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Abstract— This paper considers the stability and optimality
properties of traffic demand management schemes, motivated
by the integration of smart monitoring and control schemes in
traffic networks. First, a suitable optimization problem is for-
mulated that aims to obtain demand input values that maximize
the throughput within traffic networks. We show that optimal
solutions to this problem may lead to unstable behaviour,
revealing a trade-off between stability and optimality. To
address this issue, we analytically study the stability properties
of traffic networks at the presence of constant demand input
and provide suitable local conditions that guarantee stability
when the system’s equilibrium densities are strictly within the
free-flow region, but not at the critical density. The latter
case is significant, since the maximum throughput behaviour
coincides in many cases with the local critical density. We
resolve this by proposing a decentralized proportional demand
control scheme and suitable local design conditions such that
stability is guaranteed. Our analytic results are validated with
numerical simulations in a 3-region system that demonstrate
the effectiveness and practicality of the presented results.

I. INTRODUCTION

Recent technological achievements enabled the evolution
of traffic networks to smart networks. This was possible
through the incorporation of real-time smart monitoring
technologies (optical sensors, drones, etc.) and the integration
of fast communication protocols that enabled the design and
application of novel traffic-control schemes.

Despite these advancements, urban road networks fre-
quently grapple with inherent congestion issues. This often
results due to demand surpassing the available capacity in
specific regions, giving rise to undesirable traffic conditions
such as congestion [1]. To proactively address these chal-
lenges, a plethora of traffic management strategies [2], based
on macroscopic traffic dynamics, have been proposed in
existing research literature [3].

One such strategy is route guidance (RC) [4], which aims
to redistribute vehicular loads across the network. By direct-
ing drivers along alternative pathways, this approach aims
to optimize overall travel times [4]. Concurrently, perimeter
control (PC) and gating strategies (GS) [5] focus on pre-
emptively mitigating congestion. These methods regulate the
inflow of vehicles at the outskirts of a designated, congestion-
prone region. By doing so, the core area of this region
is able to operate under congestion-free conditions, even
though the congestion may subsequently be transferred to
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the periphery of the urban network [6]. A substantial number
of macroscopic strategies rely on Model Predictive Control
(MPC) frameworks [7], [8], [9], [10], [11], [12]. Despite
their efficacy in handling traffic congestion, MPC methods
have limitations. One notable drawback is their tendency to
overlook stability issues, which may lead to unpredictable
and suboptimal system performance.

Examples of MPC-based solutions include an optimal 2-
region PC scheme [7], a three-level hierarchical PC scheme
[8], a Lyapunov derived PC combined with a distributed
MPC [9], a PC nonlinear MPC with stability by construction
[10], a joint RG and demand management (DM) MPC [11],
and a RG and DM MPC framework proposing two real-time
solution approaches [12].

Alternative approaches, aiming to achieve congestion mit-
igation, include an optimal state-feedback PC strategy for
a 2-region network [13], a PC strategy employing optimal
multivariate PI-feedback generators and online adaptive op-
timization [14], a RG approach managing congestion at the
microscopic level by route reservation in the spatial and
temporal domains [15], a model-free data-driven adaptive
PC with RG [16] and an approach at the microscopic
level proposing a joint robust correlated equilibrium routing
mechanism and a distributed optimization algorithm for
congestion mitigation [17].

Despite the substantial technological advancements and
the wide range of traffic management schemes available
today, traffic congestion continues to be a pervasive issue. A
drawback of several proposed schemes, which may hinder at-
taining efficient traffic network solutions, is their propensity
to prioritize individual needs over achieving a system-wide
optimum [18].

Recent works present a promising perspective, advocating
for the joint integration of traffic and demand management
(DM) strategies as an effective solution to mitigate conges-
tion [11], [12], [15]. Traffic demand management strategies
primarily focus on regulating the influx of vehicles into the
network. They achieve this by encouraging drivers to opt
for alternative travel times—either earlier or later than their
initial plans—or to consider different modes of transportation
altogether [19]. The joint integration of demand with traffic
management enables the redistribution of traffic flows across
both temporal and spatial dimensions, aiming to enhance the
overall efficiency and performance of the road transportation
system [20].

It is signified that the amount of works that employ DM
in a macroscopic framework is limited [11], [12], [15], with
all relying on MPC approaches and not considering the DM
problem from a stability viewpoint. Considering the stability
properties of DM schemes in traffic networks, and how these
are affected by optimality considerations, is highly important
to enable their large scale implementation.

Contribution: This paper studies the stability and optimal-
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ity properties of traffic networks at the presence of demand
management schemes. Firstly, we formulate a problem that
aims to maximize the throughput within a large-scale traffic
network and discuss how such problem may be solved using
standard optimization tools. However, we show numerically
that optimal solutions may lead to unstable behaviour, when
those coincide with local critical densities, which is fre-
quently the case. In particular, we demonstrate that under
optimal constant demand input, any deviation towards the
congested region leads to gridlock behaviour. The latter
reveals an inherent trade-off between stability and optimality
of DM schemes and motivates the analytical study of the
stability properties of such schemes in traffic networks.

Our stability analysis provides local conditions on the
traffic network parameters that enable stability guarantees,
when the local equilibrium densities lie strictly within the
free flow region, i.e. being less than the critical density.
To include the latter case, which frequently occurs when
demand is optimized to maximize throughput, we propose
a decentralized proportional feedback demand management
scheme and provide local conditions on its gains such that
stability is guaranteed. Our analytic results are validated with
numerical simulations on a 3-region system which showcase
the effectiveness and practicality of the proposed conditions
and demand schemes.

The main contributions of this work are summarized
below.

(i) A DM optimization problem that yields throughput-
optimal equilibrium behaviour is formulated.

(ii) It demonstrates a trade-off between optimality and
stability in DM schemes in traffic networks, showing
that a maximum throughput behaviour may lead to
instability.

(iii) It analytically studies the stability properties of large-
scale traffic networks at the presence of constant de-
mand and provides local conditions such that stability
may be deduced. Moreover, it proposes a decentralized
demand management scheme that offers enhanced sta-
bility properties.

Paper structure: The paper is organized as follows. In Sec-
tion II the notation used throughout the paper and the traffic
dynamics are provided. Section III defines the optimization
problem for demand allocation, and presents the problem
statement. A discussion on the inherent trade-off between
optimality and stability concludes this section. Section IV
presents our main stability results, concerning a constant
demand input scheme and a developed decentralized propor-
tional scheme, showcasing the enhanced stability properties
of the latter. Section V demonstrates the practicality and
applicability of the analytic results through simulations on
a 3-region network. Conclusions are drawn in Section VI.

The proofs of the main results have been removed for
compactness and will be provided in an extended version of
this work.

II. PROBLEM FORMULATION

A. Notation
Real numbers are denoted by R, and R+ is the set of real

non-negative numbers. Vectors are denoted by bold small
letters where the ith component of a vector x is denoted
by xi. The set of n-dimensional vectors with real entries is
denoted by Rn. The non-negative orthant of Rn is denoted by

Rn
+. Sets are denoted by capital calligraphic letters. The min-

max operator is given by [x]ba = max(min(x, b), a), where
a, b ∈ R and a ≤ b. A function f : Rn → R is positive
semidefinite if f(x) ≥ 0 for all x ∈ Rn. It is positive
definite if f(0) = 0 and f(x) > 0 for every x ̸= 0. It
is negative definite if f(0) = 0 and f(x) < 0 for every
x ̸= 0. We write 0 ∈ Rn to denote the n × 1 vector with
all elements equal to 0. A set N excluding an element i is
denoted by N \ {i}. The hat designation, x̂i, denotes that
xi is a primal or dual optimal element with respect to a
given optimization problem whereas the right superscript x∗

i
denotes a system equilibrium. For compactness, we write the
units of the considered variables at the first instance only.

B. Model description
The behaviour of the traffic area under interest is modelled

as a network of n homogeneous regions (n ≥ 2) connected
by edges between nodes. A directed graph G = {N , E}
captures the network structure where the sets of nodes and
edges are denoted by N = {1, 2, ..., n}, and E ⊆ N × N ,
respectively. Onward the term node and region are used inter-
changeably. The edge allowing region-j to receive vehicles
from region-i, is denoted by ϵi,j = (i, j) ∈ E . Regions
that can directly send vehicles to region-i belong to the set
Pi = {j ∈ N : ϵj,i ∈ E} and are termed predecessors,
while regions that directly receive vehicles from region-i
belong to the set Si = {l ∈ N : ϵi,l ∈ E} and are termed
successors. Vehicle inflow to the multi-region traffic network
occurs via origin regions. All regions are considered to be
both origin and destination regions, where it is assumed that
every vehicle that enters the network, does so to reach a
destination region that belongs to the network.

Homogeneity conditions dictate that the behaviour of
the internal traffic flow1, qi(t) [veh/h], in any region-i is
described by a fundamental diagram (FD)

qi(t) = fi(ρi(t)), i ∈ N . (1)

This work employs triangular FDs, i.e., a piecewise-linear
concave function that is equal to the product between vehicle
density of region-i, ρi(t) [veh/km], and vehicle speed,
vi(t) [km/h] of the same region, i.e.

qi(t) = ρi(t)vi(t), i ∈ N . (2)

A triangular Macroscopic fundamental diagram (MFD)
[3], [21], [22], see Fig. 1, defines the aggregated traffic
behaviour of region-i by connecting the region-i internal
flow, qi(t), with the total inter-regional flow of region-i,
gi(ρi(t)) [veh/h], resulting in homogeneous behaviour.

Two traffic states characterize the total inter-regional flow
of region-i, gi(ρi(t)), see Fig. 1. They are defined by the
critical density threshold of region-i, ρC

i [veh/km], and the
jam density threshold of region-i, ρJ

i [veh/km], as

gi(ρi) =

{
rifi(ρi(t)) = riv

f
iρi(t), ρi(t) ≤ ρC

i

rifi(ρi(t)) =
bC
i−vC

i ρi(t)

r−1
i

, ρi(t) > ρC
i

, (3)

for all i ∈ N and where, ri ∈ R+ is the region-i trip
completion ratio given by

ri = Lil
−1
i , (4)

1Internal traffic flow is observed/described in a 1 [Km] road stretch.
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where Li [km] is the length of region-i, and li [km] is the
average trip length of a vehicle in the same region.

Moreover, vf
i [km/h] is the free-flow speed of region-i

given by
vf
i = qC

i (ρ
C
i )

−1, i ∈ N , (5)

where qC
i [veh/h] is the capacity flow2 of region-i. The

backward congestion propagation speed vC
i [km/h], and the

constant bC
i [veh/h], for region-i are defined in a manner that

ensures that the function gi(ρi) is continuous as follows

vC
i =qC

i (ρ
J
i − ρC

i )
−1, i ∈ N , (6a)

bC
i =ρJ

iq
C
i (ρ

J
i − ρC

i )
−1, i ∈ N . (6b)

Flows exiting the network through destination regions
and transfer flows between regions are calculated according
to the MFDs total inter-regional flow, gi(ρi(t)), see (3).
Moreover transfer flows between regions are further limited
by their inter-boundary capacity. This is modelled via the
inter-boundary region-i to region-l capacity function, cil :
R+ → R+, that is given by

cil(ρl) =

{
cmax
il , ρl(t) ≤ ρ−il
rl(b

C
l − vC

l ρl(t)), ρl(t) > ρ−il
, (7)

with i ∈ N , l ∈ Si, and where cmax
il = rl(b

C
l − vC

l ρ
−
il ) ∈ R+

is the maximum inter-boundary capacity flow from region-
i to region-l, and ρ−il ∈ R+ is the critical inter-boundary
density threshold between region-i and region-l. The transfer
flow from region-i to region-l, l ∈ Si, is given by

gil(ρi, ρl) = min(wilgi(ρi(t)), cil(ρl(t))), (8)

with i ∈ N , l ∈ Si, and where wil ∈ Wi are the region-i
outflow split constants with the set defined as

Wi=
{
wil, ci ∈ R+ : l ∈ Si, ci +

∑
l∈Si

wil=1
}
,∀i ∈ N , (9)

where ci ∈ Wi in (9) is the rate of vehicles that end their
trip in region-i. The continuous-time evolution of the vehicle
density state of each region-i, ρi(t), is given by

ρ̇i(t) =
1

Li

(
− cigi(ρi(t))−

∑
l∈Si

gil(ρi(t), ρl(t))

+
∑
j∈Pi

gji(ρj(t), ρi(t)) + ui(t)
)
,∀i ∈ N . (10)

The first term in the right hand side of (10) is the flow exiting
the network through destination region-i, the second term is
the flow towards successor nodes, the third term is the flow
from predecessor nodes and the last term, ui(t) [veh/h], is
the serviced demand admitted to the network through the
origin region-i and it is considered a control variable.

We proceed the analysis under the following assumption:
Assumption 1: For each transfer flow from region-i to

region-j, the following relation holds, cij(ρC
j ) > wijgi(ρ

C
i ).

Remark 1: In the density intervals ρi(t) ∈ [0, ρC
i ], ρj(t) ∈

[0, ρC
j ], Assumption 1 results in (8) always yielding inter-

regional transfer flows from region-i to region-j satisfying
gij(ρi(t), ρj(t)) = wijgi(ρi(t)).

2Capacity flow is the maximum flow that can be supported by region-i;
it is yielded by the FD at the critical density point, ρC

i .

ρi

gi

gC
i

ρC
i ρJ

i

MFD: gi(ρi) = rifi(ρi(t))

Fig. 1: Region-i total inter-regional flow gi(ρi(t)), given by
a triangular macroscopic fundamental diagram (MFD).

Assumption 1 plays a central role in the subsequent analysis.
For conciseness the traffic dynamics are defined in a compact
form as follows:

Traffic Model 1: The traffic dynamics of the considered
n-region connected traffic network are described by (3), (7),
(8), and (10).

III. PROBLEM STATEMENT AND OPTIMALITY
CONSIDERATIONS

A. Optimization problem

To enable the design of efficient demand management
schemes, an optimization problem for demand allocation
is formulated yielding throughput-optimal equilibria, i.e. a
system state characterized by maximum vehicle network
throughput or maximum serviced vehicle demand with re-
spect to the network boundaries.

Optimization Problem 1: For an n-region traffic network
with traffic dynamics described by Traffic Model 1, solve:

max
(ρ,u)

∑
i∈N

ui (11a)

s.t. : 0 ≤ ρi ≤ ρC
i , i ∈ N (11b)

umin
i ≤ ui ≤ umax

i , i ∈ N (11c)
1

Li

( ∑
j∈Pi

gji(ρj , ρi) + ui

− cigi(ρi)−
∑
l∈Si

gil(ρi, ρl)
)
= 0, i ∈ N (11d)

where umin
i , umax

i ∈ R+ are selected in a manner that the
feasibility of the optimization problem is ensured3.

Remark 2: The constraint (11b) stems from practi-
cal/physical considerations/observations i.e. an equilibrium
point characterized by free-flow conditions is desirable. In
(11c) we allow umin

i to take values that serve the vehicle
demand objective; it ensures that demand takes non-negative
values since ui ∈ R+ and enables the formulation of
different problems that may either aim to maximize the total
throughput or suitably constraint the problem based on some
minimum practical value serving realistic regional demand.
The justification for umax

i follows in a similar fashion, noting
also that its value in practice may also depend on the
structure and parameters of the traffic network.

3An approach that enables feasibility assurances involves obtaining a
solution of (11a), (11b), (11d), given by û, and then design umin

i , and
umax
i such that umin

i ≤ ûi ≤ umax
i for all i ∈ N .
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B. Problem Statement
As already mentioned in Section I, urban transportation

networks frequently suffer from congestion since some re-
gions of the network attract more vehicles than others. Hence
this work aims to address the following problem:

Problem 1: For the Traffic Model 1 and under Assump-
tion 1:

1) define an optimal throughput DM solution, based on
Optimization Problem 1,

2) design a DM scheme that enables convergence guaran-
tees to free-flow steady state values and is applicable to
any (connected) traffic network configuration.

The first condition is associated with the efficiency of DM
schemes, aiming to obtain suitable solutions to Optimization
Problem 1. The second condition is the main goal of the
DM approach, i.e., to ensure that system states attain a
desired equilibrium characterised by free-flow conditions,
and also that the controller is supplemented by stability
guarantees. Additionally, it is required that the DM controller
is applicable to any connected traffic network configuration.

C. Optimal Solution
Assumption 1 results in inter-regional transfer flows from

region-i to region-j equal to gij(ρi(t), ρj(t)) = wijgi(ρi(t)).
As a result, the equality constraint (11d) simplifies at steady
state conditions to

1

Li

( ∑
j∈Pi

wjigj(ρj) + ui

− cigi(ρi)−
∑
l∈Si

wilgi(ρi)
)
= 0, i ∈ N , (12)

and Optimization Problem 1 is given by (11a), (11b), (11c)
and (12), and has linear constraints. Moreover, it is also
convex and due to advancements in optimization theory and
computing, obtaining solutions of convex, linear optimization
problems is a relatively easy task serviced by a plethora of
commercial solvers that yield solutions in a mater of seconds,
even for large-scale problems.

The solution of Optimization Problem 1 with (12) yields
optimal equilibria, (ρ̂, û), characterized by maximum ser-
viced vehicle demand fulfilling the network inter-boundary
demand allocation task.

D. Stability Issues
Simulation results (see Figs. 2-4 and the discussion in Sec-

tion V) show that operating the system at optimal equilibrium
points may result in stability issues. In particular, when an
optimal equilibrium point coincides with the local critical
density, as is frequently the case, then an arbitrary small
increase in density yields substantial deviations in density
trajectories, and in many cases leads to gridlock behaviour.
As a result, an inherent trade-off between optimality and
stability is recognized since when the system operates in a
suboptimal way, avoiding equilibrium points at the critical
density, then its operation is more robust to disturbances.
This offers motivation to rigorously explore the stability
properties of the traffic network system.

IV. TRAFFIC NETWORK STABILITY

Motivated by the discussion in the previous section, this
section explores the stability properties of traffic networks
under constant demand and a proposed proportional feedback
demand management scheme.

A. Equilibria

Below we provide a definition of the equilibrium points
of Traffic Model 1 under interest, to facilitate the analysis
later on.

Definition 1: For the Traffic Model 1 under control action
u∗ ∈ Rn

+, an equilibrium point ρ∗, satisfies(
− cigi(ρ

∗
i )−

∑
l∈Si

gil(ρ
∗
i , ρ

∗
l )

+
∑
j∈Pi

gji(ρ
∗
j , ρ

∗
i ) + u∗

i

)
= 0,∀i ∈ N . (13)

Next, an investigation is conducted to identify conditions
that result in well behaved dynamics such that the solutions
of Traffic Model 1 converge to an equilibrium point, ρ∗.

B. Stability Analysis under Constant Demand

The behaviour of Traffic Model 1, when its equilibria
lie strictly within the free-flow region of operation are
investigated next. More explicitly, by means of Lyapunov
analysis, sufficient conditions for stability for the Traffic
Model 1, are derived.

Theorem 1: Consider the Traffic Model 1, let Assump-
tion 1 hold, let ui(t) = u∗

i , i ∈ N , and consider an
equilibrium point ρ∗, such that ρ∗i ∈ [0, ρci ),∀i ∈ N . If

ci >
1

rivf
i

(
∑
j∈Pi

aji
4
),∀i ∈ N , (14a)

aji =wjirjv
f
j , j ∈ Pi, i ∈ N , (14b)

then, the solutions to Traffic Model 1 locally converge
to ρ∗. Moreover, if u∗

i = ûi,∀i ∈ N , where ûi is a
solution to Optimization Problem 1, then the aforementioned
equilibrium point globally solves Optimization Problem 1.

The significance of the newly derived criterion, (14), is that
it provides locally-verifiable sufficient conditions for stability
which enable an assessment of the network stability proper-
ties at the presence of some constant demand input. However,
since we do not conciser the case ρ∗i = ρC

i , i ∈ N , this does
not addresses the issue discussed in Section III-D, which
has been observed at particularly this case. Nevertheless, the
presented analysis facilitates the solution to this issue, as
demonstrated below.

C. Stabilizing Demand Management Scheme

In the last paragraph of Section III-D, an inherent trade-
off between optimality and stability was recognized. In
particular, simulations revealed that the system is sensitive
to arbitrary small deviations from the optimal/critical equi-
librium to the congested region of operation. This unstable
behaviour (see Figs. 2-4 and the discussion in Section V),
motivates the development of a stabilizing controller that
enables stability guarantees even at the congested region of
operation. We propose a controller described by

ui(t) = [ūi − kpiρi(t)]
umax
i

0 , i ∈ N , (15)

where kpi
∈ R+ \ {0} and ūi is a design constant, that may

be selected by taking into account optimality considerations
and satisfies the following condition by design

0 < ūi − kpi
ρ∗i < ūmax

i . (16)
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The selection of the constants ūi and kpi
rely on knowledge

of the local equilibrium density ρ∗i , i ∈ N . When feasible,
this value may be provided centrally, through historical data,
or by solving Optimization Problem 1. Alternatively, the
design could satisfy (16) for a range of local equilibrium
values, e.g. for all ρi ∈ [0, ρC

i ], i ∈ N .
Theorem 2: Consider Traffic Model 1 under the action of

(15), (16), and let Assumption 1 hold. Then, if

kpi
>riv

f
i +

∑
j∈Pi

αji

4
+

∑
j∈Si

αij , i ∈ N , (17a)

αji =wjirjv
L
j , i ∈ N , j ∈ Pi,Si, (17b)

vL
j =max(vf

j , v
C
j ), j ∈ N (17c)

then, the solutions of Traffic Model 1 locally converge to
an equilibrium point ρ∗. Moreover, if u∗

i = ûi,∀i ∈ N ,
where ûi is a solution to Optimization Problem 1, then the
aforementioned equilibrium point globally solves Optimiza-
tion Problem 1.

Theorem 2 yields a stabilizing controller and a sufficient
condition for gain selection, i.e. (17a), that restores system
stability even at the congested region of operation. In ad-
dition, when the controller coincides with the solution to
Optimization Problem 1, then the equilibrium point enables
a globally optimal throughput behaviour. Moreover, the pro-
posed analysis is applicable to any network configuration.
Hence, all objectives of Problem 1 are met.

Next, we validate the analytic results presented in this
paper with numerical simulations.

V. NUMERICAL RESULTS

To illustrate the developments of this work and without
loss of generality a representative simulation of a 3-region
traffic network is conducted aiming to showcase three impor-
tant points: a) the stable network behaviour under constant
control action, illustrating the validity of Theorem 1, b) the
unstable network behavior when a small deviation from the
optimal/critical equilibrium occurs to the congested region
of operation, and c) the corrective action of the developed
control law, (15), steering the network states back to the
optimal/critical equilibrium.

Two simulation cases are considered; the first case uses
a constant control action close to the optimal control value,
ui(t) = ûi − 0.1, i ∈ N (see Table I for ûi), where ûi is
the solution to Optimization Problem 1 for region i, to be
referred to as benchmark network (black dashed line). The
second case employs the derived control law (15) (solid blue
line); where ūi = ûi + kpi

ρ∗i , i ∈ N (see Table I for the
values of ûi, ρ

∗
i , kpi

).
Network parameters are given in Table I. It is signified

that the rates that vehicles end their trip in region-i, de-
termined by the parameter ci ∈ Wi, satisfy the conditions
of Theorem 1 and the gain values kpi

were selected to
satisfy the gain selection condition (17a) of Theorem 2. An
80 [min] simulation scenario is conducted. At t = 30 [min]
and approximately for 1 [min] a small deviation from the
optimal/critical equilibrium is introduced in each network in
the form of u1(t) = u1(t) + 0.1û1.

In Figs. 2-4, the green-shaded interval corresponds to the
interval before the appearance of the control input deviation,
see Fig. 2 t ∈ [0, 30] [min]. In both cases the density state
at each region achieves steady state, see Fig. 3, demonstrat-
ing the validity of Theorem 1. However state convergence

TABLE I: Network parameters, throughput-optimal equilib-
ria and control gains

Region 1 Region 2 Region 3
vf
1 = 30 vf

2 = 35 vf
3 = 32

L1 = 1.2 L2 = 1 L3 = 0.85
ρJ
1 = 118 ρJ

2 = 125 ρJ
3 = 98

l1 = 0.6 l2 = 0.45 l3 = 0.35
ρC
1 = 26.3 ρC

2 = 28.2 ρC
3 = 24.4

c1 = 0.25 c2 = 0.35 c3 = 0.2
w21 = 0.5, w31 =
0.25

w12 = 0.15, w32 =
0.5

w13 = 0.1, w23 =
0.7

ρ̂1 = 26.3 ρ̂2 = 28.2 ρ̂3 = 24.4
û1 = 620.71 û2 = 76.97 û3 = 405.06
kp1 = 109.86 kp2 = 149.5 kp3 = 153.4

is slower in the benchmark network (see dashed lines in
Fig. 3). This is expected since it lacks the proportional-term
operating on the alternative case that speeds up convergence
(see solid lines in Fig. 3). At the same interval both networks
operate in free-flow conditions, see Fig. 4.

At t = 30 [min] a deviation from steady state appears
in both networks in the form of u1(t) = u1(t) + 0.1û1

(beginning of the red-shaded interval) lasting about 1 [min]
(see Fig. 2, first row). For the benchmark network (dashed
lines), this deviation results in density drop for regions-
2,3 and in region-1 getting congested as its density veers
from the optimal-throughput equilibrium and attains gridlock
status4, i.e., ρ1(t) = ρJ

1, see Fig. 3. The convergence to a
sub-optimal equilibrium is evident as the speed of region-1
decreased to zero, as demonstrated in Fig. 4.

An inherent trade-off between optimality and stability is
recognized, in the sense that a traffic coordinator can select
a sub-optimal control action ui(t) = µûi, µ ∈ (0, 1) (thus
operating in sub-optimal throughput conditions) to ensure
stability, i.e., that system uncertainty and disturbances are
unable to steer the system to congestion.

Fig. 2: Admitted demand [veh/h]. Case-1 operates at constant
demand except for a 1 [min] variation at t = 30 [min]. Case-
2 demand levels saturate (see t ∈ [0, 10] [min]) due to the
proportional term. Due to demand variation at t = 30 [min],
stabilizing adjustments are observed for Case-2.

In contrast to the above, the network employing the control
law with the proportional term, described by (15), is not
affected by the deviation (solid lines) and the states remain to
the optimal-throughput equilibrium in all regions, as shown
in Fig. 3. Only a very minor drop in the speed of region-
1 (for a very short time) is observed at t = 30 [min], see
first row in Fig. 4. A minor increase in the admitted demand
in region-2 (for a very short time) is also observed. This is
attributed to the corrective action of the proportional term

4Gridlock is a condition where a region cannot admit any more vehicles
and congestion is so bad that all vehicles come to standstill.
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(solid lines, Fig. 2, second row). The network operates in
free-flow conditions, see Fig. 4. Hence, the effectiveness of
the control law is clearly demonstrated.

In conclusion, the simulation results clearly demonstrate
the validity of the results presented in Section III and
Section IV.

Fig. 3: Network density [veh/km]. Initially, both cases
achieve steady state. A demand variation at t = 30 [min]
results in instability for Case-1. Case-2 is stable due to the
derived control law.

Fig. 4: Network speed [km/h]. Initially, vehicles travel at
free-flow speed. Due to a demand variation at t = 30 [min]
region-1 (Case-1) gets congested and eventually attains grid-
lock status.

VI. CONCLUSIONS

This work considered the stability and optimality prop-
erties of traffic demand management schemes in traffic net-
works. First, a suitable optimization problem was formulated
that aimed to obtain demand input values that maximize
the throughput within traffic networks. A trade-off between
stability and optimality was revealed by showing that optimal
solutions to this problem may lead to unstable behaviour.
To address this issue, we analytically studied the stability
properties of traffic networks at the presence of constant
demand input and provided suitable local conditions that
guarantee stability when the system’s equilibrium densities
are strictly within the free-flow region, but not at the critical
density. However, the critical density case is significant,
since the maximum throughput behaviour frequently coin-
cides with the local critical density. To resolve this issue,
we proposed a decentralized proportional demand control
scheme and suitable local design conditions such that sta-
bility is guaranteed. Our analytic results were validated with
numerical simulations in a 3-region system that demonstrated
the effectiveness and practicality of the presented results.
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