
A model predictive control approach to motion planning
in dynamic environments∗

Bernhard Wullt+,1, Per Mattsson2, Thomas B. Schön2, Mikael Norrlöf1

Abstract— The current state-of-the art motion planners for
mobile robots typically do not consider the future movement of
moving obstacles. Instead they work by rapid replanning, which
makes them reactively adapt to any changes in the environment.
This can result in a sub-optimal behavior, which we address
in this work by proposing a predictive motion planner that
integrates motion predictions into all planning steps. We demon-
strate the validity of our approach by evaluating our proposed
planner in a dynamic environment where the robot moves
slower than the moving obstacles. We benchmark our predictive
planner with a reactive planning approach and observe better
performance, both in avoiding collisions and maintaining the
robots position in the goal region.

I. INTRODUCTION

Motion planning is the problem of finding a collision-free
trajectory that connects a start and goal state given some
obstacle representation. The traditional setting is to consider
static obstacles and under this setting the problem is
well-studied with many high-performing solutions, see
e.g. [1], [2]. Static environments are natural for many
robots, however it is not uncommon that mobile robots are
used in applications where the environment is dynamic,
like environments involving humans or other mobile robots.
In general, the inclusion of time-varying obstacles makes
the planning problem harder, since the mobile robot needs
to adapt its trajectory to the movement of the obstacles,
hence requiring real-time performance. The common way
to plan in a dynamic environment for mobile robots is to
decompose the planner into a global and a local planner [3].
The global planner finds an initial collision-free path that at
most respects the kinematics of the robot. The local planner
then produces a local trajectory that tracks the global path
while reacting to dynamic obstacles in the vicinity of the
robot. This framework works well and has proven itself as
being a robust solution. However, the current state-of-the-art
(SOTA) navigation stack [4] does not include predicted
obstacle motion in the planning. Instead it relies on rapid
replanning to maneuver past dynamic obstacles which
results in sub-optimal performance.

In this work, we follow the same idea but aim to address
the reactive behavior by explicitly integrating estimated
obstacle motion in the planning to obtain proactive motion.
Our algorithm consists of several modules. The top module

∗This research was supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice Wallenberg
Foundation.

+ Corresponding author
1 ABB Robotics, Sweden, E-mail: name.surname@se.abb.com
2 Department of Information Technology, Uppsala University. E-mail:

name.surname@it.uu.se

predicts the future movement of the obstacles with a
constant acceleration motion model. The trajectories are
then used in a warm started path planner that rapidly
finds a collision-free path in a spatio-temporal volume.
From this path, we construct a collision-free polygonal
tube which is used in a trajectory optimization step to
produce a dynamically feasible trajectory. We move along
this trajectory for one time step and re-use the trajectory in
next iteration, repeating the process. Our contribution is a
predictive motion planner for dynamic environments with
the following features:

• An online obstacle motion estimator.
• A bi-directional path planner that rapidly finds a feasible

collision-free spatio-temporal path.
• A robust trajectory optimization formulation.

Our motion planner is open-sourced1 together with a sim-
ulation environment for benchmarking motion planners in
dynamic environments.

II. RELATED WORK

In modern mobile robotic systems [4] the motion planner
can be decomposed into a global planner and local planner.
The global planner is responsible for producing a geometric
path that takes the robot to the goal region. The path is
limited to at most being kinematically feasible in order to
plan efficiently. Usually, the path planners are either search
or sampling-based. Common search-based methods are
A* [5] and its derivative methods [6], [7], [8]. Search-based
methods plan in an occupancy-grid of the environment
and uses a heuristic function to speed up the planning and
are attractive since these methods guarantee optimality.
Core algorithms within the sampling-based methods are
rapidly-exploring random trees (RRT) [9] and probabilistic
road maps (PRM) [10]. RRT expands a tree from the
start configuration until it reaches the goal region, while
PRM builds a graph representation of the collision-free
region by sampling. The convergence rate of RRT is
significantly improved by bi-directional planning [11],
where two trees are grown consecutively from the start
and goal configurations and tested after each iteration if
they can be connected. RRT has no optimality guarantees,
which is something that RRT* [12] addresses by rewiring
neighbouring states in the tree, such that in the limit, the
optimal path is found. Spatio-temporal planning with RRT is
done in [13], which introduces ST-RRT* for problems with

1https://github.com/whiterabbitfollow/mpc_mp_dyn_
env

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3240

Fig. 1. (Left) The robot is represented by the blue circle with position, pk , velocity, vk and radius r. It wants to navigate to the goal region, G, represented
by the transparent red circle. The robot is surrounded by static and dynamic obstacles, here represented by green boxes and circles, respectively. The dynamic
obstacles follows a trajectory, ξi and at each time step, the robot observes the last No positions, oik , of the obstacle. (Right) A conceptual illustration of
the problem formulation in the spatio-temporal space Z for a one DOF robot. The yellow region represents the set of collision free states, Zfree, while
the purple regions are the states when the robot is in collision, Zcoll. The problem is to find a policy π, that produces a trajectory (red curve) that is
collision-free and at the same time spends as much time as possible within the goal region G while respecting the dynamics.

unknown arrival time. Their planner is bi-directional, but
since the arrival time is unknown, they instead grow a forest
of goal trees along the time dimension. The arrival time is
iteratively lowered by upper bounding the time dimension
to the best arrival time found so far. Our global planner is
similar to ST-RRT*, since we both plan bi-directionally in
space-time, but we have different use cases. We plan with
a fixed time horizon and with a goal tree rooted along the
space-dimension, compared to ST-RRT* which has a forest
rooted along the time-dimension. Furthermore, we make
different assumptions on how to deal with the dynamic
obstacles. In [13] the dynamic obstacles are consider in the
whole time interval, while we assume that the time-varying
obstacles disappear after a certain time. This allows us to
speed up the online planning by warm starting the planner
with a pre-expanded goal tree in the static time interval.

The task of the local planner is to track the global
plan as closely as possible, while respecting the kinematics
and dynamics of the robot, and also optimizing for other
objectives like clearance from obstacles, path smoothness
etc. A classical and well established local planner is the
Dynamic Window Approach (DWA) [14], which searches
over a discretized space of velocities to find the most optimal
one-step velocity action. This is done in a heuristic way
by first filtering out dynamically infeasible velocities and
then simulate the remaining velocity actions over a certain
time horizon with constant control signal. The resulting
trajectories are scored based on an objective function that
weights different metrics, like distance to obstacles, distance
to the goal etc. Finally, the most optimal action is selected
and applied to the system. DWA is simple and works well
in many scenarios, but it produces sub-optimal trajectories,
due to its simple search approach. To address this, modern
local planners [15], [16] include more temporal information
in the planning, following the model predictive control

(MPC) framework. The idea behind MPC [17] is to use a
dynamic model of the system being controlled to predict
how it evolves in a finite time horizon and pick the control
actions that leads to the best outcome according to some
performance metric. The system is then actuated with the
first control action for one time step, and then the process
is repeated to compensate for prediction errors. Time elastic
band (TEB) [15] follows this approach and formulates the
trajectory optimization problem as a non-linear program,
optimizing the trajectory to minimize time to reach a
local via-point from the global plan while considering
kino-dynamic and obstacle avoidance constraints. The
minimal time formulation works well for reactive scenarios,
where obstacle motion is not considered. However, for
spatio-temporal planning, where the motion of the obstacles
is integrated in the planning, it is not suitable to optimize
for minimal time, since obstacles can appear in neighboring
time steps. Model predictive path integral (MPPI) [16]
instead formulates the planning as a stochastic trajectory
optimization problem, relying on Monte-Carlo sampling
to rapidly find a trajectory. To speed up the extensive
sampling, GPUs are leveraged, which of course limits MPPI
to systems where this is available.

A relevant motion planning framework outside of the
mobile robotics domain is FaSTrack [18], which decouples
the planning into a path planner and a tracking controller.
The framework provides a safe tracking controller, that is
computed offline by formulating the tracking problem as a
pursuit-evasion game which is solved using Hamiltonian-
Jacobi reachability analyis. The framework makes no
assumption on what kind of planner is used, it only requires
that the planner should run fast. Our approach is similar to
FaSTrack, in that we use a rapid path planner. However,
while FasTrack tracks the path found by the planner, we
only use the path to construct a convex safe-region which

3241

we optimize a trajectory to lie within.

The method that is closest to our approach is CIAO* [19],
a further generalized version of CIAO [1], reformulated for
dynamic environments. CIAO* includes a pre-processing
step before the optimization, where the collision-free space
is maximized by growing spheres around a given reference
path. Collision avoidance is then obtained by constraining
the trajectory to be within the spheres with some added
margin for obstacle clearance. Even though CIAO* was
formulated for dynamic environments, the authors evaluated
their proposed method in a static setting, which makes it
unclear how well it works for dynamic environments. CIAO*
is also limited to trajectory optimization, while we suggest a
complete motion planning solution. Our proposed trajectory
optimization does not include the CIAO* pre-processing
step, instead we rely on a polygonal representation of the
collision-free space.

Obstacle motion prediction is a rich field in dynamic
motion planning with many existing solutions for different
scenarios [20]. In [21], a Gaussian process is used to
predict the future movement of humans, taking into
account potential goals the human is moving towards. In
our work, we do not limit ourself humans, we simply
make the assumtion that the obstacles move with constant
acceleration, which is not a novel motion model in itself.
However, our idea to disregard dynamic obstacles in the
planning after a certain time period and exploit this in the
planning by warmstarting is, to the best of our knowledge,
novel.

III. PROBLEM FORMULATION

We define the robot as a single body 2 DOF robot with state,
xk = [p⊤, v⊤]⊤ ∈ X , defined by a position, p ∈ W , in the
world space, W ⊂ R2, and a velocity v ∈ R2 at time tk.
The control action is denoted by uk ∈ U , with action space,
U ⊂ R2. The system evolves in discrete time with sample
time ∆ and transitions according to

xk+1 = f(xk, uk), (1)

where f : X × U 7→ X denotes the state-transition
function. The robots geometry can be described by a
circle with radius r centered at the current position of
the robot. The robot is surrounded by, Nobs obstacles,
which can be divided into Ndyn dynamic obstacles and
Nsta static obstacles. All static obstacles are assumed
to have convex geometries. The i-th dynamic obstacle
follows a trajectory, ξi : R 7→ W and its geometry can be
represented by a circle with radius, ri. The robot has no
knowledge of the future movement of the obstacles, instead
at time step k it is given the last No positions of each
dynamic obstacle, oik = [pk−(No−1), . . . , pk]

⊤ ∈ RNo×2,
as observation, ok = [o1k, . . . , o

Ndyn

k] ∈ O, where O is
the observation space. The robot has to navigate to a
goal region, G ⊂ W , defined from a goal position, pg,
and stay there as long time as possible. An illustration of

the problem scenario is presented in the left part of Figure 1.

We define a spatio-temporal volume as Z = W × [0, T],
where T defines the total execution time of the problem.
The set of all collision-free states is denoted by Zfree ⊆ Z
and the set of states that are in collision is denoted by
Zcoll = Z \ Zfree.

We now formulate our problem. Given a start state,
x0, a goal region, G, and an execution time, T , we want
to find a policy π : X × O 7→ U , that solves the following
problem:

maxπ
∑
tk≤T

1G(pk), (2a)

s.t (pk, vk) = xk, (2b)
uk = π(xk, ok), (2c)

xk+1 = f(xk, uk), (2d)
(pk+1, tk+1) ∈ Zfree. (2e)

In the objective, (2a), 1G(p) : W 7→ {0, 1}, is the indicator
function. Hence, the problem is to stay in the goal region
for as long time as possible while at the same time avoid
collisions. The problem formulation is illustrated in Figure 1
(right).

IV. METHOD

We propose to approach the problem by integrating plan-
ning with obstacle motion prediction in an MPC fashion.
Hence, we start by predicting the obstacle motion from the
observations. Next, we find a feasible spatio-temporal path
that is collision-free w.r.t. the predicted motion, from which
we then construct a collision-free spatio-temporal region and
find an optimal trajectory constrained within this region. We
assume that our model predictions are only valid for a short
time horizon, hence we follow our trajectory only during one
time step and then repeat the process again to compensate for
prediction errors. The following sections presents the steps
mentioned in the sequence that they occur in. We end the
section by assembling the final solution.

A. Obstacle motion prediction

We predict the future movement of the obstacles by assuming
that the obstacles move according to a second order polyno-
mial, which has the following form in one dimension,

p(t) = θ0 + θ1t+ θ2t
2, (3)

where θ0, θ1 and θ2 denotes the model parameters. The
assumed motion model is simple and reasonable for short-
horizon predictions, but not accurate for long-horizon pre-
dictions. However, we compensate for prediction errors by
updating our estimates each time step. The parameters of our
motion model is computed by least squares, which results in
parameter matrix, Θ ∈ R3×2Ndyn .

3242

Fig. 2. (Left) Conceptual illustration of the path planning for a 1 DOF problem. The start tree, Ts, is grown from zs and drawn in red. The goal tree, Tg,
is expanded in two stages. The first stage is a pre-processing step, where we expand it offline in the static environment, drawn in black. At the next stage,
which is the online planning stage, the tree is expanded from all the static nodes, which are initialized at time td, drawn in blue. We use the conditional
sampling method from [13], by sampling states that are within a velocity cone, illustrated as a green cone, from the start state. The trees are consecutively
grown and we check at each iteration if the trees can be connected. Once the trees can be connected, dashed green line, we report back the found path.
(Right) Illustrating the idea how to avoid paths that tunnels through obstacles. The i:th time step needs to be in the intersection of Ri−1, represented as
red and green regions, and Ri+1, represented as blue and green regions.

B. Spatio-temportal path planning

The path planner is supposed to find a collision-free path
that connects the start zs and goal state, zg. At its core, the
planner is a bi-directional RRT planner [11], but adapted for
spatio-temporal planning and integrated with warm starting.
We illustrate the planner in Figure 2 (left). The time interval
for the planning is [0, tp], where tp = Np∆ is the planning
horizon, hence we plan Np time steps in the future. We make
the assumption that Np is choosen such that we always can
reach the goal within the time intervall. We divide the plan-
ning interval into two different intervals, one dynamic time
interval, [0, td], where td = Nd∆, thus including Nd time
steps, and one static interval, (td, tp]. Within the dynamic
time interval, we consider the motion of the obstacles in the
planning. In the static time interval, the dynamic obstacles
are disregarded, since our motion predictions are not valid
when extrapolated too far into the future. Note that this is
true for any prediction scheme that does not add any extra
assumptions about how the dynamical obstacles move. This
assumption allows us to warm start our goal tree before the
planning takes place. If we alternatively assumed that the
dynamic obstacles would keep their final predicted position,
then this could in some cases result in that the dynamic
obstacles would be positioned in the goal region, making
it impossible to find a path to the goal. Furthermore, it
would not be possible to warmstart the search, due to the
introduction of new obstacles. Having motivated the removal
of the dynamic obstacles, we next discuss the warmstarting,
which is done by growing a tree from the goal position in
the static environment, disregarding the temporal dimension,
and use the rewiring method from [12] such that all the
paths to the goal vertex are optimal. At run-time, we plan
bi-directionally within the dynamic time interval according
to Algorithm 1, which we now explain in more detail. The

start tree, Ts, is initialized with root at zs = (ps, 0). The
goal tree, Tg, is initialized with vertices, Vws, and edges,
Ews, from the goal tree grown in the static environment,
discussed previously. Thus, the goal tree has multiple roots
located at time td. We expand the trees in a consecutive

Algorithm 1 Bi-directional RRT planner in space-time.
1: function STRRTCONNECT(Θk, ps)
2: Ts = ({} , {})
3: Tg = (Vws, Ews)
4: zs = (ps, 0)
5: addVertex(Ts, zs)
6: Ta, Tb = Ts, Tg
7: for i ∈ [1, . . . , Nmax] do
8: znew = STRRTGrowTree(Ta | Θk)
9: if znew not NULL then

10: status = ConnectTrees(Ta, Tb, znew | Θk)
11: if status is connected then
12: return ReturnPath(znew, Ta, Tb)
13: end if
14: end if
15: Swap(Ta, Tb)
16: end for
17: return NULL
18: end function

fashion, selecting one tree for expansion, Ta, by executing
STRRTGrowTree, which grows the tree according to the
RRT algorithm, adapted for spatio-temporal planning with
some of the techniques from [13]. We present the algorithm
for this in Appendix I. If Ta has been expanded, then we try to
connect the trees, Line 10, and if successful, then we report
back the found path, discretized into m states, Z ∈ Rm×3,
Line 12. If the connection was not successful, we swap trees,
Line 15, and continue to iterate for max Nmax iterations.

3243

C. Trajectory optimization

We use optimization to produce a sequence of optimal
control actions, U ∈ RNp×2, and states, X = [P, V] ∈
RNp+1×4. As input we are given a spatio-temporal path, Z,
containing m states. For each space-time state in the path,
(p̃i, ti) ∈ Z and each obstacle j, we compute the closest
point, bij ∈ R2, and boundary normal, aij ∈ R2. This gives
us a linear approximation to the distance of the j:th obstacle
and the boundary of the robot, gij(p) = a⊤ij(p − bij) − r.
Since all obstacles are convex, we can construct a collision-
free region by combining all distance functions to form a
polygon region with positive distance, Ri = {p | gij(p) ≥
0, ∀j ∈ {1, . . . , Nobs}}. Next, we define an index tuple as
follows

Ik =

{
(
⌈
k
2

⌉
) if k odd

(k2 ,
k
2 + 1) otherwise

, (4)

which results in the sequence, I = ((1), (1, 2), (2), . . . , (m−
1,m), (m)), when k = 1, . . . , Np + 1. We constrain the
positions in the trajectory to lie within the following regions

pk ∈
⋂
i∈Ik

Ri, k = 1, . . . , Np + 1, (5)

which is a convex constraint. It stops the solver from
producing paths that tunnel through obstacles in between the
discretized points, illustrated in Figure 2 (right). To be robust
to prediction errors in our motion estimation, we penalize the
Nd positions from the dynamic time interval which are within
a distance margin ddyn of the Ndyn dynamic obstacles. We
do this by taking the minimum over all distance functions
computed from the dynamic obstacles for time step k and
the distance margin, this results in

σdyn
k (pk) = −min(gi1(pk), . . . , giNdyn(pk), ddyn), (6)

k = 1, . . . , Nd, ∀i ∈ Ik,

which is a convex function since we negate the min operator.
To gain general obstacle clearance from the Nsta static
obstacles, we repeat the process but now for all time steps
and with a static distance margin, dsta, resulting in

σsta
k (p) = −min(gi1(p), . . . , giNsta(p), dsta), (7)

k = 1, . . . , Np + 1, ∀i ∈ Ik.

Having defined our collision-free regions and distance func-
tions, we define our optimization problem as

min
X, U

3∑
i=1

hi(P) + h4(U) (8a)

s.t x1 = xs, (8b)
xNp+1 = xg, (8c)
xk+1 = f(xk, uk), k = 1, . . . , Np, (8d)
uk ∈ U , k = 1, . . . , Np, (8e)

pk ∈
⋂
i∈Ik

Ri, k = 1, . . . , Np + 1, (8f)

where xg = [p⊤g , 0⊤2]
⊤. Our objective functions are defined

as

h1(P) =

Np+1∑
i=1

αi||pi − pg||2, h2(P) =

Nd∑
i=1

βiσ
dyn
i (pi)

h3(P) =

Np+1∑
i=1

ωiσ
sta
i (pi), h4(U) =

Np∑
i=1

||ui||2.

(9)

We inspect our objectives in more detail. The first objective,
h1, is added to obtain paths which are within the goal
region as much as possible. Hence, it is needed to fulfill
the objective specified in the problem formulation, (2a),
which is to stay in the goal region as long as possible. It is
weighted with increasing values for increasing time steps,
αi ≤ αi+1. The second objective and third objective, h2

and h3 are for obstacle clearance. The obstacle clearance
weights are decreasing with increasing time steps. Thus,
βi ≥ βi+1, and ωi ≥ ωi+1. The last term, h4, is added to
penalize large control actions.

Our proposed optimization problem is in its most general
form a non-linear program. However, if the dynamics, (8d),
is linear and the actuator constraint, (8e), is convex, then
the optimization problem becomes a convex optimization
problem.

D. Assembly

Having introduced all steps in the process, we now present
the whole process in Algorithm 2.

Algorithm 2 Outline of the complete planning process.
Require: x0, G, T

1: k = 0
2: Z0 = NULL
3: Warm start Tg in static environment from G
4: while tk ≤ T do
5: ok = ObserveObstacleMotion()
6: Compute Θk by least square from observation ok
7: if Zk is NULL or IsCollision(Θk, Zk) then
8: Zk = STRRTConnect(Θk, pk)
9: end if

10: X∗, U∗ = Solve optimization problem, Eq. (8)
11: Apply first control action u∗

1

12: Zk+1 = Overwrite with positions from X∗

13: k = k + 1
14: end while

Before the planning is started, we warm start the goal tree
Tg, Line 3. At run-time, we first observe the environment
and then estimate the future motion, Line 6. We check if
our current path, Zk, is valid w.r.t. our most recent motion
predictions. If this is not the case or the path has not been
initialized, then we query the path planner. Otherwise, we
re-use our current path. We solve the optimization problem,
Line 10, and apply the first control action. We shift the

3244

optimized path and reuse it for next iteration, repeating the
process according to the MPC procedure.

V. EXPERIMENTS

In order to show the validity of our proposed algorithm, a
custom environment was developed that randomly generates
obstacles and their corresponding trajectories. An example
environment instance is illustrated in Figure 3. The static
obstacles are modeled as boxes with randomized dimensions
and orientations while the dynamic obstacles are modeled as
circles. The number of dynamic obstacles in the environment
ranges between one and three. We define the world space as
W = [−1, 1] × [−1, 1]. We limit the actuation of the robot
so that its dynamics is slower than the moving obstacles. We
define the action space as U = {u ∈ R2 | ||uk||2 ≤ umax}
where umax = 0.01. We set the sample time to ∆ = 1 s.
The robot dynamics is described as a discrete-time double
integrator dynamics. Thus, we have a system with following
form

xk+1 = Axk +Buk, A =

[
I2, I2
02,2, I2

]
, B =

[
I2 · 1

2
I2

]
(10)

where I2 is the 2×2 identity matrix and 02,2 is a 2×2 matrix
with zeros. Since we have linear dynamics and our action
space is convex, our trajectory optimization problem, (8),
becomes a convex optimization problem.

Fig. 3. Sample instance of simulation environment with three dynamic
obstacles, illustrated as green circles with corresponding trajectory. Robot
is illustrated as the blue circle and the goal region is represented by the red
circle.

A problem instance is generated by placing the robot at a
random collision-free position within the environment and
randomizing a collision-free goal position, pg, from which
we define the goal region as

G = {p | p ∈ W, ||p− pg||2 ≤ 0.1}, (11)

If the robot collides with any obstacle then the problem
instance is defined as a failure and is aborted. If the solver
is not able to find a solution, then we introduce slacks to
the distance inequalities, (8f), to relax the problem.

To show the importance of integrating motion predictions
in the planning, we benchmark our approach with reactive
planning, where we run the same suggested planning
steps, but assume that the dynamic obstacles are static

during the dynamic time interval and then disappears
afterwards. As an upper bound to the problem, we evaluate
the performance of our motion planner if we plan with the
exact obstacle trajectories. We run a grid search to select
the best parameters for all three cases, which is described
in Appendix II. The performance is evaluated based on
two metrics, success rate and goal region rate. The former
metric is defined as the fraction of problem instances that
were executed without collision, hence fulfilling (2e). The
latter metric is defined as fraction of time spent in the
goal region, which is our objective, (2a). Once the best
performing parameters are found, we continue with an
extensive evaluation where we test the planners on 100
problem scenarios, executing each scenario for 200 time
steps, T = 200 s.

VI. RESULTS AND DISCUSSION

The best parameters found from the grid search are listed in
Appendix II. We present the success rates and goal region
rates in Table I. By inspecting the results, we see that our
suggested planner is not performing with perfect success rate,
which is reasonable in this environment, since the robot is
deliberately limited to be slower than the obstacles, hence in
some cases collisions become unavoidable due to estimation
errors in the motion predictions. However, we get both a
higher success and goal region rate compared to the reactive
planner, showing that it pays off to plan proactively. If we
compare our planner with the case where we use the exact
obstacle trajectories, we see that we could achieve a higher
success and goal region rate if we improved our motion
predictions.

TABLE I
STATISTICS OVER SUCCESS RATE AND FRACTION OF TIME SPENT IN THE

GOAL REGION. AN ASTERISK AS SUFFIX INDICATES THAT THE EXACT

OBSTACLE MOTION WHERE USED IN THE PLANNING.

Success rate Goal region rate
Reactive 69 % 24 %

Predictive 83 % 36 %
Predictive* 100 % 42 %

We continue by presenting statistics over computation times
for the path planning and trajectory optimization steps in
Table II. In general, the trajectory optimization is what takes
the longest time in the process. This is due to the fact that
we in some cases have to iteratively increase the relaxation,
which results in a large max computation time. However, the
proposed solution is naively implemented in Python, thus it
should be possible to lower the times with a more optimized
implementation.

TABLE II
STATISTICS OVER COMPUTATION TIMES IN COLLISION-FREE CASES.

Path planner Trajectory optimization
mean [s] 0.02 0.37
max [s] 0.13 2.26

3245

VII. CONCLUSION AND FUTURE WORK

We have proposed a new predictive motion planning
algorithm for dynamic environment. It consists of three
steps, obstacle motion prediction, which is done by least
squares, spatio-temporal path planning, which we do
with a warm started RRT planner, and finally trajectory
optimization. We showed the validity of our approach by
evaluating our motion planner in a dynamic environment
and benchmarked our planner with reactive planning. We
observed higher collision-free rate compared to the reactive
case, 83 % versus 69 %, and spent more time steps in the
goal region, 36 % versus 24 %.

For future work we want to expand our motion planner
to multi-body robots. This will require improvements of
our path planner and the procedure to find collision-free
regions, which becomes challenging when the planning in
done in a high-dimensional space and should be executed
online. Moreover, we aim to enhance our motion estimation
by incorporating additional constraints into our predictions,
such as ensuring that obstacles do not intersect with one
another.

REFERENCES

[1] T. Schoels, L. Palmieri, K. O. Arras, and M. Diehl, “An NMPC
approach using convex inner approximations for online motion plan-
ning with guaranteed collision avoidance,” in IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[2] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “Gusto: Guaranteed
sequential trajectory optimization via sequential convex program-
ming,” in IEEE International Conference on Robotics and Automation
(ICRA), 2019.

[3] S. Macenski, T. Moore, D. V. Lu, A. Merzlyakov, and M. Ferguson,
“From the desks of ROS maintainers: A survey of modern & capable
mobile robotics algorithms in the robot operating system 2,” Robotics
and Autonomous Systems, vol. 168, p. 104493, 2023.

[4] S. Macenski, F. Martı́n, R. White, and J. G. Clavero, “The marathon
2: A navigation system,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[6] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), 1994.

[7] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence, vol. 155, no. 1, pp. 93–146, 2004.

[8] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor,
vol. 1001, no. 48105, pp. 18–80, 2008.

[9] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[10] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[11] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2000.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[13] F. Grothe, V. N. Hartmann, A. Orthey, and M. Toussaint, “ST-RRT*:
Asymptotically-optimal bidirectional motion planning through space-
time,” in IEEE International Conference on Robotics and Automation
(ICRA), 2022.

[14] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[15] C. Rösmann, F. Hoffmann, and T. Bertram, “Kinodynamic trajectory
optimization and control for car-like robots,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2017.

[16] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
IEEE International Conference on Robotics and Automation (ICRA),
2016.

[17] S. V. Rakovic and W. S. Levine, “Handbook of model predictive
control,” 2018.

[18] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J.
Tomlin, “Fastrack: A modular framework for fast and guaranteed safe
motion planning,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pp. 1517–1522, IEEE, 2017.

[19] T. Schoels, P. Rutquist, L. Palmieri, A. Zanelli, K. O. Arras, and
M. Diehl, “CIAO*: MPC-based safe motion planning in predictable
dynamic environments,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6555–
6562, 2020.

[20] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,” The
International Journal of Robotics Research, vol. 39, no. 8, pp. 895–
935, 2020.

[21] M. N. Finean, L. Petrović, W. Merkt, I. Marković, and I. Havoutis,
“Motion planning in dynamic environments using context-aware
human trajectory prediction,” Robotics and Autonomous Systems,
vol. 166, p. 104450, 2023.

APPENDIX I

The tree expansion is presented in Algorithm 3. In the tree
expansion, we start by sampling a collision-free state, zsample,
within the dynamic time interval, Line 2, which is done by
the conditional sampling technique from [13]. Concretely,
this means that we only sample states, zsample, which can be
reached from the start state zs with constant speed,

ssample = ||psample − ps||2/(tsample − ts), (12)

where ssample ∈ [0, smax]. The set of reachable states results in
a cone in space-time with apex at the start state, illustrated in
the left part of Figure 2. If the sampled state is collision-free,
then it is accepted, and we find the nearest state in the tree,
Line 3. In a standard RRT implementation we would return
the node in the tree that has the smallest distance according
to some norm. In our case however, we first need to select a
set of states, Zfeasible, which are temporally-coherent and are
reachable from the sampled state. We use the same masking
as in [13], which is if the tree is the start tree, Ts, we define
the set of feasible states as

Zfeasible = {(p, t) ∈ Ts | t < tsample, (13)
||psample − p||2/(tsample − t) ≤ smax}.

Thus, we select states that are backwards in time relative to
tsample and are reachable. On the other hand, if the expanding

3246

Algorithm 3
1: function STRRTGROWTREE(T)
2: zsample = SampleConditionally(zs | Θk, smax)
3: znearest = FindNearest(T , zsample | smax)
4: if znearest then
5: status, znew = LocalPlanner(znearest, zsample | Θk)
6: if status not collision then
7: addVertex(T , znew)
8: addEdge(T , znearest, znew)
9: return znew

10: end if
11: end if
12: return NULL
13: end function

tree is the goal tree, Tg, then we define the set of feasible
states which are forward in time relative to tsample

Zfeasible = {(p, t) ∈ Tg | t > tsample, (14)
||p− psample||2/(t− tsample) ≤ smax}.

This temporal masking ensures that our tree becomes tem-
porally coherent and that the states are reachable. After this
masking, the nearest state, znearest is computed by returning
the state that has the smallest ℓ2 distance.

znearest = argmin{||z − zsample||2 | z ∈ Zfeasible} (15)

With znearest found, a local planner is employed, Line 5. It
computes a state znew, that lies along the line connecting
znearest and zsample. It then collision checks the straight line
transition from znearest to znew. We return the collision status
together with znew. If the transition is collision-free then the
state is added to the tree and we return the state, Line 9, else
we return NULL to indicate that the tree was not expanded,
Line 12.

APPENDIX II

The grid search was done by evaluating the three different
planners on 5 environment instances with corresponding 5
problem scenarios for 100 time steps, T = 100 s. Thus, in
total 25 problem instances were used for evaluation. The
scoring was based on the success rate, meaning the number
of problem instances which were collision-free. In case of a
tie, we scored based on the goal region rate, fraction of time
spent in the goal region. The result from the grid search is
presented in Table III.

TABLE III
PARAMETERS USED FOR THE PLANNERS. exp(a, b,N) MEANS THAT WE

COMPUTE N WEIGHTS LINEARLY SPACED BETWEEN a AND b AND APPLY

THE EXPONENTIAL FUNCTION ELEMENT-WISE.

Parameter Reactive Predictive Predictive*
No - 5 5
Np 40 50 50
Nd 9 9 15
dsta 0.05 0.05 0.05
ddyn 0.3 0.2 0.2
α exp(−2, 0, Np) exp(−2, 0, Np) exp(−2, 0, Np)))
β exp(1, 0, Nd) exp(1,−1, Nd) exp(1,−1, Nd)
ω exp(1, 0, Np) exp(1,−1, Np) exp(1,−1, Np)

smax 0.2 0.2 0.2

3247

