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Abstract— This study investigates deep offshore, pumping
Airborne Wind Energy systems, focusing on the kite-platform
interaction. The considered system includes a 360 m2 soft-wing
kite, connected by a tether to a winch installed on a 10-meter-
deep spar with four mooring lines.Wind power is converted
into electricity with a feedback controlled periodic trajectory
of the kite and corresponding reeling motion of the tether.An
analysis of the mutual influence between the platform and the
kite dynamics, with different wave regimes, reveals a rather
small sensitivity of the flight pattern to the platform oscillations;
on the other hand, the frequency of tether force oscillations
can be close to the platform resonance peaks, resulting in
possible increased fatigue loads and damage of the floating
and submerged components. A control design procedure is then
proposed to avoid this problem, acting on the kite path planner.
Simulation results confirm the effectiveness of the approach.

I. INTRODUCTION

Airborne Wind Energy Systems (AWES) convert high-
altitude wind energy using a tethered aircraft, or kite [1].
AWES can reach altitudes higher than 300 m above ground,
where winds are strong with high probability, yielding large
capacity factors [2]. Moreover, they can be manufactured,
transported and installed at low cost, thanks to the absence
of large monolithic components, making them appealing
for remote locations. These features make AWES a strong
candidate technology to complement traditional wind energy
and solar PV and increase the overall penetration of renew-
ables in our energy mix [3]. The main drawback of AWE
technologies is the rather high operational complexity, mostly
residing in the automation and control system [1].
In the past 20 years, AWES development has significantly in-
creased. Most activities pertain to inland systems, which are
more accessible and cheaper for research and development
than offshore ones. However, the latter hold the promise of
a huge potential impact. In fact, the expected mass of the
floating platform for AWES is a rather small fraction than
the one required by offshore horizontal-axis wind turbines,
thanks to the center of gravity and applied force being close
to the sea surface. Moreover, the offshore wind resources
are abundant already below 300m, so that, thanks to the
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possibility to harvest energy at different altitude layers (thus
limiting the wake interactions), AWES farms can be arranged
compactly, reaching a rather high unit density per occupied
surface area [4].
Notwithstanding its promising features, there are currently
very few contributions in the literature on deep offshore
AWES. In [5] and [6], this concept is evaluated using a
simplified model. The results indicate technical feasibility,
yet considerable platform displacements are observed, while
the kite-floater interactions are not treated in detail. Re-
garding real-world installations, the company Makani Power
[7] attempted a medium-scale (500 kW) offshore system
deployment in Norway in 2019. Unfortunately, the company
operations ended after a few months.
This paper contributes to advance the knowledge on offshore
AWES, focusing on the kite-platform interaction. A pumping
AWE system is considered, which converts wind power into
electricity with a feedback-controlled periodic trajectory of
the kite and corresponding reeling motion of the tether. In
contrast to [6], the kite model is not mass-less and the tether
is a nonlinear spring with elastic constant depending on its
length, whereas in [6] it was assumed to be a rigid rod.
The first contribution is an analysis of the mutual influence
between the platform and the kite dynamics, with different
wave regimes, using a 6-degrees-of-freedom (d.o.f.) model of
the platform coupled with an established model of the AWE
system. We find that the frequency of tether force oscillations
can be close to the platform resonance peaks, resulting in
possible increased fatigue loads and damage of the floating
and submerged components. The second contribution is to
propose a control design procedure to avoid this problem,
acting on the kite path planner. Simulation results confirm
the effectiveness of the approach.

II. SYSTEM DESCRIPTION AND MODEL

We consider a pumping Airborne Wind Energy system
installed on a moored spar-buoy, see Fig. 1 for a conceptual
layout. We consider a soft kite with one tether, similar to
those employed by the company Skysails Power [8], [1], and
a simple geometry of the spar-buoy (i.e., a cylinder) partially
filled with heavy sand to act as a ballast. The platform
is anchored to the seabed with four symmetric catenary
moorings.
To model the system, we consider the following four refer-
ence frames:

• Fixed, inertial frame (x,y,z), with origin OW in the plat-
form centre of gravity at rest, i.e. in static equilibrium
when no forces other than gravity and buoyancy are
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acting on it. The z-axis points upwards, perpendicular
to the sea surface.

• Platform frame (xP,yP,zP) with origin OP in the plat-
form centre of gravity and axes coinciding at rest with
the inertial one.

• AWES platform frame (xK ,yK ,zK) with origin OK lo-
cated at the tether exit point from the platform. At rest,
the axes’ are parallel to those of the inertial frame.

• AWES local reference system (eθ ,eφ ,er) with origin
OKL in the wing. The unit vectors (eθ ,eφ ,er) are defined
in the fixed reference system (x,y,z) as[

eθ eφ er
]
=sin(θ) cos(φ) −sin(φ) cos(θ) cos(φ)

sin(θ) sin(φ) cos(φ) cos(θ) sin(φ)
−cos(θ) 0 sin(θ)


where θ and φ , named elevation and azimuth, respec-
tively, are the angles describing the wing’s position in
the inertial frame using polar coordinates (see Fig. 1).

The next subsections provide the mathematical equations for
each system’s component.

Fig. 1: Conceptual layout of the system, with the four
considered reference frames.

A. Airborne wind energy system model

We adopt the point-mass AWES model of [9], briefly
recalled here for the sake of self-consistency. The kite’s
position relative to the origin of the inertial reference frame
can be expressed using the distance r from OW to OKL and
angles θ and φ :

p⃗W−KL(t) =

r(t) cos(θ(t)) cos(φ(t))
r(t) cos(θ(t)) sin(φ(t))

r(t) sin(θ(t))


where t ∈ R is the continuous-time variable. Newton’s law
of motion in the AWES local reference system yields the

equations:

θ̈(t) =
Fθ (t)

m(t)r(t)

φ̈(t) =
Fφ (t)

m(t)r(t) sin(θ(t))

r̈(t) =
Fr(t)
m(t)

(1)

where m(t) is the kite’s mass mK augmented by half of the

tether mass (see [9]) m(t) = mK +
ρtπd2

t L(t)
8

with ρt , dt , and
L(t) being, respectively, the tether density, its diameter, and
its nominal (i.e., with zero pulling force) length measured
from the exit point on the floating platform to the kite.
Fθ (t), Fφ (t) and Fr(t) in (1) are the resultant forces for each
axis of the local reference frame. In particular (variable t
is omitted for simplicity): Fθ = Fgrav

θ
+Fapp

θ
+Faer

θ
, Fφ =

Fgrav
φ

+ Fapp
φ

+ Faer
φ

and Fr = Fgrav
r + Fapp

r + Faer
r − Fc,trc

where F⃗grav(t) is the gravity force, F⃗app(t) the apparent
force, F⃗aer(t) the kite aerodynamic force, and F⃗c,trc(t) the
tether traction force. The aerodynamic forces are nonlinear
functions of the wind speed vector at the kite position,
denoted by W⃗ (t), and depend on the kite effective area A
and lift and drag coefficients, CL,CD accounting also for
the tether drag, which in turn depends on its diameter and
length, see e.g. [9] for the details. In this work, the tether is
modelled as a nonlinear spring exerting a pulling force equal
in absolute value to:

Fc,trc(t) = max
(

0,k(L(t))∥P⃗K−KL(t)∥2 −L(t)
)

(2)

where k(L(t)) is the spring coefficient and P⃗K−KL(t) is the
vector pointing from OK to OKL, computed as:

P⃗K−KL(t) = P⃗W−KL(t)− P⃗W−K(t), (3)

such that ∥P⃗K−KL(t)∥2 represents the distance between the
kite and the tether exit point on the platform. In (3), P⃗W−K(t)
is the vector pointing from OW to OK , computed as:

P⃗W−K(t) = P⃗W−O(t)+ P⃗O−K (4)

i.e., the vector sum of P⃗W−O(t), pointing from the origin
of the inertial plane to the platform’s center of gravity, and
P⃗O−K , pointing from the latter to the exit point of the tether.
Vector P⃗O−K is assumed to be constant, since the platform
is modeled as a rigid body, while P⃗W−O(t) depends on
the position of the platform, as specified later on. About
the spring coefficient k(L(t)) in (2), this is computed as
k(L(t)) = F̄c,trc

ε̄ L(t) where F̄c,trc is the breaking load of the tether,
and ε̄ the corresponding elongation (e.g., ε̄ = 0.03 means
that the tether reaches the breaking load when ∥P⃗K−KL(t)∥2
equals 1.03 times the nominal tether length, L(t)). Regarding
the flight control approach, the selected strategy is the one
described in [10]. It features a hierarchical structure, where
a high-level navigation approach employs two user-defined
target points, P− = (θ−,φ−) and P+ = (θ+,φ+) in the (θ ,φ )
plane, to compute a reference course for the kite at each
discrete time step k ∈ Z of the digital control loop.
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B. Platform model

The motion of objects surrounded by a fluid, like the
floating platform considered in this work, is commonly
described using the Navier-Stokes’ equations [11]. However,
their numerical solution is computationally expensive. For
this reason, we consider a simplified 6-d.o.f. model based
on the linear potential flow theory [12], assuming that the
fluid surrounding the body is incompressible and inviscid,
and the flow is irrotational [13]. To resolve the dynamics
and fulfil boundary requirements on the platform, boundary
element techniques (BEMs) are used in conjunction with
the linear potential flow theory. In this study, we used the
NEMOH programme as a numerical solver to evaluate the
hydrodynamic parameters [14].
The platform and its mooring are modeled as a mass-spring-
damper system with the addition of specific hydrodynamic
forces and moments; the resulting six equations of motion
are:

M ν̈(t) = Fh(t)+Fr(t)+Fexc(t)+Fm(t)+F t(t) (5)

where ν(t) = [xP(t) yP(t) zP(t) ωxP(t) ωyP(t) ωzP(t)]
T are the

displacements (i.e., surge, sway and heave) and rotations
with respect to the platform centre of gravity, M ∈ R6×6 is
the mass-inertia matrix, vector Fh ∈ R6 contains the three-
dimensional hydrostatic restoring force and moment, Fr the
radiation force and moment, Fexc the wave excitation force
and moment, Fm the mooring force and moment and F t the
tether traction force and moment applied on the platform.
The hydrostatic restoring effect Fh accounts for the static
pressure and gravity force, and it is expressed as Fh(t) =
−Kh ν(t) where Kh is the restoring coefficient matrix. The
radiation force and moment Fr are those exerted by the fluid
on the platform when no incident waves are present. Its effect
is described as Fr(t) = −M∞ ν̈(t)−

∫ t
−∞

hra(t − τ)ν̇(τ)dτ

where M∞ is a 6x6 matrix accounting for the added mass
(see [13]), and hra(t) is the impulse response of the radiation
dynamics, which accounts for the memory effect due to the
fluid action. The wave excitation Fexc accounts for the impact
of waves on the platform [13]. Finally, since the mooring
lines are modeled as mass-spring-dampers, the mooring force
Fm is Fm(t)=−Mm ν̈(t)−Bm ν̇(t)−Km ν(t) where Mm is the
mooring inertia matrix, Bm is the mooring damping matrix
and Km is the mooring stiffness matrix. These parameters are
obtained through a system identification process using data
from Orcaflex software. Finally, the tether traction force and
moments F t are computed as:

F t =

[
F⃗c,trc

F⃗c,trc × P⃗O−K

]
(6)

where × denotes the cross-product, and F⃗c,trc =

Fc,trc P⃗K−KL

∥P⃗K−KL∥2
with Fc,trc computed as in (2).

C. Overall model equation

The AWES’ and platform’s dynamical models are coupled
via the tether force (6), which acts on the platform motion

(5) and depends on the platform position via the equation
P⃗W−O(t) = [xP(t) yP(t) zP(t)]T , see (2)-(4). Thus, we can
express the overall system equations as

˙x(t) = f (x(t),Fexc(t),W⃗ (t))

where x(t) = [θ(t) φ(t) r(t) θ̇(t) φ̇(t) ṙ(t) xP(t) yP(t) zP(t)
ωxP(t) ωyP(t) ωzP(t) ẋP(t) ẏP(t) żP(t) ω̇xP(t) ω̇yP(t) ω̇zP(t)]

T

and Fexc(t), W⃗ (t) are exogenous inputs.

III. ANALYSIS OF KITE-PLATFORM
INTERACTIONS

Using the described model, we carried out an analysis of
how the platform motion affects the kite’s behavior, and vice-
versa. The results presented here have been obtained with
the model parameters reported in Table I, corresponding to
a medium-size AWES with average cycle power of 500 kW,
and considering the traction phase of the pumping cycle, us-
ing the flight controller described in Section II. We estimated
the AWES parameters by scaling up those of the Skysails
Power SKS PN-14 reported in [1]. Regarding the buoy mass,
it corresponds to a spar with diameter and height of 10 m.
When no force is acting on it, the height of the platform
out of the water is approximately 1 m. The ballast height is
3.6 m. The buoy centre of gravity lies on its symmetry axis,
about 7 m below the deck, and its mass is about 760 tons.
The numerical values of parameters M, Kh, M∞, Mm, Bm, and
Km and the impulse response hra(t) introduced in Section II-
B are omitted here due to space limitations, however we
made available a Matlab file containing them (where hra(t)
is given via a state-space realization), see [15].
Regarding the exogenous inputs, the wave excitation Fexc(t)
is described using the JONSWAP spectrum [16], charac-
terised by three main parameters: the significant wave height
Hs, the peak wave period Te and the peak-shape parameter
γ j. We considered two sets of spectrum parameters, A and
B. The set for wave A is Hs = 0.5m, Te = 3.7s and γ j = 3.1,
while wave B, corresponding to higher waves, has Hs = 2m,
Te = 7.5s and γ j = 3.1. The free surface elevation and the
excitation force are computed using a random amplitude
scheme, as explained in Merigaud [17]. For the wind speed
W (t), we considered instead a uniform wind field directed
along the inertial x-axis, with magnitude equal to 8.5 m/s. We
did not include a wind turbulence model in order to isolate
the dynamical effects related to the wave excitation.
We first focus on the tether force behavior and compare the
outcome with that of an onshore scenario.

TABLE I: Model parameters employed in the analysis

Kite effective area A 360 m2

Kite mass mK 90 kg
Tether diameter dt 0.035 m
Tether density ρt 980 kg m−3

Tether breaking load F̄c,trc 950 kN
Tether breaking elongation ε̄ 0.03
Tether exit point relative to the plat-
form’s c.o.g., in frame (xP,yP,zP),
when platform is at rest

P⃗O−K(t) [0,0,7.8475]T

Target points P−,P+ (0.6,-0.4),(0.6,0.4)
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Fig. 2: Comparison between onshore and offshore - wave B
pulling force in N with tether length L = 900m.

Fig. 3: Comparison between onshore and offshore - wave B
tether force spectrum with tether length L = 900m.

Fig. 3 shows the tether force spectra in onshore and offshore
environment when L = 900m. In the onshore case (dark
blue), the spectrum contains only the frequencies pertaining
to the kite’s motion, while looking at wave B scenario
(ligth blue), we note the presence of additional components
due to the waves. We further studied the effects of waves
on the tether force by evaluating its mean value, Fmean,
the mean of its peaks, Peaksmean, the force amplitude, ∆F ,
and the standard deviation of the peaks, stdpeaks over 100
periodic patterns. Table II presents the results, reported in
kN, showing that the average force is practically unaffected,
while its variability and peaks change in a very limited way
in case A and in a much stronger one in case B.
Next, we carried out a frequency response analysis on the
platform, to assess whether the main spectral components
of tether force are close to the platform’s resonance peaks.
Upon analyzing the Bode diagrams of the frequency response
function of xP, yP, and zP, we discovered that the highest
resonance peaks are at r1 = r2 = 0.0185 Hz for xP and yP,
while for zP, it is at r3 = 0.14 Hz. The peak r3 results to
be much higher than the main frequency of oscillation of
the vertical tether force, hence, we expect a limited increase
and no resonance effects for the platform’s heave motion.
On the other hand, the resonances r1 and r2 are rather close
to the principal components of the tether force in the xP, yP
directions. In particular, the y component of the tether force,
which has the same frequency as that of the kite’s eight-path,
results to be very close to the first platform resonance in the

Fig. 4: Bode diagram of the frequency response of yP w.r.t
the traction force y-component, and spectrum of the latter
for wave A and tether length L = 900m.

sway motion. Fig. 4 highlights this correspondence showing
the Bode diagram of the frequency response function of yP
with respect to the y component of the tether force vector
with wave A and tether length equal to 900 m. Moreover,
under the employed flight control strategy, whose switching
conditions are based on the elevation and azimuth angles
only, these results are affected by the tether length L. In
fact, with higher L values, the length of the flown paths
increases (because the angular span is the same), while the
kite speed decreases, due to the higher tether drag. As a
consequence, the frequency of oscillation of the tether force
decreases. The overlap between the tether force spectrum
and the platform resonance peaks thus depends also on L;
to study this aspect for the sway motion (i.e., along the
y direction) of the platform we introduce the quantity η ,
defined as:

η
.
=

yPpeak

F t
ypeak

(7)

where yPpeak is the peak of the sway oscillation and F t
ypeak

that
of the tether force component along the y axis. The values
of η with different tether lengths are shown in Table III,
considering the case of wave A parameters: as expected by
intuition, a significant increase of η is observed when the
kite trajectory’s frequency approaches the resonance r2. In
particular, notwithstanding a decrease of the peak force of
about 33% between L = 600m and 1100 m, an increase of
230% of the platform’s sway peak takes place, with a lateral
movement spanning the interval ±4.6m.

IV. PROPOSED CONTROL APPROACH

The analysis of Section III highlighted how the kite’s tra-
jectory can affect the platform oscillations, causing resonance
effects which could lead to increased fatigue and damage.
To avoid this problem, we propose to modify the flight
control approach by adjusting the length of the flown figure-
eight trajectories on the basis of the kite’s velocity, in order
to indirectly control the resulting frequency of the tether
force oscillations. While this general idea is relevant for any
trajectory planning or navigation algorithm for AWES, in the
specific case of flight control strategy described in II-A it can
be realized by suitably adjusting the target points’ locations,
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TABLE II: Comparison of the tether force values obtained in the three considered scenarios. All values in the table are in
kN.

Tether Onshore Offshore - wave A Offshore - wave B
length L (m) Fmean Peaksmean ∆F stdpeaks Fmean Peaksmean ∆F stdpeaks Fmean Peaksmean ∆F stdpeaks

600 252 294 42 0.003 249 294 45 2 250 311 61 17
700 243 286 43 0.003 240 287 47 2.2 240 303 63 17
800 237 280 43 0.0009 233 281 48 2.5 233 300 77 14.7
900 228 271 43 0.002 223 273 50 2.7 224 292 78 16.4

1000 222 265 43 0.0005 216 266 50 2.13 217 287 70 15.3
1100 216 257 41 0.009 209 258 49 1.93 210 280 70 16.8
1200 206 249 43 0.1 203 250 47 1.63 203 269 76 13.8
1300 198 242 44 0.05 196 243 47 2.59 196 263 77 20

TABLE III: η values for increasing tether length in wave
A scenario. ftra j is the frequency of the kite’s figure-eight
paths with the strategy described in II-A.

L (m) ftra j (Hz) F t
ypeak

(kN) yPpeak (m) η

600 0.0324 100 2 0.02
700 0.0287 93.5 2.58 0.0276
800 0.0255 86 3.27 0.038
900 0.023 78 4 0.0513
1000 0.0208 72 4.54 0.0631
1100 0.019 67 4.6 0.0687
1200 0.0175 64 4.33 0.0677
1300 0.0161 60 3.9 0.065

P− and P+, as described in the remainder.
The first step is to determine a desired path frequency, f ∗tra j,
that is far from the platform resonance peaks. Then, consid-
ering the average kite’s speed over one figure-eight, denoted
with v̄K , the desired trajectory length can be computed as:

L∗
tra j =

v̄K

f ∗tra j
(8)

The average kite speed can be estimated from onboard
measurements or, to pre-tune the approach off-line, via sim-
ulations or the simplified equations of crosswind flight, see
e.g. [18]. On the other hand, with the considered switching
law with two-target points, a rather accurate estimate of the
trajectory length is given by:

Ltra j = 2(∆θ +∆φ)L (9)

where ∆θ is the difference between maximum and minimum
θ values experienced during the flight, θmax and θmin, and
∆φ = φ+ − φ−, see Fig. 5 for an example. In the figure,
note that the value θmin ≈ θ− can be assumed for up-loop
trajectories (i.e., where the kite climbs on the sides and
descends in the middle of the figure-eight), like the ones
considered here. We can then estimate ∆θ by considering
the kite’s turning radius R during the figure-eight patterns,
typically equal to about three times the kite’s wingspan, so
that the distance between the highest and lowest points of
each turn, denoted by ∆z, is

∆z ≈ 2R. (10)

At the same time, ∆z can be also estimated in the fixed
reference frame as:

∆z = L(sin(θmax)− sin(θ−)). (11)

Combining (10) and (11), we get θmax =
arcsin

( 2R
L + sin(θ−)

)
. Using this formula, we obtain

∆θ = arcsin
(

2R
L

+ sin(θ−)
)
−θmin (12)

We can finally determine the desired value of ∆φ , denoted
∆φ ∗, by combining (8), (9), and (12):

∆φ
∗(t) =

v̄K

2 f ∗tra j L(t)
− arcsin

(
2R
L(t)

+ sin(θ−)
)
+θmin

Note that, for a fixed trajectory frequency, ∆φ ∗(t) decreases
as the tether length L(t) increases, as expected from the
considerations reported at the end of Section III.
Then, it is sufficient to choose the target points such that
φ+ − φ− = ∆φ ∗ to obtain with good approximation the
desired path length and frequency. For example, if the
target points’ positions are symmetric to the x-axis, we have
|φ+(t)| = |φ−(t)| = ∆φ∗(t)

2 . and the target points to be used
are P− = (θmin,φ−(t)) and P+ = (θmin,φ+(t)).

V. SIMULATION RESULTS

We applied the proposed approach to control the frequency
of force oscillations, and compared the results to the baseline
approach of fixed target points, considered in Section II-A
(target points reported in Table I). In our approach, we chose
a desired oscillation frequency of f ∗tra j = 0.0305 Hz, based
on the analysis of Section III. Fig. 5 presents a comparison
between kite patterns with old and new control approach in
wave scenario B. Besides noticing the different angular width
of the trajectory in the (θ ,φ) plane, corresponding for the
new approach to roughly the same linear width of 249 m in
the inertial plane, the figure also highlights the slight effect
of waves on the kite trajectory in scenario B.
Fig. 6 shows the spar’s sway motion with L = 1100 m and
wave A acting on the platform, with either fixed target
points (baseline) or the proposed approach. Since the kite’s
frequency in this situation is approximately the same as
the resonance (0.019 Hz and 0.0185 Hz), the platform
moves significantly in the baseline, while the amplitude of
oscillations is reduced by more than half with our method.
We finally recalculated η (7) for the same tether length
values and wave scenarios as those of Table III, but with
the new control strategy. The outcome, displayed in Table
IV, demonstrates the method’s effectiveness: the tether force
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Fig. 5: Kite’s path in wave B scenario, with L= 1100 m. Kite
trajectory and target points in the baseline approach (black
lines and asterisks) and in the proposed approach to meet the
desired oscillation frequency (light blue lines and circles).

TABLE IV: η values with increasing tether length in wave
A force scenario, using the proposed control approach

L (m) ftra j (Hz) F t
ypeak

(kN) yPpeak (m) η

600 0.0324 100 2 0.02
700 0.0318 88 1.8 0.0205
800 0.0311 75.5 1.67 0.0221
900 0.0308 65 1.5 0.0231

1000 0.0305 58 1.35 0.0233
1100 0.0302 51 1.23 0.0241
1200 0.0298 45.5 1.13 0.0248
1300 0.0295 40.5 1.02 0.0252

oscillation frequency is kept far from the resonance, and η

remains roughly constant for the whole reel-out phase.

VI. CONCLUSIONS AND FUTURE RESEARCH

The dynamical coupling between a deep offshore platform
and an AWE system installed on it has been studied. The
analysis and simulation results demonstrate that the wing’s
path may be somewhat altered depending on the wave
intensity; however, such a perturbation proved to be rather
limited with the waves tested. Deepening the study for more
wave types would undoubtedly be of interest. Future research
may also concentrate on AWES winch control techniques to
attenuate the effects of waves on the tether load.
On the other hand, the analysis of the effects of the tether
force on the platform motion highlighted a potential inter-
ference with the floater resonance peaks. A new control
approach to keep the kite’s trajectory frequency away from
resonance has been presented and tested with promising
results. The next steps of this research will be to investigate
other platform configurations, to carry out wave tank tests for
model validation, and to study an integrated kite-platform
design to limit the dynamic oscillations while optimizing
relevant performance indicators, such as the amount of
produced energy, its cost, and the environmental footprint.
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