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Abstract— This paper is about feedback control system for
Scanning Tunneling Microscopy (STM). The system aims to
maintain a constant tunneling current between tip and sample
surface, despite external disturbances. Four controllers are
tested and compared, resuming three previously considered
techniques, and including a novel genetic-algorithm-based ap-
proach. Results in particular highlight the effectiveness of the
latter in maintaining stability and rejecting disturbances, and
the study includes both simulation and experimental results.
The findings hence contribute to the development of reliable
control systems for nanoscale imaging and manipulation.

I. INTRODUCTION

The invention of the Scanning Tunneling Microscope
(STM) by Gerd Binnig and Heinrich Rohrer in 1986 marked
a significant milestone in nanoscience [1]. This breakthrough
technology exploits the quantum mechanical phenomenon of
tunneling current, whereby an electron can traverse a poten-
tial barrier with a non-zero probability [2]. By positioning
an ultra-sharp metallic tip in close proximity to a conductive
sample surface, the STM allows for the imaging and char-
acterization of surface morphology at the atomic scale [3].
The success of the STM led to the development of various
Scanning Probe Microscopes (SPMs), with the Atomic Force
Microscope (AFM) receiving particular attention [4], [5].

The use of tunneling current extends beyond imaging
applications, and it has, for instance, proven valuable in
measuring submicro-g accelerations [6] or in detecting sub-
micrometer displacements [7]. Achieving accurate tunneling
effects requires ultrahigh positioning accuracy and high
bandwidth, presenting significant challenges in control sys-
tem design. The control scheme typically includes a tun-
neling current sensor, a regulation feedback loop, and a
piezoelectric actuator for precise tip movement (see Figure
1). While commercial SPMs often employ simple control
strategies such as Proportional-Integral (PI) controllers with
manual tuning, the scientific community has made notable
advances in control problems for SPMs over the past decades
[8], particularly AFMs (see, e.g., [9] and references therein),
but also STMs [10], [11], [12], [13], [14], [15].

In this specific case of STM, a precise information on
tunneling current is crucial for achieving accurate imaging
and characterization of surfaces. However, the presence of
various noise sources [16] as well as unknown sample surface
variations greatly impact the precision of tunneling current
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measurements. Moreover, nonlinearities and physical limita-
tions within the control loop can raise significant challenges
and limit system performance in practice. This motivates
for a special care on advanced control strategies specifically
tailored to tunneling phenomena.

In such a context, and on the basis of the experimental
STM-like setup developed by the control group at GIPSA-lab
[17], our purpose in this paper is to compare various possible
approaches for the control of tunneling current under piezo-
electric actuation and current sensing: four control techniques
have been chosen, including a standard Proportional Integral
(PI) regulator, two methods coming from former works of the
Gipsa control group towards robust designs (one based on
combined pole placement with sensitivity function shaping
as in [18], and the other one based on H∞ technique as in
[19]), and one new approach based on Genetic Algorithm.

The main objective is to compare the performance and
effectiveness of these controllers in terms of their ability to
maintain the desired tunneling current and reject external
disturbances. The controllers are evaluated based on criteria
such as tracking accuracy, robustness, and sensitivity to
noise, and compared on the basis of simulation as well as
experimental results.

The system modelling is first presented in section II and
considered controllers are displayed in section III. Simulation
results are then given in section IV, with experimental ones
in section V. Some conclusions end the paper in section VI.

II. SYSTEM DESCRIPTION AND MODELING

A. Principle of operation

The Scanning Tunneling Microscope (STM) operates
based on a fundamental principle: measurement and control
of the tunneling current (it ) that appears between a sharp
metallic tip and a sample surface under some bias voltage
(vb). This process occurs when the tip and the surface are
positioned at a distance (d) smaller than 1× 10−9 m. The
tunneling current then exponentially depends on the distance
between the tip and the surface, according to:

it(t) = g · vb · e−k·d(t) (1)

In this equation, g and k are constants determined by the
work functions of the tip and the sample surface, respectively.
The primary objective of the feedback control system in
the vertical z-direction is to maintain a constant distance
(or equivalently, a constant tunneling current) despite the
presence of external disturbances such as noise (n) and
variations in the sample surface (zs).
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To achieve this, the system employs a closed-loop control
scheme, as depicted in Figure 1. A feedback loop continu-
ously monitors tunneling current it , transformed into measur-
able voltage (v3) by a (high gain) current-to-voltage converter
(CVC). However, this voltage is subject to measurement
noise (n), resulting in the available feedback voltage (vy).
Simultaneously, a piezoelectric actuator is connected to the
tip, enabling precise movement in response to an applied
voltage (v2), after amplification of the control signal (v1). The
position variations of the piezoelectric actuator (z) directly
determine the distance d(t) = d0 + zs(t)− z(t) (where d0
represents its initial value).

Vyd

V1d

Tunneling 
Current 
Model

Fig. 1. Complete STM model

Notice that actuator hysteresis can here be neglected in
the vertical motion due to the small range of operation [20].

B. Experimental setup

In order to experimentally validate the present study, a
setup developed at GIPSA-lab [17] is used (Figure 2).

DEVICE

INSTRUMENTATION

DISPLAY

Fig. 2. Experimental platform

This setup uses a tip made of platinum/iridium, and a
Piezomechanics/PSt150 actuator. The voltage amplifier is a
Piezojena/ENV300, and the CVC is home-made.

The sample surface used in the experiment is graphite,
and a camera with telecentric zoom is included to assist the
operator in manually positioning the tip prior to closed-loop
experiment.

The entire experimental setup is placed on an anti-
vibration table (Microworld) to minimize external distur-
bances, and the control scheme is implemented on a com-
puter system, consisting of a Development PC with a 2.5
GHz processor and a Target PC with a 3.2 GHz processor.

To ensure the integrity of numerical signals and avoid
aliasing, an anti-aliasing filter with a bandwidth of 10
kHz is employed, allowing for a sampling frequency of
up to 20 kHz. The control algorithms, designed using
MATLAB/SimulinkT M , are executed on the Target PC and
communicated to the experimental setup via Ethernet.

C. Complete model

The complete model of the experimental STM device, as
shown in Figure 1, consists of 4 components which can be
represented as follows (with all numerical values summarized
in Table I):

1) Voltage amplifier:

HVAz(s) =
GVAzωVAz

s+ωVAz
(2)

2) Piezoelectric actuator:

HPiezoz(s) =
−Gpzω

2
pz

s2 +2ζpzωpzs+ω2
pz

(3)

3) Current sensor:

HCSz(s) =
GCSzωCSz

s+ωCSz
(4)

4) Tunneling current and linear approximation: Tunnel-
ing current it is described by Eq. (1), but to facilitate linear
control design, a first-order linear approximation is used
around an equilibrium value ieq, as:

i(t) = ieq − keq · ieq · (d(t)−deq) (5)

where deq represents the corresponding equilibrium distance
for a zero equilibrium disturbance zs.

TABLE I
STM SYSTEM PARAMETERS

Parameters Value Unit Signification
GVAz 15 V/V Gain of voltage amplifier
ωVAz 4 kHz Bandwidth of voltage amplifier
Gpz 1.2 nm/V Gain of piezoelectric actuator
ωpz 120 kHz Bandwidth of piezoelectric actuator
ζpz 0.9 - Damping of piezoelectric actuator
GCSz 109 V/nA Gain of current sensor
ωCSz 13 kHz Bandwidth of current sensor
g 0.0011 - Tunneling current constant
Vb 1.025 v Bias voltage
k 16.5 nm−1 Material constant
d0 1 nm Initial distance
ieq 1 nA Equilibrium tunneling current

III. CONSIDERED CONTROLLERS

In this work, four different controllers are considered: a
pole-placement controller with sensitivity function shaping,
designed as in [18]; an H∞ controller designed as in [21]; a
genetic algorithm-based controller, newly considered in the
present work; and a simple PI controller, for comparison.
They are all designed according to similar specifications, and
with a similar complexity, described in subsection III-A, and
all compared in subsequent sections.
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A. Control problem formulation and desired performance
Considering an overall discrete-time transfer function of

the system (between V1d and Vyd in Figure 1) of the form:

G(z−1) = z−d B(z−1)

A(z−1)
(6)

where d represents the system delay, and z−1 stands for the
delay operator, the controller to be implemented is searched
under a general RS form as:

K(z−1) =
R(z−1)

S(z−1)
(7)

for appropriate polynomials R,S.
About the model, from former identification studies, as in
[18], the dynamics of piezoelectric actuator and current
sensor can be approximated as constant gains, and the overall
model can reduce to B(z−1)= b1z−1, A(z−1)= 1+a1z−1 with
b1 = 233.8, a1 =−0.433, and d = 1.
As for the control, its objectives can be summarized as:

1) high measurement accuracy for current control;
2) good robustness and stability margins;
3) large closed-loop bandwidth;
4) noise attenuation at the system input.
Quantitatively, those requirements can be translated into

constraints on classical closed-loop sensitivity functions:
• Ouptut sensitivity function (transfer between zs and it ):

S0(z−1) =
A(z−1)S(z−1)

A(z−1)S(z−1)+ z−dB(z−1)R(z−1)
(8)

• Input sensitivity function (transfer between n and v1):

K(z−1)S0(z−1) =
A(z−1)R(z−1)

A(z−1)S(z−1)+ z−dB(z−1)R(z−1)
(9)

• Complementary sensitivity function (between n and it ):

T (z−1) =
B(z−1)R(z−1)

A(z−1)S(z−1)+ z−dl B(z−1)R(z−1)
(10)

as follows:

∥S0(z−1)∥∞ ≤ 6dB (11)
∥T (z−1)∥∞ ≤ 3.5dB (12)

∥K(z−1)S0(z−1)∥∞ ≤ 20dB (13)

In addition, to enhance measurement accuracy, a maxi-
mum variation of ±10% is allowed in the desired tunneling
current. This translates into a maximum allowed error voltage
ve, or a lower limit (-20 dB) for sensitivity function S0(z−1),
in the measurement bandwidth ωm (related to expected
variations in zs). The influence of surface variations zs on
the controlled output it is given by the transfer function
c1 · S0(z−1), where c1 = −k · ieq. This yields an additional
constraint as:

|S0(z−1)|dB ≤−27.2dB, 0 ≤ ω ≤ ωm (14)

Furthermore, to limit the influence of noise n on the
system input v1, the transfer function K(z−1)S0(z−1) should
be restricted, here below 1% of the noise level:

|K(z−1)S0(z−1)|dB <−40dB, ω > ωm (15)

The sampling frequency fs is set to 20 kHz for all signals,
and the desired closed-loop bandwidth to approximately 4
kHz, similar to the voltage amplifier’s bandwidth.

B. Controller with pole placement and sensitivity function
shaping technique

Let us recall here the design of [18], based on the
methodology, e.g. described in [22]:

1) Closed-loop dominant poles: placed at 4 kHz with a
damping coefficient of 0.9 to maintain a similar closed-
loop natural frequency as the open-loop system.

2) Closed-loop auxiliary poles: a pole added at -0.6 to
enhance the robustness of the feedback loop.

3) Controller fixed part in S: an integrator is included.
4) Controller fixed part in R: a real zero is introduced at

0.5 fs to shape the input sensitivity function and open
the loop at the Nyquist frequency.

This results in a controller (7) given by:

K(z−1) =
0.002+0.00117z−1 −0.00083z−2

1+0.15375z−1 −0.7068z−2 −0.44694z−3 (16)

C. Controller with H∞ technique

An H∞ controller can be obtained according to specifica-
tions (11)-(15), for instance as in [21], with templates for
sensitivity functions as follows (here expressed in frequency
domain):
• Output Sensitivity Function:

|S0( jω)| ≤
∣∣∣∣ jω +ωSεS

jω/MS +ωS

∣∣∣∣ , ∀ω (17)

where, MS = 2 is chosen to provide robustness and stability
margins across all frequency ranges, ωS = 1.2×104 rad/sec
ensures good disturbance attenuation, and εS is set to a very
small value to achieve the desired measurement accuracy.
• Input sensitivity function:

|KS0( jω)| ≤
∣∣∣∣ εKS jω +ωKS

jω +ωKS/Mu

∣∣∣∣ , ∀ω (18)

where Mu = 10 is chosen to impose a limit on the
maximum value of the controller output, ωu = 1.88× 104

rad/sec, and εu = 0.5 to limit the effect of noise (n) at high
frequencies in the system input.
• Complementary Sensitivity Function:

|T ( jω)| ≤
∣∣∣∣ εT jω +ωT

jω +ωT/MT

∣∣∣∣ , ∀ω (19)

where MT = 1.5 is chosen to provide a good robustness
margin across all frequency ranges, ωT = 1.88×104 rad/sec
to attenuate noise (n) at high frequencies, and εT = 0.5.

After computation, a fourth-order controller is obtained.
For a fair comparison with the other controllers studied
in this work, a model order reduction is applied using a
balanced model order reduction algorithm, down to order
3 (as in model (16)). This yields the following controller:

K=
0.006328+0.0004912z−1 −0.004518z−2 +0.001329z−3

1−0.5236z−1 −0.9856z−2 +0.5093z−3
(20)
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D. Controller with genetic algorithm

Inspired by the work of [23] for PID tuning, we propose
here a Genetic Algorithm (GA) method towards RS tunning,
as another possible approach for RS controller design.

Let us recall that GAs draw inspiration from the principles
of natural selection and evolution to iteratively evolve a
population of potential solutions, aiming to find an optimal or
near-optimal solution to a given optimization problem [24].

The GA generally operates on a population of individuals,
each representing a potential controller in our context, and
the optimization process revolves around a fitness func-
tion, which evaluates the quality of each individual (here,
controller performances). It is initialized with a random
population, and the GA then proceeds through generations,
where selection, crossover (recombination), and mutation
operations are applied as illustrated in Figure 3.

 

Fig. 3. Genetic algorithm process [25]

The GA iterates until a termination criterion is met (typi-
cally when satisfactory performances are reached).

In this work, we consider a controller obtained with
MATLABT M , using a GA that aimed to minimize a cost
function based on sensitivity functions and SimulinkT M

simulations testing the controllers. The simulation operated
within a time limit of 0.2 s, with a disturbance of amplitude
0.5 Å and frequency 600 rad/s, together with a reference
current of 0.5 nA. The cost function of the GA was defined
by weight variables, as shown in Table II, and requirement
variables, as shown in Table III.

TABLE II
WEIGHT VARIABLES

Weight 1 (W1) Amplitude in dB of S0(z−1) at 600 rad/s
Weight 2 (W2) Amplitude in dB of T (z−1) at 10 kHz
Weight 3 (W3) Amplitude in dB of T (z−1) at 5 kHz
Weight 4 (W4) Tunneling current values above 0.53 nA
Weight 5 (W5) Summed time-weighted absolute error

TABLE III
REQUIREMENT VARIABLES

Requirement 1 Maximum of S0(z−1) should be less than 6 dB
Requirement 2 Maximum of KS0(z−1) should be less than -40 dB
Requirement 3 Maximum of T (z−1) should be less than 3.5 dB
Requirement 4 No peaks in tunneling current above 1.5 nA
Requirement 5 it value after transient should be less than 0.54 nA
Requirement 6 Controller transfer function should be stable

If one requirement is not met when testing a controller, the
cost function is heavily penalized, thus making those criteria

limiting. When they are all fulfilled, the cost function reduces
to the following (with coefficients heuristically set):

J = 10W1 +30W2 +50W3 +109W4 +5 ·104W5 +200 (21)

Notice that the controller to be found was defined with
order 3 (for similarity with previous ones), a pole fixed at
1 (to eliminate steady-state error), and a zero fixed at -1
(to open the loop at the Nyquist frequency). Running the
genetic algorithm for 40 generations, with 90 individuals per
generation, the following controller was obtained:

K =
0.0198+0.0057z−1 −0.0141z−2

1−0.9427z−1 +0.8285z−2 −0.8858z−3 (22)

E. Digital PI controller

Finally, for the sake of comparison, let us recall the digital
PI controller also designed in [18], considering the same
stability and robustness margins as before:

K =
0.00021+0.00021z−1

1− z−1 (23)

IV. SIMULATION RESULTS

This section is dedicated to the comparison of previously
presented controllers on the basis of simulations, first based
on transfer function models, and then in time domain.

A. Sensitivity functions analysis

Fig. 4 illustrates the Bode diagram of sensitivity functions
S0, KS0, T , for the 4 controllers, also with SG, representing
the relation between system output and input disturbances.

Fig. 4. Bode diagram of sensitivity functions S0, KS0, T , and SG
(with PI in red, pole placement in blue, H∞ in black and GA in green)

Starting with output sensitivity function S0, it can be no-
ticed that all controllers meet the robustness criteria specified
in Section III. In addition, it appears that the GA-based
controller exhibits superior performance, as it demonstrates
lower magnitudes across the entire frequency range. This
indicates that it can tolerate higher disturbance frequencies.

About complementary sensitivity function T , it can be
seen that the PI controller exhibits the highest tolerance to
measurement noise. Furthermore, the H∞ controller fails to
meet the robustness criteria here, as the magnitude of T
exceeds 3.5dB in some frequency range. Moreover, it is the
only one that does not open the loop at Nyquist frequency.
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Finally, examining input sensitivity function KS0, it can
be noticed that all controllers satisfy the robustness criteria
of Section III, as the magnitude remains significantly small
across all frequencies. This implies that disturbances and
noise do not directly interfere with the control signal.

Table IV presents a comparative summary of the closed-
loop poles, the frequency where S0 reaches -27.2 dB, and the
frequency where T reaches -3 dB for the four controllers.

B. Time domain simulation

Let us present here simulation results with a model that
incorporates actual non-linearities (exponential, saturations),
measurement noise (n), and physical limitations in the
closed-loop system.

Figure 5 shows the results for the 4 controllers, in the
presence of sinusoidal surface variations (zs) (top graph) with
a frequency of 100 rad/s and an amplitude of 0.5 Å. The
reference tunneling current is 0.5 nA. It can be observed that
the variation in tunneling current remains within the desired
limits of 10% with all the designed controllers.
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Fig. 5. Simulation results with proposed controllers in the presence of
sinusoidal variations (zs) with frequency of 100 rad/s

However, performances worsen when disturbance fre-
quency is increased, and with 600 rad/s for instance, only
GA-based and H∞ controllers produce acceptable variations
in it (within the 10% limit), as illustrated by Figure 6.

Notice that all these simulations are performed in the pres-
ence of sensor noise (n) with a magnitude of 10 mV/

√
Hz. In

that regard, it can be highlighted that both PI and pole place-
ment controllers exhibit less sensitivity to noise, as observed
in the simulation results and sensitivity functions. However,
they show inferior performance concerning variations in the
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Fig. 6. Simulation results with proposed controllers in the presence of
sinusoidal variations (zs) with frequency of 600 rad/s

tunneling current. On the other hand, GA-based and H∞

controllers present similar performances, with yet a bit more
oscillations in the settling time for the H∞ controller.

V. REAL-TIME EXPERIMENTAL VALIDATION

The effectiveness of the control schemes is further val-
idated through real-time experiments conducted on the ex-
perimental platform shown in Figure 2. It is worth noting
that the experimental platform operates in an ambient atmo-
sphere, which introduces additional external environmental
disturbances beyond those considered in the simulations.

Figures 7 to 10 illustrate the measured tunneling current
(it ) obtained with the 4 controllers. Here, the desired tunnel-
ing current is 0.5 nA (corresponding to 0.5 V after CVC).
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Fig. 7. Measured tunneling current vs its reference with PI controller

The results show that all four tested controllers were
capable of maintaining the tunneling current in accordance
with the desired reference value. Notably, the GA-based con-
troller exhibited smaller variations in the tunneling current as

TABLE IV
CONTROLLER PERFORMANCE COMPARISON

Controller Parameters Complex Poles
Closed loop poles Freq. S0 = -27.2 dB Freq. T = -3 dB ωn ζ

0.7571 ± j0.1784
PI -0.0812 24.2 Hz 1.04 kHz 0.7778 0.9733

0.4378 ± j0.1649
Pole Placement 0.004; -0.6 51.8 Hz 3.22 kHz 0.4678 0.9358

0.5165 ± j1.1131
H∞ 0.5165; 0.4; -0.9949 214 Hz 6.34 kHz 1.2271 0.4209

0.6462 ± j2.408
Genetic Algorithm 0.7267; -0.6433 355 Hz 7.21 kHz 2.4932 0.2592
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Fig. 8. Measured tunneling current vs its reference with Pole Placement

45 50 55 60 65 70 75

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

zAxis − System output (yZ)

Time [sec]

A
m

p
lit

u
d
e
 [
V

]

 

 

yZ
ref

Fig. 9. Measured tunneling current vs its reference with H∞ controller
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Fig. 10. Measured tunneling current vs its reference with GA controller

compared to the other methods (although with a small bias
here), as confirmed by Table V which presents means and
variances for the experimental results with each controller.

TABLE V
MEAN AND VARIANCE WITH CURRENT OF 0.5 NA

Controller Mean Value Variance
of Tunneling Current of Tunneling Current

PI 0.4944 0.0107
Pole Placement 0.5133 0.0112

H∞ 0.5659 0.0077
Genetic Algorithm 0.4268 0.0066

VI. CONCLUSIONS

In conclusion, this work provides a comprehensive study
on the design and comparison of four control strategies for
precise regulation of tunneling current in scanning tunneling
microscopy (STM) systems, aiming at robust and stable per-
formance in the presence of disturbances and uncertainties.

In particular, a new genetic algorithm approach has been
proposed for the design of such a controller, which proved to
be pretty efficient, both in simulation and experimental tests.
The study will be continued by more extensive experiments,
and extension to other operation configurations.
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[13] L. Ryba, A. Voda and G. Besançon, “3DOF nanopositioning control of
an experimental tunneling current-based platform,” IEEE Conference
on Control Applications (CCA), Juan Les Antibes, France, pp. 1976-
1981, 2014.

[14] F. Tajaddodianfar, S. O. R. Moheimani and J. N. Randall, “Scanning
Tunneling Microscope Control: A Self-Tuning PI Controller Based
on Online Local Barrier Height Estimation,” IEEE Transactions on
Control Systems Technology, vol. 27, no. 5, pp. 2004-2015, 2019.
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