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Abstract— This study’s topic is stabilizing a linear time-
invariant plant subjected to bounded disturbance using quan-
tized state feedback. We propose an adaptive quantization
scheme consisting of two terms, a natural decay term, and
a positive coupling proportional to the norm of the state. The
proposed procedure ensures the utilization of a lower quantizer
resolution if the system is steered away from the origin due to
disturbances. In conjunction with dynamic quantization, the
event-triggered approach is motivated by the need to utilize
computing resources efficiently. The proposed control law and
dynamic quantization ensure the system is input-to-state stable
(ISS). We ensure that Zeno’s phenomenon is absent by showing
that the inter-event times are lower bound. We compare the
average number of bits the controller requires between the
proposed reactive control law and a controller with constant
quantization error on a numerical example.

I. INTRODUCTION

Traditional control techniques assume that the state of
the system and the desired control input are available with
infinite precision. However, in practical applications, this is
not satisfied. For example, information quantization occurs
before transmission over a digital communication network.
Mathematically analyzing the effects of truncation and lim-
itations in data is to consider a quantizer present in the
feedback control loop. A quantizer is a function that maps a
signal into a set of finite bins.

Quantized feedback systems have attracted much atten-
tion since the work of Kalman, demonstrating that a fixed
quantizer in the system can cause limit cycles and chaotic
behaviour in [1]. Constructing controllers for fixed quantizers
that guarantee input-to-state stability is possible, as shown
in [4]. On the other hand, if the quantizer is dynamic, the
parameters of the quantizer can be modified to guarantee
asymptotic stability as shown in [2], [3]. This methodology
of modifying the parameters of the quantizer has been further
utilized to guarantee the stability of quantized feedback
systems with disturbance [5], switched systems [6], nonlinear
systems in [7] and uncertain linear systems in [8], for multi-
agent systems in [9].

On a parallel development, event-triggered control has
drawn interest to reduce resource consumption. Applying
corrective control only when the performance deviates from
satisfactory is the central tenet of event-triggered control; see
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([10], [11]) and the references therein. An event-triggered
approach for controlling quantized feedback systems is of
interest to us due to its advantages in reducing energy
consumption, bandwidth usage, and computational resources.

The authors in [12] investigate the combination of an
event-triggered controller and dynamic quantization. In [13],
the authors design sliding-mode control via an event-
triggered approach for a quantized feedback system. The
work in [14] deals with designing a dynamic quantizer,
where the quantizer resolution update depends on a triggering
condition based on quantizer saturation. The authors in [15]
use quantization events to trigger sampling for control. In
earlier works, updating the quantizer resolution is done as
a preset rule, thus utilizing a finer quantizer resolution, an
undesirable behaviour if the system’s state is steered away
from the origin. Our work tackles this issue by adding
positive feedback on the norm of the quantized state in the
quantizer update rule.

The contribution of the paper is as follows. We present a
novel adaptive event-triggered-based control law combining
the two approaches (event-triggering and adaptive dynamic
quantization) that rely solely on the system’s quantized
feedback. We show using Lyapunov stability that the closed-
loop system under the proposed quantized state-feedback
control law is ISS. By showing that the inter-event times
are lower bound, we also demonstrate that the proposed
controller does not exhibit Zeno behaviour.

The structure of the paper is as follows: Section II collects
the mathematical preliminaries. Section III discusses relevant
material on event-triggered control and quantized feedback
systems. Section IV defines the problem, proposes the control
law, and demonstrates how we avoid Zeno behavior. Section
V provides a tuning strategy, and the control law is validated
using a numerical example, the reduction in the average
number of bits the controller uses. The paper concludes with
the conclusion in Section VI.

II. NOTATIONS

Let Rn denote the n-dimensional Euclidean space and
∥ · ∥ be the Euclidean norm in Rn. Let R, R≥0, Rn

≥0, Z
and N represent the set of real numbers, non-negative real
numbers, non-negative real vectors, the set of integers and
natural numbers respectively. The identity matrix of order
n is denoted by In. Given x ∈ Rn, B(x,r) ⊂ Rn denotes the
open ball of radius r > 0 centered at x. For the sets A ⊂Rn,
we denote by co(A), co(A), Ac,∂A the convex hull, closure
of the convex hull, complement and the boundary of the set
A respectively. ⌈x⌉ denotes the least integer greater than x.
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For a matrix A, A ≻ 0 denotes a symmetric positive-definite
matrix.

III. BACKGROUND

A. Quantized feedback systems

Assume that the space Rn is partitioned into a finite
number of disjoint, open, and connected domains Di, i ∈
{1,2, . . . ,m} whose unions cover Rn. A dynamic quantizer,
as defined in [4], is given by the map, q : Rn → Q, where
Q is a finite subset of Rn. Let S =

⋃m
i=1 ∂Di denote the

union of all boundaries of the domains and is of measure
zero. The parameters ∆ ∈ (0,∞), M ∈ Z>0 are known as the
quantization error and the saturation value, respectively. The
quantizer further satisfies{

∥q(x)− x∥ ≤ ∆ ∥x∥ ≤ M∆

∥q(x)− x∥> M∆−∆ ∥x∥> M∆.

Similar to [5], we consider the approach that it is pos-
sible to change the quantization error (∆) of the quantizer
dynamically but not the saturation value (M). Note that the
quantization error is inversely proportional to the quantizer
resolution that is obtained. We consider a time-invariant
linear system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (1)

where the pair (A,B) is stabilizable. Instead of the state feed-
back with infinite precision, only the quantized information
about the state is accessible. This requires us to replace the
linear stabilizing feedback law u = Kx by u = Kq(x), leading
to a closed-loop system that is discontinuous on the set S.
The solutions to such a system are to be understood in terms
of Filippov.

B. Filippov Set-Valued maps and solutions

Consider the closed-loop system (1) with quantized feedback
control u = Kq(x)

ẋ = X(x) := Ax+BKq(x), x(0) = x0 (2)

As (2) is discontinuous on the set S, the corresponding
Filippov set-valued map F [X ](x) : Rn ⇒ Rn is

F [X ](x) :=
⋂

δ>0

⋂
µ(S)=0

co{X(B(x,δ )\S)}. (3)

Thus the discontinuous system (2) is posed as a differential
inclusion

ẋ ∈ F [X ](x). (4)

A Filippov solution to the differential equation (2) is a
Carathéodory solution to the differential inclusion (4). A
Carathéodary solution of (4) with initial condition x(0) = x0
on the interval [0,τ] is an absolutely continuous mapping x :
[0,τ]→Rn satisfying (4) for almost all t ∈ [0,τ] and x(0) =
x0. Since the Filippov set-valued map (3), by construction, is
upper semi-continuous with non-empty, convex, and compact
values, locally bounded, it follows that Filippov solutions to
(2) exists [16].

C. Event Triggered Control

In event-triggered control, the control law is updated in a
non-periodic fashion based on triggering conditions. Follow-
ing the simplified relative thresholding scheme proposed in
[10], for a fixed K ∈ Rm×n the control law takes the form

u(t) = Kx(tk), if t ∈ [tk, tk+1) (5)

and the corresponding closed-loop system (1)-(5) is given
by,

η̇(t) = Aη(t)+BKx(tk),η(tk) = x(tk), t ∈ [tk, tk+1)

where tk,k ∈N,K ∈Rm×n denotes the kth update or triggering
instant given by

τk = inf
{

t ∈ R≥0 | ∥η(t)− x(tk)∥= σ∥η(t)∥
}
. (6)

The real number τk defines the inter event time given by

τk = tk − tk−1,k ≥ 1
t0 = 0.

We use the relative thresholding condition given by ∥e(t)∥=
σ∥x(t)∥, where e(t)= x(tk)−x(t) known as the relative error.
When dealing with controllers that are used in switching
systems we have to ensure that Zeno behaviour is avoided.
Control laws that demand instantaneous switching or in-
finitely numerous switches in a finite interval, both of which
are undesirable, are characteristics of Zeno behaviour. These
are known as Type-1 and Type-2 Zeno behaviour respectively
[4]. If the switching times are given by tk,k ∈N and the inter-
event times are given by τk, then it is sufficient to show the
inter-event times are lower bounded τk ≥ τ∗ > 0,∀ k ∈ N to
avoid Zeno Behaviour.

IV. PROBLEM FORMULATION AND METHODOLOGY

Consider the linear time-invariant system

ẋ(t) = Ax(t)+Bu(t)+Bww(t), w(t) ∈ Rn. (7)

with bounded disturbance ∥w(t)∥≤W,∀ t ≥ 0. The goal is to
design functions G : Rn×R≥0 →Rm, H : R≥0×Rn×R≥0 →
R≥0, T : R≥0 ×Rn → R≥0, that depend on the quantized
state-feedback q(x(t),∆(t)), with the control law given by
(8), such that the closed-loop system (7)-(8) is ISS.

u(t) = G(q(x(tk)),∆(t)) if t ∈ [tk, tk+1)

∆(t) = ∆k = H(t,q(x(tk),∆k−1),∆k−1) if t ∈ [tk, tk+1)

tk = T (tk−1,q(x(t))), k ∈ {1,2, . . .}. (8)

We propose a control law that incorporates event-
triggering to modify the resolution of the quantizer. The
proposed control law has an inverse mechanism that adapts
the quantizer resolution based on the norm of the quantized
state-feedback that indirectly captures the disturbance acting
on the system. Without loss of generality, we assume x(0) ̸=
0. The proposed control law acts in two stages: Initialization
and stabilization. In the initialization stage, a one-off step: the
system is left in open-loop until a suitable starting condition
is met. Once this is met a zero order hold (ZOH) control law
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is utilized to stabilize the system. The control law is given
as follows,

u =

{
0 0 < t < T0

Kq(x(tk),∆k−1), T0 ≤ tk ≤ t < tk+1
(9)

∆(t) = ∆k = max{Ω∆k−1 + γ∥q(x(tk),∆k−1)∥,∆min}, (10)

T0 = inf

{
t ≥ 0

∣∣∣∣∣max

{
k1Ω

(1− k1γ)
+ rw(1+σ),

σ

(1+σ) − γ

(1+Ω+d)

}

<
∥q(x(t),∆1)∥

∆1

}
(11)

where T0 given by (11) defines the time duration of the
initialization stage subject to the open-loop dynamics ẋ(t) =
Ax(t) and d > 0. ∆1 > 0 is the initial quantization error. The
tk’s, known as the triggering instances are defined using a
modified relative thresholding scheme,

τk = inf{τ ∈ R≥0| ∥q(η(τ),∆k)−q(η(tk),∆k−1)∥ ≥ (12)
σ∥q(η(τ),∆k)∥}
tk+1 = τk + tk, k ∈ N, t1 = T0

and η(τ) is the solution to the differential equation

η̇(τ) = Aη(τ)+BKq(x(tk),∆k−1),η(τ) ∈ Rn,τ ∈ R≥0

with the initial condition η(0) = q(x(tk),∆k−1). We present
the main contributions of the letter through the following
theorem.

Theorem 1: The system (7) is rendered input-to-state sta-
ble using the ZOH feedback control law (9)-(10). The various
parameters defined in the control law satisfy the following
constraints,
C1. Ac = (A+BK) is Hurwitz and there exists P,Q ≻ 0 such

that PAc +AT
c P =−Q.

C2. σ ,Ω satisfy

σ ∈ (0,
a
b
)
⋂

(0,1), 0 < Ω <
1

1+σ
(13)

where a := λmin(Q),b := ∥KT BT P + PBK∥,β :=
b(1+σ)
(1−bσ) , k1 := (1 + σ)(1 + β ), rw := cW

(a−bσ) , c :=
∥KT BT

wP+PBwK∥.
C3. The constant γ satisfies

0 < γ < min

{
( σ

1+σ
)(1−Ω(1−σ))

((1+d)(1−σ)+1)
,

(
1
k1

− Ω

1+β

)}
.

C4. ∆min denotes the minimum resolution of the quantizer
given by

∆min =
rw(σ +1− k1γ)

(1+β )(1− k1γ −Ω(1+σ))

and the saturation of the quantizer satisfies

M > 1+
1

γ(1−σ)
.

Further the control law does not exhibit Zeno behaviour as
the inter event time is lower bounded.

Proof: As the matrix Ac is Hurwitz the linear feedback
control u = Kx is a stabilizing controller. The closed-loop
control system (7)-(8) with quantized feedback control in
t ∈ [tk, tk+1) is written as

ẋ(t) = Ax(t)+BKq(x(tk),∆k−1)+Bww(t)

= Acx(t)+BKs(t)+BKe(t)+Bww(t) (14)

where, s(t)= q(x(t),∆k)−x(t) is called the quantization error
and e(t) = q(x(tk),∆k−1)− q(x(t),∆k) is the quantized state
error. Consider the candidate Lyapunov function V = xT Px,
the derivative of V along the trajectories of the system (14)
during the time window t ∈ [tk, tk+1) is

V̇ = xT (AT
c P+PAc)x+ xT (KT BT P+PBK)s+

xT (KT BT P+PBK)e+ xT (KT BT
wP+PBwK)w

≤−λmin(Q)∥x∥2 +∥x∥∥KT BT P+PBK∥∥s∥
+∥x∥∥KT BT P+PBK∥∥e∥+∥x∥∥KT BT

wP+PBwK∥∥w∥.

Using the fact that ∥s(t)∥ ≤ ∆k, t ∈ [tk, tk+1), it follows

V̇ ≤−a∥x∥2 +∥x∥b∆k +∥x∥bσ∥q(x)∥+∥x∥c∥w∥
≤ −a∥x∥2 +∥x∥b∆k +∥x∥bσ(∥x∥+∆k)+∥x∥cW

=−(a−bσ)∥x∥

(
∥x∥− b(1+σ)∆k

(a−bσ)
− cW

(a−bσ)

)
.

Thus, V̇ is negative definite in the closed region given by
(15)

R =

{
x ∈ Rn

∣∣∣∣∣ ∥x∥ ≥ b(1+σ)∆k

(a−bσ)
+ rw = β∆k + rw

}
. (15)

Then V along the system trajectories is decreasing outside
the region Rc. The triggering condition is given by

∥q(x(tk+1),∆k)−q(x(tk),∆k−1)∥= σ∥q(x(tk+1),∆k)∥ (16)

and using Lemma.1, (16) can be rewritten as

∥q(x(tk+1),∆k)−
1

1−σ2 q(x(tk),∆k−1)∥

=
σ

1−σ2 ∥q(x(tk),∆k−1)∥. (17)

The condition (17) gives us the region R1 defined as

R1 =

{
x ∈ Rn

∣∣∣∣∣ ∥q(x(tk+1),∆k)−
1

1−σ2 q(x(tk),∆k−1)∥

≥ σ

1−σ2 ∥q(x(tk),∆k−1)∥

}
. (18)

As the triggering occurs on the boundary of the region Rc
1

and as V̇ is negative outside the region Rc, if we ensure that
Rc ∩Rc

1 = /0, we are guaranteed that V is always decreasing
between two triggering instances. This can be ensured if the
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sum of the radii of the regions Rc,Rc
1 is lesser than the center-

to-center distance between Rc,Rc
1, giving us

1
1−σ2 ∥q(x(tk),∆k−1)∥>

σ

1−σ2 ∥q(x(tk),∆k−1)∥

+β∆k +∆k + rw

∥q(x(tk),∆k−1)∥> k1∆k + rw(1+σ)

> k1Ω∆k−1 + k1γ∥q(x(tk),∆k−1)∥
+ rw(1+σ)

=⇒ ∥q(x(tk),∆k−1)∥>
k1Ω

1− k1γ
∆k−1 +

rw(1+σ)

1− k1γ
. (19)

This ensures that Lyapunov function is decreasing along the
trajectories of the closed-loop system (7)-(9). To show that
the control law avoids Zeno Behaviour, we consider the
transformation in the time interval [tk, tk+1) as

ζ (t) := x(t)− 1
1−σ2 q(x(tk),∆k−1), resulting in

ζ̇ (t) = Aζ (t)+(BK +
A

1−σ2 ) q(x(tk),∆k−1)+Bww(t).

(20)

If the inter-event times are given by τk = tk+1−tk the solution
of the system (20) in the time interval [tk, tk+1] is given as

ζ (tk+1) = eAτk ζ (tk)

+
∫

τk

0
eAτ

(
BK +

A
1−σ2

)
q(x(tk),∆k−1) dτ

+
∫

τk

0
eAτ Bww(t) dτ.

Taking the norm of the transformed state ζ (t) and using the
triangle inequality we get,

∥ζ (tk+1)∥ ≤ e∥A∥τk∥ζ (tk)∥

+
∫

τk

0
e∥A∥τ∥BK +

1
1−σ2 A∥∥q(x(tk),∆k−1)∥ dτ

+
∫

τk

0
e∥A∥τ∥Bw∥W dτ.

Rearranging the inequality we obtain a bound on τk,

τk ≥
1

∥A∥
ln

( ∥ζ (tk+1)∥
∥q(x(tk),∆k−1)∥

+
∥BK+ 1

1−σ2 A∥
∥A∥ + ∥Bw∥W

∥A∥∥q(x(tk),∆k−1)∥

∥ζ (tk)∥
∥q(x(tk),∆k−1)∥

+
∥BK+ 1

1−σ2 A∥
∥A∥ + ∥Bw∥W

∥A∥∥q(x(tk),∆k−1)∥

)
.

In order to obtain bounds on the various fractions, first
consider ∥ζ (tk)∥

∥q(x(tk),∆k−1)∥
,

∥ζ (tk)∥= ∥x(tk)−
1

1−σ2 q(x(tk),∆k−1)∥

= ∥x(tk)−q(x(tk),∆k−1)−
σ2

1−σ2 q(x(tk),∆k−1)∥

≤ ∆k−1 +
σ2

1−σ2 ∥q(x(tk),∆k−1)∥.

Dividing by ∥q(x(tk),∆k−1)∥ we get,

∥ζ (tk)∥
∥q(x(tk),∆k−1)∥

≤ ∆k−1

∥q(x(tk),∆k−1)∥
+

σ2

1−σ2 = Γ2 > 0.

Similarly, carrying out the same operation on ζ (tk+1) yields,

∥ζ (tk+1)∥= ∥x(tk+1)−
1

1−σ2 q(x(tk),∆k−1)∥

= ∥x(tk+1)−q(x(tk+1),∆k)+q(x(tk+1),∆k)

− 1
1−σ2 q(x(tk),∆k−1)∥

≥ σ

1−σ2 ∥q(x(tk),∆k−1)∥−∆k

=
σ

1−σ2 ∥q(x(tk),∆k−1)∥−Ω∆k−1

− γ∥q(x(tk),∆k−1)∥
∥ζ (tk+1)∥

∥q(x(tk),∆k−1)∥
>

σ

1−σ2 − Ω∆k−1

∥q(x(tk),∆k−1)∥
− γ = Γ1.

The difference Γ1 −Γ2 is,

Γ1 −Γ2 = (
σ

(1+σ)
− γ)− (1+Ω)

∆k−1

∥q(x(tk),∆k−1)∥
.

To ensure that Γ1 −Γ2 > 0 it suffices for the following strict
inequality to hold,

∆k−1

∥q(x(tk),∆k−1)∥
<

( σ

(1+σ) − γ)

(1+Ω+d)
. (21)

Accordingly,

Γ1 −Γ2 ≥

(
σ

(1+σ)
− γ

)
d

(1+Ω+d)
> 0. (22)

Using the fact that the triggering happens outside the region
Rc, we have

∥q(x(tk),∆k∥>
k1Ω

1− k1γ
∆min + rw(1+σ).

Rearranging,

∥Bw∥W
∥A∥∥q(x(tk),∆k−1)∥

< b0 :=
∥Bw∥W

∥A∥( k1Ω

1−k1γ
∆min + rw(1+σ))

.

(23)

We obtain a bound on the fraction ∥Bw∥W
∥A∥∥q(x(tk),∆k−1)∥

. Therefore
it follows that from (22), (23) that

τk ≥ τ∗ =
1

∥A∥
ln

(
Γ1 +

∥BK+ 1
1−σ2 A∥

∥A∥ +b0

Γ2 +
∥BK+ 1

1−σ2 A∥
∥A∥ +b0

)
> 0.

This proves the avoidance of Zeno Behaviour. We need
to ensure that after the triggering, once the resolution of
the quantizer is updated, it is necessary to ensure that the
conditions (19) and (21) hold for the time interval [tk+1, tk+2).
Using the fact that the resolution ∆(t) is lower-bounded by
∆min we get

∆k ≥ ∆min =
rw(σ +1− k1γ)

(1+β )(1− k1γ −Ω(1+σ))

=⇒ (1+β )∆k + rW >
k1Ω

(1− k1γ)
∆k +

rW (1+σ)

1− k1γ
.
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As the triggering happens outside the region Rc given by
(15) we have

∥q(x(tk+1),∆k)∥> (1+β )∆k + rw

>
k1Ω

(1− k1γ)
∆k +

rW (1+σ)

1− k1γ
.

Similarly we have to ensure that the condition (21) holds for
the next time interval [tk+1, tk+2) as well. Using the update
equation for ∆(t),

∆k

∥q(x(tk),∆k−1)∥
= Ω

∆k−1

∥q(x(tk),∆k−1)∥
+ γ

<
∆k−1

∥q(x(tk),∆k−1)∥
+ γ

<
σ

1+σ
− γ

(1+Ω+d)
+ γ.

We also have from the modified triggering condition (17),

1
1+σ

<
∥q(x(tk+1),∆k)∥
∥q(x(tk),∆k−1)∥

<
1

1−σ
.

Using which we get

∆k

∥q(x(tk+1),∆k)∥
=

∆k/∥q(x(tk),∆k−1)∥
∥q(x(tk+1),∆k)∥/∥q(x(tk),∆k−1)∥

<

(
Ω( σ

1+σ
)− γ

(1+Ω+d)
+ γ

)
(1−σ)<

σ

1+σ
− γ

(1+Ω+d)

where in the previous step we have used the inequality given
in C3. Further we have to show that the quantizer does not
saturate at any of the triggering instances. During the time
period [tk+1, tk+2), from the condition on the range of the
quantizer 1

γ(1−σ) +1 < M, we get,

0 <

(
(M−1)γ − 1

1−σ

)
∥q(x(tk),∆k−1)∥+(M−1)Ω∆k−1

1
1−σ

∥q(x(tk),∆k−1)∥< (M−1)(γ∥q(x(tk),∆k−1)∥+Ω∆k−1)

∥q(x(tk+1),∆k)∥< (M−1)∆k =⇒ ∥x(tk+1)∥< M∆k

which shows that the quantizer is not saturated in the time
interval [tk, tk+1). Define the region

Rmin =

{
x ∈ Rn

∣∣∣∣∣ ∥x∥ ≥ (1+β )∆min + rw

}
. (24)

This ensures that Lyapunov function is decreasing along the
trajectories of the system under the control law in the region
Rmin given by (24) which guarantees input-to-state stability.

The condition (11) is a consequence of ensuring the twin-
objective of Lyapunov function decreasing between trigger-
ing instances and the avoidance of Zeno behaviour. The
condition C4 on the range of the quantizer (M) ensures
that the quantizer is not saturated at any of the triggering
instances.

V. SIMULATION AND RESULTS

A. Tuning the Controller

The controller has the parameters σ ,Ω,d,γ,∆0, satisfying
the constraints given in C2, C3 which need to be tuned.
This section summarises the effect of each of the parameter
on the transient behaviour of the system. We propose the
following procedure to tune the parameters, resulting in a
feasible solution.

1) Choose σ satisfying constraint C2. A larger value of σ

results in a more relaxed event-triggering and thereby a
larger inter-event time.

2) Choose Ω satisfying constraint C2 (which depends on
the value of σ ). A larger value of Ω results in a smaller
decay rate of the quantizer resolution.

3) Choose d > 0. Notice that a large value of d reflects in a
large minimum-inter-event time. However, a large value
of d lowers the maximum allowable value of γ . A lower
γ results in a weak dependence of ∆k on q(x(t),∆k−1)
in (10).

4) Choose γ satisfying constraint C3. A larger value of
γ results in a stronger coupling between the incoming
disturbance and the adaptive change in the quantizer
resolution.

5) Given a value of ∆1 The control law ensures that given
a value of ∆1 the initial condition on the resolution is
met.

Using the proposed tuning methodology, and using additional
performance measures that based on one’s application a
suitable control law can be designed.

B. Numerical Example

Consider the following toy example, which we numerically
simulate, to verify our control law.[

ẋ1
ẋ2

]
=

[
0.75 0.9
0.0 0.45

][
x1
x2

]
+

[
20
20

]
u1 +

[
1.0
1.0

]
w(t). (25)

Using the proposed tuning methodology, the constants
used in the simulation are: σ = 0.0164,Ω = 0.0197,d =
0.01,W = 30.0,γ = 0.008,∆min = 0.0966,τ∗ = 0.0021,K =[

0 0
−0.0936 −0.0414

]
. A mid-tread uniform step quantizer,

similar to [5], is utilized for the simulation. The simulation
is done for a total of 30s, and a disturbance of magnitude
30 is provided for 10s from t = 2.5s to t = 12.5s. The nu-
merical simulation obtained is shown in Fig.1. The following
observations are made

1) The proposed control law stabilizes the origin of the
closed-loop system (25) in the sense of Input-to-State
stability. The states are shown to converge to a neigh-
bourhood of the origin in Fig 1, Plot 1.

2) The resolution of the quantizer is decreased (∆(t) of the
quantizer is increased) as the system states are steered
away from the origin due to the disturbance w(t). This
is depicted in Fig 1, Plot 2.

3) The inter-event times are lower bounded by 0.0121s >
τ∗ as seen in Fig 1, Plot 4. As given in Section III-
C, this eliminates the possibility of Zeno behaviour. A
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Fig. 1. (i) Plot 1 shows the evolution of the states of the system, (ii) Plot
2 depicts the variation of the quantization error ∆(t). We can observe that
it increases in conjunction with the disturbance. (iii) Plot 4 shows that the
inter-event times at various triggering instances.

total of 196 event-triggers have occurred in the 25s time
interval.

Consider an ADC with a saturation value of M > 0 and a
quantization error of ∆. The number of bits required for a
binary representation of any value between [0,M] is given
by B = ⌈log2(

M
∆
)⌉. Thus the average number of bits required

during the stabilization of the system can be given as Bavg =
(∑N

i=1⌈log2(
M
∆k
)⌉τk)/(∑

N
i=1 τk), τk are the inter event times

and N is number of event triggers. In the absence of a reactive
controller, the average number of bits that would be required
is given by B′

avg = ⌈log2(
M

∆min
)⌉. For our numerical simulation

we get Bavg = 12.75,B′
avg = 14.00, thus if Bavg < B′

avg, our
control law has provided a better utilization of resources.

VI. CONCLUSION

An event-triggered control algorithm is proposed to stabi-
lize the class of linear time-invariant systems with quantized
feedback with disturbance. A novel quantizer-resolution up-
date equation is proposed that includes the quantized state
feedback. Using a numerical example, we demonstrate the
reduction in average number of bits used by the controller.

The authors will extend the results derived in this article to
non-linear systems with quantized feedback as part of future
work.

APPENDIX

Lemma 1: Consider a ∈ Rn,b ∈ Rn,0 ≤ σ < 1, then,

∥a−b∥= σ∥a∥ ⇐⇒ ∥a− 1
1−σ2 b∥= σ

(1−σ2)
∥b∥ (26)

Proof: On squaring and rewriting, we have
n

∑
i=1

(ai −bi)
2 = σ

2
n

∑
i

a2
i

=⇒
n

∑
i=1

(ai −
1

1−σ2 bi)
2 =

σ2

(1−σ2)2 b2
i

which gives us the lemma.
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