
 
 

 

  

Abstract— Melt pressure is a key indicator of melt flow 
stability and quality in polymer extrusion processes. The melt 
pressure level affects the degree of mixing and melt pressure 
stability which in turn influence the melt quality. Meanwhile, 
short-term melt pressure fluctuations result in dimensional 
variations in the extruded products in continuous extrusion 
processes. In industrial polymer extruders, the melt pressure is 
measured using pressure transducers installed close to the die 
entry. Process operators ensure the safe operation of the process 
based on these melt pressure measurements. This study proposes 
an intelligent control system based on the adaptive neuro-fuzzy 
inference system to manipulate the screw speed to maintain the 
melt pressure at a desired level while minimizing melt pressure 
fluctuations. Data recorded from an actual extrusion process 
was used to determine the parameters of the membership 
functions and the rule base of a Sugeno fuzzy inference system 
using neuro-fuzzy learning. The controller was designed and 
validated through simulation using Matlab Simulink. The 
results indicated that the proposed controller was capable of 
maintaining the desired melt pressure level while minimizing 
melt pressure fluctuations across different extrusion processing 
conditions, by manipulating the screw speed. Therefore, this will 
be an attractive solution to improve the dimensional stability and 
product quality of extruded products in continuous polymer 
extrusion processes. 

I. INTRODUCTION 
OLYMER extrusion is a fundamental process that is used as 
an initial/intermediate process in manufacturing plastic 

products such as pipes, films, sheets, tubes, etc. [1]. Although 
the melt viscosity and the melt temperature distribution across 
the melt flow are considered as key indicators of the quality 
of the polymer melt, due to the limitations in the measuring 
instruments, these parameters are not monitored in real-time 
in industrial extrusion processes [2]. This inhibits the 
implementation of real-time quality control strategies 
resulting in material and energy wastage. Alternatively, in 
industrial polymer extrusion processes, melt pressure is used 
as a key indicator of the melt stability as it can be readily 
measured with a pressure transducer at the adaptor close to 
the die entry. Process operators use the melt pressure 
measurements to troubleshoot industrial extrusion processes 
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and to ensure process safety. 
 The melt pressure level affects the throughput at a given 
screw speed, leading to variations in the melt temperature, 
degree of mixing, and melt pressure stability [3]. In 
continuous polymer extrusion processes, the melt stability 
directly affects the dimensional stability of the extruded 
product. Short-term melt pressure fluctuations, which are also 
known as ‘surging’, lead to dimensional variations in the 
extruded product in continuous polymer extrusion processes, 
and hence it is important to minimize these melt pressure 
fluctuations while maintaining an appropriate level of melt 
pressure [4]. Changes to the screw design can improve the 
melt stability of the process significantly [5]. However, 
proper selection and fine-tuning of extruder process settings 
for a given screw design and material should be able to further 
improve the melt stability of industrial extrusion processes. 
 To understand the pressure development in single-screw 
extrusion processes, several analytical and empirical models 
have been developed in past studies [6]-[12]. They are useful 
in identifying the effect of extrusion process parameters on 
melt pressure development, which in turn would be beneficial 
for implementing melt pressure control strategies.  
 The earliest works on extrusion control systems were 
focused on controlling the melt temperature and pressure as 
an indirect means of controlling the melt viscosity [13]. This 
was due to the difficulties in monitoring melt viscosity in real-
time as mentioned earlier. Costin et al. [14] developed a 
control strategy to control the melt pressure by adjusting the 
screw speed, based on dynamic transfer function models. In 
another study, Dahlin feedback controllers were proposed to 
regulate both melt pressure and temperature with the aim of 
achieving the desired melt viscosity and extrudate dimensions 
[15]. The controller exhibited good steady-state control of the 
melt pressure and temperature. Lin and Lee [16] proposed an 
integral observer control technique, which incorporated a 
third-order state-space dynamic model to control melt 
pressure and temperature by manipulating the screw speed. 
Work by Previdi et al. [17] introduced classical proportional-
integral-derivative (PID) controllers to control the melt 
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temperature and pressure. A small-scale laboratory extruder 
equipped with the proposed controller exhibited better melt 
pressure control than an extruder equipped with a melt pump. 
Jiang et al. [18] developed a melt pressure controller based on 
generalized predictive control. This controller tracked the set 
points accurately, outperforming commercial PID controllers. 
 The majority of the reported past studies on controlling the 
melt pressure in polymer extrusion processes were based on 
traditional control approaches. With the advancements in 
artificial intelligence, control techniques based on fuzzy logic 
[13] and data-driven control [19] have become increasingly 
popular across a wide range of applications, due to their 
enhanced performance compared to traditional approaches. 
 This study introduces a controller based on the adaptive 
neuro-fuzzy inference system (ANFIS) to control the melt 
pressure in a single-screw extrusion process in real-time, by 
manipulating the screw speed. A Sugeno fuzzy inference 
system (FIS) was designed. The input membership functions 
and the rule base of the FIS were determined through adaptive 
neuro-fuzzy training using an experimentally collected 
dataset from an actual extrusion process. The ability of the 
controller to maintain a desired melt pressure level and to 
minimize melt pressure fluctuations were assessed via 
simulation across multiple processing conditions. To the best 
of the knowledge of the authors, no previous study has 
incorporated an ANFIS in developing a melt pressure 
controller for polymer extruders. 

II. METHODOLOGY 
In this study, a controller was designed and implemented 

through simulation to control the melt pressure at the die entry 
of a single-screw extrusion process. The aim of the study was 
to develop a control mechanism that manipulates the process 
control variables to maintain the melt pressure at a desired 
level without significant temporal variations. A control 
technique based on fuzzy logic was used considering its 
numerous benefits including the ability to handle complex 
nonlinearities in the process, the use of human-like reasoning 
based on a set of linguistic IF-THEN rules, simplicity, and 
low installation cost [13].  

Mamdani and Takagi-Sugeno are widely used fuzzy 
inference systems that have been used across different control 
applications [20]. Despite the benefits that typical fuzzy 
controllers can offer, these fuzzy inference systems require 
the linguistic rules and membership functions to be defined 
manually based on expert knowledge of the process. This 
could be a tedious and time-consuming effort for complex 
industrial processes, while the performance of the controller 
may also be adversely affected by the inaccurate formulation 
of the fuzzy rule base. Hence, in this study, an ANFIS was 
used to design the controller as it allows the parameters of the 
membership functions as well as the rule base to be 
determined using actual process data rather than defining 
them arbitrarily. This requires a dataset of the extrusion 

process to allow the controller to learn from process data. 
Hence, this study was designed to have three key stages: (i) 
Data collection, (ii) Development of prediction models, and 
(iii) ANFIS controller design. 

A. Data Collection 
To collect the required dataset, an experimental trial was 

carried out on a Davis Standard BC-60 single-screw extruder 
with a screw diameter (D) of 63.5 mm. A barrier-flighted 
screw with a spiral Maddock mixer (with a 2.5:1 compression 
ratio) was used due to its efficient melting and mixing 
performance. The solids conveying, melting, and melt 
conveying zones of the screw had lengths of 5*D, 13*D, and 
6*D, respectively. A schematic of the extruder is shown in 
Fig. 1. A virgin HDPE was selected as the polymeric material 
for the experimental trials (brand name: ExxonMobil HYA 
800; density: 0.961 g.cm-3; MFI: 0.7 g/10 min at 190 °C, 2.16 
kg).  

Data collection was carried out under three different barrel 
set temperature conditions as indicated in Table I. The 
extruder had four main heating zones (denoted by T1, T2, T3, 
and T4) and three additional zones (at the clamp ring, adapter, 
and die). The temperatures at the three additional heating 
zones were maintained at the value of the last main heating 
zone (i.e., T4). This was done to ensure that the consistency of 
the polymer melt was maintained until it entered the die. 
Under each temperature condition, the screw speed was 
varied between 0 and 90 rpm. Melt pressure was measured 
using a PT422A Dynisco pressure sensor installed at the 
adapter close to the die entry as shown in Fig. 1, while the 
screw speed and barrel set temperature data were recorded 
from the sensors in the extruder. A detailed explanation of the 
data collection procedure can be found in a previous study [2] 
by the authors and hence not discussed here. Based on this 
procedure, a total of 115,800 data points were collected at a 
frequency of 10 Hz. The dataset was later down-sampled to a 
frequency of 1 Hz by averaging over every 10 samples to 
reduce noise. The pre-processed dataset is shown in Fig. 2. 

 
Fig. 1.  The single-screw extruder used for the experiment in this study 
(dimensions are shown in millimeters) 
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TABLE I 
BARREL SET TEMPERATURES OF THE EXTRUDER 

Temperature 
condition 

Barrel set temperatures (°C) 
Barrel heating zones Clamp 

ring Adapter Die 
T1 T2 T3 T4 

A (High) 110 130 180 230 230 230 230 
B (Medium) 105 125 175 215 215 215 215 

C (Low) 100 120 170 200 200 200 200 
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B. Development of Prediction Models 
Although the melt pressure at the die entry can readily be 

measured from the melt pressure transducers available on 
industrial extruders, a modelling technique is required to 
predict the response of the melt pressure to control decisions 
made by the controller in a simulation environment. To enable 
this, a deep learning model proposed by the authors in a 
previous study [2] was used to predict the melt pressure. Since 
the procedure for training and validating this model was 
discussed in detail in the previous study [2], they are not 
discussed here. The model was constructed by combining a 
deep autoencoder (DAE) with a multilayer perceptron neural 
network (NN), which takes in the screw speed and four barrel 
set temperatures of the extruder as inputs to predict the melt 
pressure at the die entry. The same fine-tuned 
hyperparameters reported in the previous study [2] were used 
to train the model. The trained DAE-NN melt pressure model 
recorded a training root mean square error (RMSE) of 0.247 
and exhibited an RMSE of 0.250 on unseen test data. 

 
In addition to the melt pressure, the mass throughput of the 

extruder was also used as an additional control variable to 
ensure that the extruder operates within the desired operating 
limits. As confirmed by White and Schott [21], control of melt 
pressure in the melt conveying zone (i.e., near the die entry) 
affects the output rate of the extruder. Hence, it is important 
to make sure that the mass throughput of the extruder is also 
maintained within desired limits, while controlling the melt 
pressure. Therefore, another model is required to estimate the 
mass throughput in real-time during the simulation. A 
multilayer perceptron neural network was trained to predict 

the mass throughput using the screw speed and four barrel set 
temperatures of the extruder as inputs. To train the mass 
throughput model, the same train and test split used to train 
the pressure model was used. The hyperparameters of the 
throughput model were fine-tuned using k-fold cross-
validation with a value of k = 10 on the training set. The neural 
network with the best performance was found to have two 
hidden layers with 40 neurons per hidden layer. It was trained 
for 500 iterations with a batch size of 16 at a learning rate of 
0.001. The cross-validation results yielded an average training 
RMSE of 0.889 and an average validation RMSE of 0.903 for 
this hidden layer configuration. The model exhibited 
consistent performance across all 10 folds of the training data. 
Finally, the model with the fine-tuned hyperparameters was 
trained on the entire training set and tested on the unseen test 
data. It resulted RMSE values of 0.948 and 1.002 on training 
and test sets, respectively, indicating good generalization 
performance on unseen data without overfitting. 

C. ANFIS Controller Design 
The aim of developing an ANFIS controller is to minimize 

the melt pressure variations while maintaining a desired melt 
pressure level at a given screw speed of the extruder. The 
controller can achieve this by appropriately adjusting the 
process settings of the extruder (i.e., screw speed and barrel 
set temperatures). However, due to the multi-input single-
output (MISO) nature of ANFIS controllers, only the screw 
speed was selected as a manipulated variable. Since the 
influence of barrel set temperatures is negligible compared to 
the influence of screw speed on both melt pressure and mass 
throughput, this would not have a negative effect on the 
performance of the controller. This is further confirmed by the 
correlation coefficients presented in Table II. Hence, the 
controller was designed to have one manipulated variable 
(i.e., screw speed) and two controlled variables (i.e., melt 
pressure and mass throughput). 

Two error signals were generated as shown by Eqs. (1) and 
(2), and fed to the controller as inputs. 

 
𝐸! = 𝑃"#$%&#" − 𝑃'()*'+              (1) 
𝐸, = 𝑀"#$%&#" −𝑀'()*'+                (2) 
 
Here, 𝐸! and 𝐸, denote the melt pressure error and the 

mass throughput error respectively. 𝑃"#$%&#" and 𝑃'()*'+ 
denote the desired and actual melt pressure values, while 
𝑀"#$%&#" and 𝑀'()*'+ indicate the desired and actual mass 
throughput values, respectively. 

The neuro-fuzzy system was trained using the collected 
dataset, with the Neuro-Fuzzy Designer toolbox in Matlab. A 

 
Fig. 2.  Pre-processed dataset (a) variation of process settings (b) 
recorded melt pressure data during the experimental trial 

TABLE II 
CORRELATION COEFFICIENTS OF EXTRUDER PROCESS SETTINGS WITH 

CONTROLLED VARIABLES 
Controlled 

variable 
Barrel set temperatures Screw 

speed T1 T2 T3 T4 
Melt pressure -0.087 -0.025 -0.132 -0.137 0.854 

Mass throughput 0.052 0.110 -0.010 -0.048 0.984 
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Sugeno FIS structure was designed with seven membership 
functions for each controller input. Triangular-shaped 
membership functions were chosen for the controller inputs, 
considering their wide popularity in practical applications 
[13]. Linear membership functions were chosen for the 
controller output. Fig. 3 illustrates the designed neuro-fuzzy 
model used to tune the parameters of the Sugeno FIS. The 
model converged after 10 iterations and reported an RMSE of 
0.010003. The model had learned 49 fuzzy rules and the AND 
operator was used to combine the two conditions in each rule. 
The input membership functions learned by the neuro-fuzzy 
system are illustrated in Figs. 4(a) and 4(b). p_mf1 to p_mf7 
represent the input membership functions of the melt pressure 
error, while m_mf1 to m_mf7 indicate the input membership 
functions of the mass throughput error. Fig. 4(c) illustrates the 
output surface. 

 

 Next, a feedback control system was designed using the 
tuned ANFIS controller. The controller takes two inputs (i.e., 
melt pressure error and mass throughput error) and produces 

a control output (i.e., screw speed change). To assess the 
performance of the controller, it was implemented on Matlab 
(R2021b) Simulink. Fig. 5 illustrates the structure of the 
proposed control system that was evaluated through 
simulation. The extruder process settings (i.e., barrel set 
temperatures and screw speed) measured from the extrusion 
process in real-time are fed to the two prediction models, 
which in turn provide an estimate of the melt pressure and 
mass throughput. These predictions are then subtracted from 
the desired values to calculate the melt pressure error and the 
mass throughput error. The ANFIS controller then determines 
the appropriate screw speed change necessary to bring down 
the errors to zero.  

III. RESULTS AND DISCUSSION 
To evaluate the performance of the developed ANFIS 

controller, its ability to track a desired melt pressure level 
across a range of different operating conditions was assessed. 
The melt pressure level and the mass throughput rate with and 
without the ANFIS controller at different barrel set 
temperature conditions and screw speeds were recorded and 
compared. Figs. 6, 7, and 8 illustrate the comparison of the 
melt pressure level and mass throughput with and without the 
ANFIS controller, along with the screw speed changes 
applied by the controller at high, medium, and low barrel set 
temperature conditions, respectively. Due to the limited space 
available, only the comparisons of screw speeds of 10, 50, and 
90 rpm are presented. 

For the purpose of this study, the desired melt pressure 
level and mass throughput were determined considering the 
average values at each screw speed. However, it should be 
noted that these desired values may be changed within an 
achievable range under each screw speed setting. The melt 
pressure measurements at each screw speed setting are shown 
over the period during which the screw speed was held 
constant at the specified speed without any step changes. As 
can be observed from Figs. 6-8, the ANFIS controller was 
able to achieve the desired melt pressure level while 
minimizing pressure fluctuations, regardless of the barrel set 
temperature and screw speed conditions. 

At the 10 rpm screw rotational speed, regardless of the set 
temperature condition, both melt pressure and mass 
throughput were found to be more consistent and closer to the 
desired values with the ANFIS controller implemented. 
However, under the medium set temperature condition, the 

 
Fig. 4.  (a) and (b) Input membership functions, (c) Output surface for 
the ANFIS 
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Fig. 3.  ANFIS model structure 
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Fig. 5.  Proposed feedback control system 
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controller resulted in slight melt pressure fluctuations with a 
magnitude of around 0.1 MPa, although it achieved the 
desired pressure level. 

The controller exhibited the most significant improvement 
in performance in terms of regulating the desired melt 
pressure, at the 50 rpm screw speed setting across all set 
temperature conditions. Without the controller, very high melt 
pressure fluctuations were observed at the medium and low 
set temperature conditions. As shown in Figs. 7(b) and 8(b), 
these fluctuations have magnitudes as high as about 5 MPa. 
The controller was able to bring down these fluctuations quite 
significantly, however, this was achieved at the expense of 
maintaining the desired level of mass throughput. At the 
medium and low set temperature conditions, the mass 
throughput showed reductions of about 10 and 50 g/s, 
respectively. Although this reduction is significant and would 
affect the production rate of the extruder, this compromise can 
be justified considering the improvement in melt stability 
provided by the controller. 

Figs. 6(c), 7(c), and 8(c) show that, at the 90 rpm speed 
setting, the melt pressure fluctuations are smaller than those 
at the 50 rpm speed but larger than those at the 10 rpm speed 
without the controller. The implementation of the ANFIS 
controller has enabled achieving the desired melt pressure 
level and maintaining that with only very small fluctuations. 
The controller was successful at getting very close to the 
desired mass throughput level as well. 

IV. CONCLUSION 
This study proposed a control approach based on fuzzy 

logic and neuro-adaptive learning, to regulate the melt 
pressure in a single-screw extrusion process. Only the 
preliminary performance evaluation tests are presented in this 
paper, as the research is still in its early stages. The ANFIS-
based control approach was chosen considering its benefits 
such as the ability to control nonlinear processes, the ability 
to design the controller without a mathematical model of the 

 
Fig. 6.  Performance evaluation of the ANFIS controller at different screw speeds under the high temperature condition (a) 10 rpm (b) 50 rpm (c) 90 rpm 
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Fig. 7.  Performance evaluation of the ANFIS controller at different screw speeds under the medium temperature condition (a) 10 rpm (b) 50 rpm (c) 90 
rpm 
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system, and the ease with which the FIS parameters and rule 
base can be determined. At this stage, the proposed controller 
has only been tested via simulation using Matlab Simulink. 
The controller exhibited excellent performance in terms of 
achieving and maintaining the desired melt pressure level 
while minimizing melt pressure fluctuations, across multiple 
operating conditions.  

Although the controller has exhibited good performance 
when tested through simulation, it is not yet ready to be 
incorporated into an actual extrusion process. Further 
performance evaluations such as the disturbance rejection 
ability of the controller should be carried out before 
implementing the controller in an actual extruder. Moreover, 
the ANFIS controller was trained only on a dataset collected 
from processing an HDPE material using a barrier-flighted 
screw. The controller’s performance may be affected if the 
polymeric material or the screw design is changed. 
Conventional gradual compression and rapid compression 
screws generally exhibit higher melt thermal instability, and 
hence it might be more challenging for the controller to 
regulate the process under such conditions. Hence, the authors 
will investigate addressing these issues in future work. 
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Fig. 8.  Performance evaluation of the ANFIS controller at different screw speeds under the low temperature condition (a) 10 rpm (b) 50 rpm (c) 90 rpm 
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