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Abstract— Space debris removal and on-orbit servicing mis-
sions require docking spacecraft guidance that not only enables
reaching the target spacecraft but also avoids collisions with
appendages protruding from it. In this paper, two modified
guidance laws are proposed for spacecraft docking on non-
cooperative tumbling targets, with collision avoidance, using
Lyapunov Vector Fields. In the literature, a two-stage thrust-
constrained guidance strategy has been proposed, with the first
stage used for a station-keeping approach trajectory and the
second for contraction towards the docking port. Our proposed
strategy follows a similar approach but additionally ensures
that the chaser spacecraft enters and stays on a safe approach
plane during both stages so that collisions with protruding
appendages of the target spacecraft can be avoided. This is
done by introducing a third component of motion in the target’s
body frame away from the initial approach plane, towards a
plane free from intersections with undesirable appendages. It
is shown that with these modified guidance laws, asymptotic
convergence is guaranteed to the respective goal locations of
each stage. A maneuver design example, along with numerical
simulations, is presented to demonstrate the effectiveness of the
proposed guidance strategy on a real mission.

I. INTRODUCTION

With several thousands of tumbling debris and orbiting
satellites around the Earth, space agencies are recognizing
the need to free up occupied low Earth orbits from space
debris, especially due to the potential exponential growth
of their population through collisions [1]. Studies by the
European Space Agency [2] have shown that this exponential
growth rate could be controlled by strategically removing
five to ten large pieces of debris every year as of 2013.
Considering the high costs of space travel and the growing
debris population, it is essential to look into the intricacies
of a debris removal mission for prompt implementation.

An early phase of such a mission is docking onto these
tumbling objects. Such a maneuver would involve a space-
craft driving its relative tangential velocity with respect to
the docking port on the tumbling object to zero, essentially
tracking the target’s rotation and, at the same time, moving
radially towards the docking port. However, space debris can
have large sizes and high orbital spin rates. For example,
as per [3], low Earth orbit expired satellites at altitudes
greater than 500 km can have angular rates of up to 40
rpm. Also, a study on the attitude and spin period of the
large out-of-service Envisat, using Satellite Laser Ranging,
was conducted in [4], and for the satellite of dimensions 26
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m × 10 m × 5 m, the tumbling period was found to be
134.74 s as of September 25, 2013. Adding to this, data on
SpaceX’s state-of-the-art Crew Dragon docking module from
[5] suggests that during docking, sixteen Draco thrusters
drive and orient the module towards the docking port, with
each capable of providing the module a linear acceleration
of 0.067 m/s2. Thus, the limited thrust capabilities of service
spacecrafts and the high acceleration requirements to track
targets’ angular motion can pose the restriction for motion
in their close vicinity during the docking phase. The need
for autonomous collision avoidance [6] in these scenarios is
the inspiration for our work.

We utilize a framework for docking maneuvers called Lya-
punov Vector Fields (LVF), which were first introduced for
spacecraft maneuvers in [7], with the idea of superimposing
artificial potential functions to a system state space for the
system to follow a desired trajectory. An analytical guidance
law based on this framework was used for spacecraft docking
to a non-cooperative tumbling target in an elliptical orbit
in [8] and further improved in [9]. The accuracy and the
computationally lightweight nature of this guidance made it a
more practical option than existing Model Predictive Control
and Inverse Dynamics based approaches [10],[11] due to
their high time spent for trajectory optimizations. However,
none of these techniques presented a complete strategy for
collision avoidance in close proximity to the docking port.
In [8], a docking cone is utilized as a path constraint, but
the body frame trajectory is planar, and it only considers
a cross-section of the docking cone based on the chaser
spacecraft’s initial position. Close to the docking port, [9] too
has a planar body frame trajectory based on unpredictable
initial conditions. In [10], a collision avoidance algorithm
for far-field rendezvous based on a rotating hyperplane was
introduced, but generating this trajectory had the limitation
of high computation times. In [11], a minimum separation
constraint between the docking port and the target center of
mass was added to an optimal control problem to prevent any
contact between the chaser and the target surface. However,
such a constraint would not be useful for large and irregular
target geometries as the final position of the chaser would
be far away from the docking port. In order to satisfy this
constraint, there would also be a high computation time for
optimization. In [12], a cissoid is defined within which the
safe approach volume is confined. Still, the maneuver is
assumed to be feasible only if the chaser starts from a point
within the safety region. This scenario is highly unlikely in
the case of a non-cooperative tumbling target.

This paper addresses collision avoidance by developing
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a safety strategy during close proximity docking operations
through an analytical guidance law using Lyapunov Vector
Fields. It guarantees that no collisions will occur during
docking, given a viable trajectory to a safe approach plane.

Our main contributions are,
1) Construction of a modified Lyapunov Vector Field for

approaching a target spacecraft docking port along a
collision-free plane.

2) Construction of a modified Cascaded Lyapunov Vec-
tor Field for entering the station-keeping phase of a
docking maneuver along a collision-free plane.

The remainder of this paper is organized as follows: Sec-
tion II reviews existing docking techniques using Lyapunov
Vector Fields and highlights their limitations. Section III
describes the modified vector field designs and how they
overcome these limitations. Section IV proves the asymp-
totic stability of the new vector fields. Section V presents
numerical simulation results, and Section VI concludes the
paper with a discussion on the limitations of the proposed
approach and possible future work.

II. AN OVERVIEW OF DOCKING MANEUVERS
USING LYAPUNOV VECTOR FIELDS AND THEIR

LIMITATIONS

In [8] and [9], both the chaser and the target move in
elliptical orbits with J2 perturbed orbital dynamics, [13].
The target is provided with an initial angular velocity that
does not need to be along a principal axis. It rotates without
external torque acting on it, and a vector field is defined
in its body-fixed frame. At close proximity to the target,
the chaser tracks the target’s rotation and orbital motion
completely, so the body frame trajectory becomes significant.
This section is an overview of existing guidance algorithms
using Lyapunov Vector Fields (LVF), focusing on the target’s
body fixed frame. It also points out some limitations of
existing methods.

A. Problem Formulation for Existing Techniques

Fig. 1 Vectorial representation of chaser and target

Figure 1 depicts the instantaneous position of a chaser
spacecraft, which is considered a point mass. A cube rep-
resents the target spacecraft in this figure for ease of vi-
sualization. The target’s body-fixed frame, Fb, is fixed to

the target spacecraft with its origin at the target’s center of
mass and its coordinate axes pointing along the principal
axes. The Earth-centered inertial reference frame Fi is the
inertially stationary frame. The position of the origin of Fb

with respect to the origin of Fi is given by vector d ∈ R3.
The target’s docking port position is given by vector D ∈

R3 relative to the target center of mass. The unit vector O ∈
R3 represents the orientation of the docking port in space.
Vectors r ∈ R3 and rD ∈ R3 denote the position of the
chaser relative to the target center of mass and the docking
port respectively, and θ ∈ R is defined as the angle between
rD and O.

The objective of the chaser is to approach the docking port
with its relative velocity in the direction of O while both the
chaser and the target are in orbit.

B. LVF Based Guidance [8]

In this approach, a Lyapunov potential function is given
by V = rTDrD, with the vector field that maps each point in
space to a velocity vector chosen as

h(rD) = v(rD)
(

Ĉ cos θN + Ŝ sin θN

)
(1)

where Ĉ and Ŝ are unit vectors representing the contraction
and circulation components, respectively, and v(rD) is a
speed term.

The contraction term is chosen to direct the chaser along
the gradient of the potential function, and the circulation term
is selected such that the chaser circles around the target in a
plane made by the initial position vector rD(initial) and O.

A docking cone is used as a path constraint to prevent
the chaser from making contact with the target’s frame. A
normalized angle measurement θN is used to help obey the
docking cone angle constraint.

The resulting trajectory is circular until the chaser reaches
the docking cone, followed by a combination of circular and
radial contraction after entering this region.

C. Cascaded LVF Based Guidance [9]

Here, unlike LVF-based guidance, bounded acceleration
to the chaser spacecraft is guaranteed for any initial distance
from the target.

The docking maneuver is divided into 2 phases: a station-
keeping phase followed by a contact phase. The station-
keeping guidance is designed using two vector fields, one
for radial contraction, which is active from the chaser start
position, and the other for angular contraction, which is fully
activated when the chaser reaches a defined radial distance α
from the docking port. On reaching that distance, the chaser
completely tracks the target’s rotation inertially, making both
vector fields non-time-varying in Fb. We refer to this portion
of the maneuver as the terminal docking phase.

During this period, the guidance equation in Fb is given
by

h(rD) = sa(rD, θ)â (2)

where â is the angular contraction unit vector pointing along
the gradient of the Lyapunov function, Va.
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The term sa(rD, θ) denotes the angular contraction speed.
The resulting trajectory is circular along the plane formed
by the rD at the instant complete rotation tracking occurs,
and O. LVF-based guidance is used for the contact phase.

D. Limitations of Existing Techniques

Let a sphere of radius α centered at the target be referred
to as the tracking sphere. For a collision-free chaser trajec-
tory using the Cascaded LVF technique, this sphere must
encompass the extended target (extended to account for the
chaser’s dimensions).

But the variation of inertial thrust produced with time
using the Cascaded LVF Phase 1 guidance, as shown in
Figure 2, reflects the high peak thrust the chaser would have
to produce during the maneuver for tracking the target’s
rotation at large separations and high angular velocities. The
angular velocities and dimensions considered in the plot are
shown in Table I and are well aligned with the findings of
[3] and [4]. The required thrust acceleration is up to ten
times the limits from [5], which can risk thruster saturation
of the chaser spacecraft and constrain the tracking sphere
not to encompass the entire extended target. In this case,
collision avoidance is needed while maneuvering on the
tracking sphere.
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Fig. 2 Chaser- target separation of 18 m maintained during
station keeping (α = 18 m)

TABLE I Chaser and target initial conditions in Fb

Target
ω1

T (deg/s)
(
1.0 −2.4 4

)
ω2,ω3,ω4 3ω1, 5.5ω1, 8ω1

J [Diag] (Kg.m2)
(
10 20 50

)
Chaser

rT
D(initial)

(m)
(
−100.0 −100.0 0.0

)
In addition, there does not exist a method to optimize the

CLVF speed parameters to accurately decide the position of
the chaser at the beginning of the terminal phase. There is
thus an uncertain initial position for the chaser in the target
body frame at the beginning of the terminal docking phase.

In both the existing guidance techniques [8] and [9],
the motion of the chaser spacecraft is planar in Fb when
the target’s rotation is fully tracked. However, due to the
uncertainty in the chaser’s initial position, its motion plane

could pass through an appendage, blocking the docking port
and leading to a collision.

III. PROPOSED GUIDANCE LAWS
The proposed Modified LVF and CLVF guidance laws

address the drawbacks described by ensuring that the chaser
approaches the docking port along a collision-free plane in
Fb. This is achieved by adding a third component of motion
for the chaser away from the initial motion plane towards a
safe approach plane.

A. Problem Formulation for Modified Vector Fields

Fig. 3 Vectorial representation of chaser and target

Let vector p ∈ R3 denote the projection of vector rD onto
a plane perpendicular to O. This plane is shown in figure 3.

p = rD − (rD cos θ)O (3)

where p, O, and rD lie on the same plane, which will be
referred to as the approach plane. Let p̂d ∈ R3 denote a unit
vector lying on the plane perpendicular to O. It denotes the
desired approach direction. Vector p makes an angle β with
p̂d.

cosβ =
p · p̂d

p
(4)

Let the plane formed by vectors p̂d and O be the desired
approach plane.

B. Modified LVF

The modified LVF guarantees a contraction in β before
enforcing any motion towards the docking port, ensuring that
the chaser would approach the docking port in close vicinity
to the desired approach plane. The guidance command is
given as

h(rD) = v(rD)
{(

Ĉ cos θN + Ŝ sin θN

)
cosβN + T̂ sinβN

}
(5)

where T̂ denotes the orientation component directed perpen-
dicular to the instantaneous approach plane, in the direction
that reduces β fastest.

T̂ =
p × p̂d × p
∥p × p̂d × p∥

(6)

We define βN as a normalized angle measurement, which
helps ensure that the chaser starts contracting or circulating
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only when β ≤ βD. Physically, β ≤ βD denotes a safety
region within which the chaser can move collision-free.

βN =

{
πβ
2βD

for β ≤ βD

π
2 otherwise

(7)

C. Modified CLVF

The modified CLVF, in a similar way, guarantees a con-
traction in β before enforcing any circulation towards the
station-keeping location vertically above the docking port.
The guidance command is given as

h(rD) = sa(r, θ, β)â + pc(r, β)T̂ (8)

T̂ =
p × p̂d × p
∥p × p̂d × p∥

(9)

βN =

{
πβ
2βD

for β ≤ βD

π
2 otherwise

(10)

With the modified sa(rD, θ, β) given by,

sa(rD, θ, β) =

{
ka

(
rD
α

)
sin θ cosβN rD > α

ka

(
α
rD

)
sin θ cosβN otherwise

(11)

The magnitude term for the orientation component T̂ with
kt as a speed parameter is given by,

pc(rD, β) =

{
kt

(
rD
α

)
sinβ rD > α

kt

(
α
rD

)
sinβ otherwise

(12)

IV. STABILITY ANALYSIS

A. Stability of Modified LVF

Theorem 1: The Modified LVF guidance law given by
Eqn. (5) is asymptotically stable at rD = 0 for θ ∈ [0, θD]
and β ∈ [0, βD].

Proof: For V = rTDrD, taking the time derivative and
assuming perfect tracking,

V̇ =
∂V

∂rD
h(rD) (13)

Since Ŝ and T̂ are perpendicular to rD,

V̇ = −vmax
r4D

r2D(initial)

cos θN cosβN (14)

For θ ∈ [0, θD] and β ∈ [0, βD], cos θN > 0 and cosβN >
0. Therefore V̇ < 0 ∀ rD ̸= 0.

Theorem 2: Trajectories beginning at θ ∈ [θD, π) and
rD ̸= 0 eventually enter θ < θD for β ∈ [0, βD].

Proof: Let Vθ = θ. On differentiating,

V̇θ =
dVθ

dθ
θ̇ (15)

V̇ = −
(
v(rD) sin θ cosβN

rD

)
(16)

For θ ∈ [θD, π), sin θ > 0. Also for β ∈ [0, βD], cosβN >
0. Therefore, V̇θ < 0 proving that θ eventually becomes
< θD.

When θ = π, Ŝ = 0, so θ would stay constant. Choosing
Ŝ = p̂d is suitable at this condition as β = 0

Theorem 3: Trajectories beginning at β ∈ [βD, π) and
rD ̸= 0 eventually enter β < βD for any θ ∈ (0, π).

Proof: Let Vβ = β

V̇β =
dVβ

dβ
β̇ (17)

V̇ = −
(
v(rD) sinβ

rD sin θ

)
(18)

For β ∈ [βD, π), sinβ > 0. Therefore, V̇β < 0, proving
that β eventually becomes < βD.

When β = π, T̂ = 0, so β would stay constant. Choosing
T̂ = O × p̂ is suitable at this condition because β can be
reduced in either direction. When θ = 0, setting β = 0 is
suitable as no change in β is required.

B. Stability of Modified CLVF

In Sections II-C and III-C, the guidance equations for the
terminal portion of the maneuver were described. However,
to prove the global stability of the modified CLVF guidance,
its complete equation is used. This is given by,

h(rD) = vc(r)ĉ + sa(r, θ, β)â + pc(r, β)T̂ + g(r)ωBI × rD
(19)

where vc(r)ĉ and g(r)ωBI × rD are identical to the terms
used in [9]. The radial contraction unit vector pointing along
the gradient of the Lyapunov function, Vc, is ĉ. The radial
speed is controlled by vc(r). The extent of rotation tracking
is controlled by g(r).

The field responsible for angular and orientation
contraction here is initially time-varying in Fb due to partial
rotation tracking and becomes fixed with time as the chaser
reaches a distance α from the docking port. The radial
field’s attractor is a sphere of radius α centered at the
docking port. Therefore, it is invariant to target rotation.

Theorem 4: Under the Modified CLVF guidance law
given by Eqn. (19), rD is globally asymptotically stable at
the sphere centered at D and radius α, which is the attractor
of the Lyapunov function Vc.

Proof: Taking first time derivative of Vc with respect
to the inertial frame,

V̇c =
∂Vc

∂rD
ṙD =

∂Vc

∂rD

(
ṙinertial − Ḋ − ḋ

)
(20)
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V̇c =
∂Vc

∂rD
h(rD) (21)

Here, â, T̂ and ωBI × rD are perpendicular to rD.
Therefore,

V̇c = vcrD (22)

Here, vc < 0 for rD > α, and vc > 0 for rD < α.
Therefore, V̇c < 0 for α ̸= 0, completing the proof.

Theorem 5: Under the Modified CLVF guidance law
given by Eqn. (19), provided β ∈ [0, βD], vector rD is
asymptotically stable at θ = 0, which is the attractor of the
Lyapunov function Va.

Proof: Taking first derivative of Va,

V̇a =
dVa

dθ
θ̇ (23)

V̇a =
dVa

dθ

(
− sa
rD

+ (1− g)O · (ωBI × rD)

)
(24)

Theorem 4 mandates that rD converges to α. And at rD =
α, g(r) = 1 reducing the equation to,

V̇a =
dVa

dθ

(
−ka

sin θ cosβN

α

)
(25)

For β ∈ [0, βD], cosβN > 0, and dVa

dθ > 0 as it is required
that Va = 0 at θ = 0 and Va increases as θ increases.
Therefore, on reaching the attractor of Vc, V̇a < 0, thus
completing the proof.

When θ = π, â = 0, so θ would stay constant. Choosing
â = p̂d is suitable at this condition as β = 0

Theorem 6: Trajectories beginning at β ∈ [βD, π) and
rD ̸= 0 eventually enter β < βD for any θ ∈ (0, π).

Proof: Following Theorem 3 and using Theorem 4,

V̇ = −
(
pc sinβ

rD sin θ

)
(26)

For β ∈ [βD, π), sinβ > 0. Therefore, V̇β < 0 proving
that β eventually becomes < βD.

V. DESIGN OF DOCKING MANEUVER
The proposed docking maneuver is carried out in two

phases, using the modified CLVF in Phase 1, followed by
the modified LVF in Phase 2.

Simulations are performed in the inertial frame Fi. How-
ever, the design example in this paper compares the terminal
portion of the existing and modified maneuvers by viewing
trajectories in the target’s body-fixed frame Fb, as collisions
with appendages fixed to the target’s body depend on the
chaser’s motion in Fb. The satellite model used for the design
example is obtained from [14]. Videos of the simulations are
linked in the figure captions. The initial conditions are shown
in Table II,

TABLE II Chaser and target initial conditions in Fb

Target
DT (m)

(
0.0 0.0 1.4

)
OT , p̂T

d

(
0.0 0.0 1.0

)
,
(
−1.0 0.0 0.0

)
θD , βD (deg) 12, 20

α (m) 7.070
Chaser

rT
(Phase 1)

(m)
(
0.0 −6.0 −6.0

)
rT
(Phase 2)

(m)
(
0.0 −1.75 9.0

)

A. Phase 1: Station Keeping

Here, some approach trajectories to the station keeping
position vertically above the docking port are obstructed by
solar panels. An obstructed plane intersecting the solar panels
is red, and a safe plane that does not intersect any such
appendage is cyan. Figure 4 shows a scenario where the
chaser’s initial position is on the obstructed plane, and CLVF-
based guidance is applied. The resulting planar trajectory
causes the chaser to collide with a solar panel. In Figure
5, the modified CLVF-based guidance is applied with the
same initial conditions, where the chaser orients itself to the
safe approach plane before circulating towards the station-
keeping position, therefore avoiding contact with the solar
panels.

Fig. 4 Cascaded LVF trajectory lies on an obstructed ap-
proach plane (https://bit.ly/46YS5Jv)

Fig. 5 Obstructed solar panels avoided by approaching along
the safe approach plane (https://bit.ly/3MUH8Rx)

B. Phase 2: Contact

Ideally, the chaser should be vertically above the docking
port at the end of Phase 1, so Phase 2 would just be
linear motion along the line of intersection of the safe and
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obstructed planes. However, under the occurrence of any
tracking error during Phase 1 due to disturbances such as
sensor noise, the chaser’s position might not end up vertically
above the docking port, and it could lie on an obstructed
plane at the beginning of Phase 2. In such a scenario, if
the chaser carried out Phase 2 using LVF-based guidance as
shown in Figure 6, its trajectory would entirely lie on the
obstructed plane till it converges to the docking port. This
would pose a high risk of collision while the chaser is outside
the docking cone. This limitation is overcome using the
modified LVF-based guidance by making the chaser return
to a safe approach plane and spending most of its trajectory
in close vicinity to the safe approach plane, as shown in
Figure 7, therefore reducing the probability of collision, and
at the same time providing robustness to the guidance law
by mitigating the tracking error.

Fig. 6 Approach from obstructed approach plane, risking
collisions (http://bit.ly/47nLaJG)

Fig. 7 Tracking error eliminated by returning to safe ap-
proach plane (https://bit.ly/3FLBeOi)

VI. CONCLUDING REMARKS

The modified guidance law provides a level of obstacle
avoidance to body-fixed appendages on a tumbling target
without compromising on the computational lightness of
the initial algorithm. This is achieved by designing a 3D
vector field that satisfies an approach plane constraint. The
modified equations have the same structure and therefore
can be plugged back into the inertial frame acceleration
equations, retaining the advantages of earlier works. Some
issues with the proposed methods that can lead to interesting
future work are the following,

The proposed guidance law is useful when the chaser has
to track the target’s rotation within a sphere encompassing
the boundaries of the extended target. However, it does not
provide a strategy for the chaser to enter this sphere in
a collision-free path or to reach the safe approach plane
outside the sphere. Another issue is that a collision-free
path must exist for the chaser while orienting itself to the
safe approach plane. This can be satisfied by appropriately
deciding the safe approach plane. It would be useful to
develop a guidance strategy that accounts for a scenario
where there is no available path to the safe approach plane
from the chaser’s position.

We point out that these limitations also exist in the existing
work in literature but can be addressed using our proposed
framework.

REFERENCES

[1] D. J. Kessler and B. G. Cour-Palais, “Collision frequency of artificial
satellites: The creation of a debris belt,” Journal of Geophysical
Research: Space Physics, vol. 83, no. A6, pp. 2637–2646, 1978.

[2] K. Wormnes, R. Le Letty, L. Summerer, R. Schonenborg, O. Dubois-
Matra, E. Luraschi, A. Cropp, H. Krag, and J. Delaval, “ESA tech-
nologies for space debris remediation,” in 6th European Conference
on Space Debris, vol. 1, pp. 1–8, ESA Communications ESTEC
Noordwijk, The Netherlands, 2013.

[3] M. Kaplan, B. Boone, R. Brown, T. Criss, and E. Tunstel, “Engineering
issues for all major modes of in situ space debris capture,” in AIAA
Space Conference & Exposition, p. 8863, 2010.

[4] D. Kucharski, G. Kirchner, F. Koidl, C. Fan, R. Carman, C. Moore,
A. Dmytrotsa, M. Ploner, G. Bianco, M. Medvedskij, et al., “Attitude
and spin period of space debris Envisat measured by satellite laser
ranging,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 52, no. 12, pp. 7651–7657, 2014.

[5] “SpaceX.” https://www.spacex.com/vehicles/dragon/,
2023. Accessed on October 31 2023.
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