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Abstract— Autonomous ships heavily depend on their sensor
systems for safe and efficient operation. When these critical sen-
sor systems are compromised by faults, the entire autonomous
operation is put at risk. Detecting and accurately estimating
the magnitude of such faults becomes imperative to ensure the
reliability and safety of autonomous ships. In response to this
challenge, this paper presents a robust methodology built upon
adaptive Kalman filter with forgetting factor to estimate the
magnitude of sensor faults. What sets our approach apart is the
innovative perspective taken towards fault diagnosis. Instead
of treating the fault as an additional state variable within
the system, we directly estimate the fault magnitude based
on the available measurements. Our approach is demonstrated
through extensive simulations, showcasing the effectiveness and
resilience of the proposed method. The results highlight its po-
tential to significantly enhance the dependability of autonomous
ships in the face of sensor faults, contributing to their continued
success in a wide range of real-world applications.

I. INTRODUCTION

The advancement of autonomous ship technology has been
rapid, driven by the increasing demand for applications such
as cargo delivery, defense operations, search and rescue
missions, and even passenger transportation [1]. Autonomous
ships are equipped with an array of sensors, including
GNSS (Global Navigation Satellite System), LIDAR (Light
Detection And Ranging), RADAR (Radio Detection And
Ranging), Camera, and IMU (Inertial Measurement Unit),
which provide vital data for determining their precise posi-
tion and environmental conditions. This data is instrumental
in designing the guidance and control systems necessary to
fulfill the ship’s intended tasks [2].

However, the reliability of these sensors can be compro-
mised due to a variety of factors, such as material degra-
dation, physical damage, or malicious attacks [3]. Sensor
faults can lead to misinterpretations of actual conditions,
potentially preventing the ship from achieving its objectives.
In the worst-case scenario, these faults can result in the ship
becoming lost or causing accidents [4]. For instance, consider
a situation where a ship’s GNSS sensor is tampered with
or hacked. The ship may receive misleading position data,
causing it to deviate from its intended course and potentially
becoming disoriented or lost [5].

To mitigate the risks associated with sensor faults and en-
sure the safety of autonomous ships, the ability to detect and
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quantify these faults is crucial. However, directly measuring
the magnitude of sensor faults is not feasible, making fault
diagnosis a critical concern in autonomous ship systems [6].
Accurate diagnosis of sensor faults is the first step in enabling
the system to compensate for these faults effectively, thereby
safeguarding the ship’s operation and ensuring that it can
fulfill its tasks reliably and securely.

A. Related work

Fault diagnosis for autonomous ships has garnered sig-
nificant attention within the research community in recent
years [7]. This heightened interest is due to the recognition
of the critical role that fault diagnosis plays in ensuring the
safe and reliable operation of autonomous maritime systems.
Faults, which can manifest in various forms, encompass
actuators, sensors, and the structural components of these
vessels [8]. Actuator faults can include issues with propulsion
systems, steering mechanisms, and other components respon-
sible for maneuvering the ship. Detecting and diagnosing
such faults is crucial for maintaining control and navigational
capabilities. Sensor faults, as previously discussed, are of
paramount concern. These faults can lead to incorrect data
inputs, affecting the ship’s perception of its environment,
and consequently, its decision-making processes. Addressing
sensor faults is vital for accurate navigation and safe opera-
tion. While less common, structural faults in the vessel itself,
such as hull damage, can also impact the ship’s integrity
and seaworthiness. Detecting structural faults is essential for
preventing catastrophic failures and ensuring the safety of
the ship and its crew [9].

The field of fault diagnosis has seen the development of a
wide array of methods and techniques aimed at identifying
and mitigating faults in complex systems. These methods
have evolved to address the specific challenges and re-
quirements of diverse applications. A comprehensive survey
by Gao, et al. [10], provides an overview of various fault
diagnosis techniques, including model-based methods, data-
driven approaches, and hybrid strategies. It also discusses
the challenges specific to sensor systems. Guo, et al. [11],
introduced H-Infinity Kalman filtering as a robust approach
for sensor fault diagnosis in autonomous ships. This method-
ology focuses on estimating sensor faults directly from mea-
surements, enhancing fault detection and system resilience.
The use of machine learning algorithms for sensor fault
detection is explored in works like Cheliotis, et al. [12]
and Diget, et al. [13]. These techniques leverage historical
data to detect abnormal sensor behavior and contribute to
autonomous system safety. Geng, et al. [14], investigated
the role of sensor redundancy and data fusion techniques
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in enhancing fault tolerance. Redundant sensors can provide
backup information to validate sensor data and detect incon-
sistencies. In the area of robust fault diagnosis methods, sev-
eral noteworthy contributions have been made by researchers.
These methods offer innovative approaches to estimate both
the system’s state and faults simultaneously, ensuring the
reliability and safety of complex systems. Ticlea, et al.
introduced an approach that enables the estimation of both
the system’s state and system faults concurrently [15]. This
method is based on a discrete deterministic formulation of
an adaptive observer, which draws inspiration from the work
presented by Besançon, et al. in [16]. The simulation results
in the study by Ticlea, et al. demonstrate the convergence of
their estimation method. Notably, one of the advantages of
this approach is the flexibility to adjust the tuning parameter,
denoted as λ. This parameter allows for the fine-tuning of
the convergence rates for both state estimation and system
fault estimation. This adaptability is valuable for customizing
the method to specific system requirements and dynamics.
Another significant contribution to simultaneous state and
system fault estimation comes from Zhang [17]. His method
is tailored for actuator fault diagnosis and is rooted in
the Kalman Filter framework, designed for discrete linear
stochastic systems. These methodologies aim to not only
estimate the system’s state accurately but also identify and
quantify any potential faults within the system. This is
essential for maintaining system performance and safety in
applications where reliability is paramount.

Although significant progress has been made in the field
of fault diagnosis for various systems, it is evident that
sensor fault diagnosis has received relatively less attention.
This is primarily attributed to the inherent complexities and
challenges associated with addressing sensor faults. In many
systems, especially in autonomous ships, a multitude of
sensors are employed to capture diverse aspects of the en-
vironment and the system itself. Each sensor can potentially
exhibit unique fault patterns, making it challenging to design
a unified diagnosis framework. Furthermore, autonomous
systems often incorporate redundancy in their sensor config-
urations to enhance reliability. However, dealing with sensor
redundancy introduces complexities in fault diagnosis, as the
system must discern between faulty and healthy sensors.
Moreover, sensor measurements inherently exhibit random
variations, which can sometimes mimic the effects of a
fault. Distinguishing between natural measurement noise and
actual sensor faults requires advanced statistical analysis.
Despite these challenges, it is essential to recognize the
significance of sensor fault diagnosis in ensuring the safety
and reliability of autonomous systems. As the field continues
to evolve, it is expected that more attention will be directed
toward enhancing the robustness and dependability of sen-
sor fault diagnosis in autonomous ships and other critical
applications.

B. Contribution of this paper

This paper makes a significant contribution by introducing
a novel sensor fault diagnosis algorithm tailored for au-

tonomous ships. The primary focus of our approach is on the
seamless integration of sensor measurements into the state
space equations. We initiate this process by meticulously
filtering the incoming data from the sensor systems and aug-
menting it within the framework of the state space equations.
A crucial and distinguishing feature of our methodology
is the subsequent application of an adaptive Kalman filter.
What sets our approach apart is the innovative perspective
taken towards fault diagnosis. Instead of treating the fault as
an additional state variable within the system, we directly
estimate the fault magnitude based on the available mea-
surements. This deviation from the conventional approach to
fault diagnosis significantly streamlines the process, resulting
in a more efficient and accurate means of identifying and
quantifying sensor faults. The presented algorithm has the
potential to enhance the reliability and safety of autonomous
ships by promptly and precisely diagnosing sensor issues,
thereby ensuring uninterrupted and dependable operation in
various real-world scenarios.

C. Organization of this paper

Section II of this paper is dedicated to problem formula-
tion, where we establish the foundational context and set the
stage for our research. Moving on to Section III, we delve
into the core of our work by presenting the intricacies of
our sensor fault diagnosis algorithm. This section provides
a detailed exposition of the methodology, including the
steps involved and the underlying principles that guide our
approach. We discuss how we handle the filtering of sensor
measurements, the augmentation of state space equations,
and the application of the adaptive Kalman filter. In Section
IV, we introduce the autonomous ship model, which serves as
the basis for our research. Section V is devoted to numerical
simulation. Here, we present the results of our simulations,
providing empirical evidence of the effectiveness and ro-
bustness of our sensor fault diagnosis algorithm. Finally,
in Section VI, we wrap up our findings and contributions,
summarizing the key takeaways from our research.

II. PROBLEM FORMULATION

In this paper, we consider models of autonomous ships
that can be transformed into the following form:

pk = Akpk−1 +Bkuk +wk (1)
sk = Ckpk + vk (2)

Here, pk ∈ Rn represents the state of the autonomous ship
at time step k, while pk−1 is the state at the previous time
step. The terms Ak ∈ Rn×n and Bk ∈ Rn×p denote
matrices that describe the dynamics and control inputs,
respectively, and uk ∈ Rp is the control input at time k.
Additionally, wk ∼ N (0,Qk) ∈ Rn accounts for stochastic
disturbances or uncertainties in the model. Furthermore, sk ∈
Rm represents the sensor measurements obtained from the
autonomous ship at time step k. The matrix Ck ∈ Rm×n

defines the relationship between the ship’s state and the
sensor measurements, and vk ∼ N (0,Rk) ∈ Rm represents
sensor noise or measurement errors.
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If we use the symbol θ ∈ Rm to represent the magni-
tude of sensor faults, the measurement equation (2) can be
reformulated as follows:

sk = Ckpk +Ψkθ + vk (3)

Here, Ψk ∈ Rm×m describes how sensor faults influence the
measurements and is usually known. Equation (3) highlights
the importance of considering sensor faults when interpreting
sensor measurements in autonomous ships. The introduction
of θ and Ψk enables the model to capture the impact of
sensor faults on the observed data, which is crucial for fault
detection, diagnosis, and system reliability in the autonomous
ships. By understanding and accounting for sensor faults,
we can make more informed decisions and take appropriate
corrective actions to ensure the accuracy and robustness of
the autonomous ship’s operation. In this paper, several key
assumptions are made, including:

Assumption 1: The matrices Ak, Bk, Ck, Ψk, Qk, and
Rk are upper bounded.

Assumption 2: The pair (Ak, Ck) is uniformly observ-
able.

Assumption 3: The signals contained in the matrix Ψk are
persistently exciting.

The primary goal of this research paper is to achieve a
precise and reliable estimation of the magnitude represented
by θ. In this context, θ is a crucial parameter or variable of
interest, which is typically associated with sensor faults or
anomalies in the system.

III. SENSOR FAULT DIAGNOSIS ALGORITHM

The central concept explored in this paper is to apply
a filtering process to the measurement signal sk, and this
process is governed by the following equation:

zk = (I −Af∆t) zk−1 +Af∆tCkpk−1

+Af∆tΨkθ +Af∆tvk (4)

Here, zk ∈ Rm is the filtered measurement signals, Af ∈
Rm×m is a positive definite matrix, and ∆t ∈ R is the filtered
time step. Augmenting and rearranging (1) and (4), we have:

pk = Akpk−1 +Bkuk +wk (5)
zk = Af∆tCkpk−1 + (I −Af∆t) zk−1

+Af∆tΨkθ +Af∆tvk (6)

Let us denote

ξk =

(
pk

zk

)
∈ Rn+m (7)

as the new augmented state. Then we have:

ξk = Akξk−1 + Bkuk + Ψ̄kθ + w̄k (8)
Sk = Ckξk (9)

where

Ak =

(
Ak 0

Af∆tCk I −Af∆t

)
∈ R(n+m)×(n+m)(10)

Bk =

(
Bk

0

)
∈ R(n+m)×p (11)

Ψ̄k =

(
0

Af∆tΨk

)
∈ R(n+m)×m (12)

w̄k =

(
wk

Af∆tvk

)
∼ N (0, Q̄k) ∈ R(n+m) (13)

Ck =
(
0 I

)
∈ Rm×(n+m) (14)

In this paper, we have devised adaptive Kalman filter
equations for the estimation of both sensor faults θ̂k and the
state ξ̂k|k. The design of these equations is outlined below:

θ̂k = θ̂k−1 +ΘkS̃k (15)
ξ̂k|k = Akξ̂k−1|k−1 + Bkuk + Ψ̄kθ̂k−1 +KkS̃k

+Πk

[
θ̂k − θ̂k−1

]
(16)

where the measurement error S̃k is given by:

S̃k = Sk − Ck
[
Akξ̂k−1|k−1 + Bkuk + Ψ̄kθ̂k−1

]
(17)

The adaptive Kalman filter employs three distinct gains,
specifically denoted as Kk ∈ R(n+m)×m, Πk ∈ R(n+m)×m,
and Θk ∈ Rm×m. The Kalman gain Kk is computed
through the following process:

Pk|k−1 = AkPk−1|k−1A⊺
k + Q̄k (18)

Σk = CkPk|k−1C⊺
k (19)

Kk = Pk|k−1C⊺
kΣ

−1
k (20)

Pk|k = [I −KkCk]Pk|k−1 (21)

Here, Pk|k ∈ R(n+m)×(n+m) is the covariance matrix of the
state estimate and Σk ∈ Rm×m is the innovation covariance
matrix. The noise covariance matrix Q̄k ∈ R(n+m)×(n+m)

is computed using the following formula [18]:

Q̄k = aQ̄k−1 + (1− a)
(
KkS̃kS̃⊺

kK
⊺
k

)
(22)

where a is the tuning parameter. The observer gains Πk and
Θk are obtained from [17]:

Πk = [I −KkCk]AkΠk−1 + [I −KkCk] Ψ̄k (23)
Ωk = CkAkΠk−1 + CkΨ̄k (24)

Λk = [λΣk +ΩkSk−1Ω
⊺
k]

−1 (25)
Θk = Sk−1Ω

⊺
kΛk (26)

Sk =
1

λ
Sk−1 −

1

λ
Sk−1Ω

⊺
kΛkΩkSk−1 (27)

where the auxiliary variables Ωk ∈ Rm×m, Λk ∈ Rm×m,
and Sk ∈ Rm×m.

Theorem 1: The mathematical expectations Eξ̃k|k and
Eθ̃k tend to zero exponentially when k → ∞.

Proof: The theorem’s proof relies on the foundation
established in [17]. In the context of this paper, our objective
is to demonstrate that Assumptions 1 through 3 hold true for
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equations (8) to (9). The boundedness of equations (10) to
(14) is evident under the conditions set forth in Assumptions
1. Assumptions 2, on the other hand, are contingent upon the
condition that I ̸= Af∆t. Finally, Assumption 3 is fulfilled
when the signals encompassed within the matrix Ψk exhibit
persistent excitation.

IV. THE SHIP MODEL

In the literature, a diverse range of models for autonomous
ships exists, spanning from the simplest and most rudi-
mentary representations to highly intricate and sophisticated
ones. The selection of a particular model hinges on the
specific application’s requirements and the desired level of
fidelity. Notably, in this paper, the focus centers on sensor
fault diagnosis, and the methodology is crafted around a
widely accepted and shared model for ships. The dynamics
of the ship are represented by the following set of equations:

ẋ(t) = U(t) cos(χ(t)) (28)
ẏ(t) = U(t) sin(χ(t)) (29)
U̇(t) = a(t) (30)
χ̇(t) = r(t) (31)

In this model, x(t) and y(t) correspond to the ship’s positions
in the horizontal plane, U(t) represents its velocity, and
χ(t) denotes the course angle. The control inputs for the
model are the acceleration a(t) and the course rate r(t).
These model encapsulates the ship’s kinematic behavior,
providing a foundation for understanding its motion in terms
of position, velocity, and control inputs.

Upon discretizing the model using Euler’s method and
adding the noise into the model, we obtain:

xk = xk−1 +∆tUk−1 cos(χk−1) + w1
k (32)

yk = yk−1 +∆tUk−1 sin(χk−1) + w2
k (33)

Uk = Uk−1 +∆tak + w3
k (34)

χk = χk−1 +∆trk + w4
k (35)

The nonlinear terms present in equations (32) and (33) can
be approximated and linearized through the application of
Taylor series expansion. In our paper, the application of
linearization will be specifically denoted as the adaptive
extended Kalman filter [19]. In practical implementations, it
is crucial to replace the matrix Ak in (18), (23), and (24) with

the Jacobian matrix to ensure accurate linear approximations
of the system dynamics. For the sake of clarity and without
sacrificing generality, we shall consider a specific example
where Af is set to a value of 5I and Ψk = I . This choice is
made to illustrate the methodology effectively. The filtered
sensor measurement are given by:

z1k = (1− 5∆t)z1k−1 + 5∆txk−1 + 5∆tθ1 + 5v1k(36)
z2k = (1− 5∆t)z2k−1 + 5∆tyk−1 + 5∆tθ2 + 5v2k(37)
z3k = (1− 5∆t)z3k−1 + 5∆tUk−1 + 5∆tθ3 + 5v3k(38)
z4k = (1− 5∆t)z3k−1 + 5∆tχk−1 + 5∆tθ4 + 5v4k(39)

The filtered sensor measurement is given as the following
vector:

zk =


z1k
z2k
z3k
z4k

 (40)

Based on the derived expression, it is crucial to select a time
step that is not equal to 0.2 seconds, as the specified time step
would lead to the violation of Assumption 2. By augmenting
the system’s nonlinear equations represented in (32) through
(35) with the provided equations, we obtain the final state
space equations (8) and (9) with:

Ak =

(
I 0

5I∆t I − 5I∆t

)
(41)

Bk =

(
Bk

0

)
(42)

Ψ̄k =

(
0

5I∆t

)
(43)

w̄k =

(
wk

5I∆tvk

)
(44)

Ck =
(
0 I

)
(45)

where I is an identity matrix with appropriate dimension.
The objective is to estimate the sensor fault parameter:

θ =


θ1

θ2

θ3

θ4

 (46)

For this system, the Jacobian matrix is given by:

Fk =



1 0 ∆t cos(χ̂k−1) −∆tÛk−1 sin(χ̂k−1) 0 0 0 0

0 1 ∆t sin(χ̂k−1) ∆tÛk−1 cos(χ̂k−1) 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

5∆t 0 0 0 1− 5∆t 0 0 0
0 5∆t 0 0 0 1− 5∆t 0 0
0 0 5∆t 0 0 0 1− 5∆t 0
0 0 0 5∆t 0 0 0 1− 5∆t


(47)
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V. NUMERICAL SIMULATIONS

We have now reached a pivotal stage to subject our
proposed methodology to rigorous testing through numerical
simulations. This crucial phase enables us to assess the
robustness, versatility, and adaptability of our approach under
different scenarios and conditions, thereby contributing to
a more comprehensive understanding of its capabilities and
limitations.

A. Fault Detection and Estimation

The initial simulation spans a duration of 40 seconds,
with a time step ∆t set at 0.01 seconds. The system is
subjected to inputs represented by the acceleration and course
rate, which are essential control parameters governing the
ship’s behavior and navigation. This simulation serves as an
initial test case to evaluate the system’s response under these
specified conditions and forms a foundational aspect of our
analysis, offering insights into the system’s performance and
behavior over the given time frame. Faults are intentionally
introduced into the system at two distinct time points, namely
at t = 10 seconds and t = 20 seconds, and these faults affect
all sensors responsible for measuring the state variables x,
y, U , and χ. Initial parameters for the simulation include:
P0|0 = I , Q̄0 = 0.001I , a = 0.999, Π0 = 0, and S0 = I .

Figure 1 provides a visual representation of the au-
tonomous ship’s position in the horizontal plane. It is evident
from the plot that the proposed method for sensor fault
diagnosis demonstrates remarkable accuracy in estimating
the ship’s position. This capability is pivotal for ensuring
precise navigation and control. Additionally, Figure 2 extends
the assessment by showcasing the method’s effectiveness in
estimating both the velocity and the course angle of the
ship. The plotted results highlight the method’s capacity to
accurately infer these critical dynamic parameters. These ob-
servations underscore the method’s proficiency in providing
comprehensive state estimation for the autonomous ship, a
fundamental aspect of autonomous navigation and control
that is vital for various maritime applications.
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Fig. 1. Position of the autonomous ship started at (0,0).

The estimated sensor faults are presented in both Figure
3 and Figure 4, providing a comprehensive view of the
fault diagnosis process. Notably, in Figure 4, the estimation
procedure successfully converges to the actual fault values.
This convergence is an encouraging outcome, indicating the
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Fig. 2. Ship velocity with acceleration = 1m/s2 (top) and ship course
angle with course rate 0.1Rad/s2 (bottom).

method’s proficiency in accurately identifying and tracking
sensor faults over time.

Conversely, Figure 3 reveals a distinct behavior in the
fault estimation process. Here, the estimation does not exhibit
convergence to the actual fault values. The underlying reason
for this divergence can be attributed to a specific aspect of
the fault model. More precisely, it is observed that only the
fault parameters θ3 and θ4 remain persistently exciting due to
their interaction with the input variables U and χ. In contrast,
θ1 and θ2 lack this persistent excitation, which hinders
their accurate estimation. This observation underscores the
importance of ensuring that all fault parameters remain
consistently excited for effective and reliable sensor fault
diagnosis.
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Fig. 3. Estimation of sensor faults pertains specifically to the position
sensors x and y.
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Fig. 4. Estimation of sensor faults pertains specifically to the velocity
sensor U and course angle sensor χ.
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B. Parameter Sensitivity Analysis

We conducted a sensitivity analysis to assess the impact
of parameters that govern the convergence rate of the es-
timation process. These key parameters include the filtering
measurement matrix Af and the forgetting factor λ. Figure 5
presents a series of plots showcasing the estimation behavior
under various values of λ. Notably, it is evident that as λ
is increased, the convergence rate of the estimation process
becomes slower. In Figure 6, the analysis explores the
influence of varying Af values on the convergence rate. It
is observed that increasing Af accelerates the convergence
rate; however, this change also introduces overshooting in the
estimation process. These findings underscore the delicate
balance required when fine-tuning parameters in sensor fault
diagnosis algorithms, as adjustments to λ and Af can have
significant implications on the estimation performance and
stability.
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 = 0.995

 = 0.997
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Fig. 5. Estimation of the fault parameters with Af = 5I with different
λ.
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Fig. 6. Estimation of the fault parameters with λ = 0.995 with different
Af .

VI. CONCLUSIONS
In this paper, we introduced a novel sensor fault diagnosis

algorithm built upon the principles of the adaptive Kalman
filter. A notable feature of our approach is its adaptability
to nonlinear systems, making it well-suited for a wide range
of maritime applications. By employing this methodology,
we not only estimate the system’s state accurately but also
concurrently assess fault parameters, ensuring a comprehen-
sive understanding of the system’s health. Our extensive
simulations, varying parameters across different scenarios,
have consistently demonstrated the robustness and reliability

of our method. A noteworthy limitation of the proposed
method is its ability to accurately estimate parameter faults.
Specifically, the method excels in accurate estimation only
when the state linked to the sensor fault exhibits persis-
tent excitation. This requirement poses a constraint on the
method’s effectiveness, as it implies that in scenarios where
the state associated with the sensor fault lacks consistent
excitation, the accuracy and reliability of parameter fault
estimation may be compromised.
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