employed). We depict in Fig. 4 the total run time
for solving the MPC problem in each of the aforementioned
cases, with parameter ℓ ∈ {2, . . . , 15}.
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C1) – without MPI
C2) – exact stop
C3) – suff. stop
C4) – min. representation

Fig. 4: Computation time for the MPC problem.

For C2) we used the MPI set from S5), for C3) the one
from S8), and for C4) the one from S11). As expected, C1)
is clearly the fastest. Conclusions become more muddled
for the three MPI-using cases. Still, we observe that C4) is
better than C2) but, surprisingly, worse than C3). The later
in fact we expected to be the worst performing among the
considered cases. These results require further investigation.

All the results have been obtained with the help of MPT3
[21] and CasADi [23].

VI. CONCLUSIONS

This paper considered exact and sufficient stop inclusion
conditions for the set recurrence leading to the maximal
positive invariant set associated with linear dynamics and
a polyhedral constraint set. We analyzed the computation
time and representation complexity for various methods of

validating the inclusion test (with and without exploiting the
sets’ symmetry). Finally, we analyzed the effect of minimal
and non-minimal representations and the case of dynamics
affected by bounded disturbances.
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