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Abstract— Aiming at the Connected Autonomous Vehicles
(CAVs) crossing the unsignalized intersection problem, a hybrid
coordinated optimization method is studied in this paper. The
proposed approach consists of a Multi-Risk Management of
Cooperative Optimization approach based on the Predicted
Inter-Distance Profile (MRMCO-PIDP), and Epsilon Proba-
bility Collective algorithm (Epsilon-PC) to make CAVs apply
cooperative and adaptive velocity planning to navigate safely
and quickly in unsignalized intersections. It is the first use of
PIDP for multi-risk assessment and management for CAVs.
According to the computation of PIDP metric [1] regarding
other vehicles with risk of collision and its controlled minimum
(mPIDP), CAVs can find the most effective speed profile for
collision avoidance in an unsignalized intersection. Several
random scenarios are performed in simulation to demonstrate
the reliability of the proposed approach.

I. INTRODUCTION

Urban traffic congestion is a pressing issue in many cities
worldwide. It occurs when the demand for transportation
exceeds the available capacity of road infrastructure, leading
to slower traffic, longer travel times, increased fuel con-
sumption, air pollution, and overall reduced quality of life.
Congestion not only wastes time and resources but also poses
significant environmental and health risks.

In the past decade, autonomous vehicles have emerged
with enormous potential to reduce urban traffic congestion
and the occurrence of road traffic accidents. In the current
mainstream field, it is believed that traffic congestion at
intersections can be coordinated by altering traffic signal pat-
terns [2] and allocating time slots for vehicles [3]. However,
traditional traffic signal control methods in urban areas often
cannot be directly applied in the mentioned areas because
traffic signals may lead to redundant costs and increase
congestion at inappropriate intersections and under certain
circumstances. Directly controlling vehicles for coordination
proves to be more effective in addressing complex intersec-
tion traffic scenarios [4], even the simplest platooning can
double the throughput capacity at intersections [5]. Authors
in [6] used POMDP to formulate the problem, and used the
adaptive belief tree algorithm to find the optimal passing
order. Authors in [7] proposed a cooperative control algo-
rithm for multi-objective optimization, to transfer the high-
dimensional problem into the single-dimensional problem.
A fuzzy logic method to optimize the speed trajectories of
two CAVs was proposed in [8]. A stochastic method was
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proposed in [9] to optimize trajectories of multi-vehicles in
mixed-traffic.

The current major challenge in unsignalized intersection
traffic coordination algorithms lies in avoiding conflict be-
havior. Several common methods for detecting collision risks
include Time-To-Collision (TTC), Extend Time-To-Collision
(ETTC) [10], and Predicted Inter-Distance Profile (PIDP)
[11]. Based on these collision-free coordination methods
at intersections, the authors in [12] applied the Probability
Collective Algorithm (PC) [13] to traffic management at
signal-less intersections. This is a probabilistic collective-
based vehicle coordination method for shared space research.
It was extended to Epsilon-PC in [14] to obtain a better
fusion strategy with considering both efficiency and safety.
PC-based methods outperform traditional genetic algorithms
(GA) in terms of convergence speed and avoiding local
minimum. The core of this method is continuous random
exploration based on Monte Carlo methods, resulting in a
considerable amount of inefficient exploration and compu-
tation processes. This leads to relatively long computation
times, making it ineffective for optimizing vehicles pass-
ing through intersections quickly and interacting/cooperating
with the other vehicles in real-time.

This paper proposes a Multi-Risk Management Coop-
erative Optimization algorithm based on PIDP (MRMCO-
PIDP), which can effectively and rapidly find the closest
optimization solution under current conditions. Its significant
features include low computation cost, speed, and outstand-
ing capability to handle complex intersection scenarios.
However, its disadvantage is, this is a local search optimal
algorithm, its output is a locally optimal solution, influenced
by initial velocities of vehicles and may not be the global
optimal solution. As a stochastic algorithm, the PC algo-
rithm excels in finding sub-optimal solution. Considering the
practical communication and negotiation among CAVs, we
present a hybrid multi-vehicle risk coordination framework.
This framework allows CAVs to use the MRMCO-PIDP
method to find a feasible solution quickly and, with the
remaining negotiation time, find a potential solution better
than the solution given by the MRMCO-PIDP.

The remainder of this paper is organized as follows:
the methodology of the MRMCO-PIDP is introduced in
Section II. The hybrid coordination optimization architecture
is proposed in Section III. Simulations and results analysis
are given in Section IV. At last, conclusions and some
prospects are given in Section V.
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II. PROPOSED INTERSECTION COOPERATIVE
ALGORITHM

In this section, the Multi-Risk Management Cooperative
Optimization approach based on the Predicted Inter-Distance
Profile (MRMCO-PIDP) is introduced, which is extended
from PC algorithm and PIDP method to find a feasible
solution, where ePIDP is used to find the quickest direction
of the feasible solution like the gradient in the gradient
descent algorithm. The definition of ePIDP is given in
Section II-B.

The overview of the multi-vehicle passing at the unsignal-
ized intersection scenario is depicted in Figure 1. In this
study, only CAVs equipped with embedded systems are
considered. The path of each CAV is fixed and depends solely
on the vehicle’s starting position and destination direction.
Within the intersection, there is a facility known as the local
monitoring station, responsible for gathering information
about the relative positions of CAVs in the vicinity of the
intersection and facilitating communication between CAVs.

Fig. 1: An unsignalized intersection with 4 CAVs

A. Formulation of Searching Space

Since the paths of vehicles passing through the intersection
are solely determined by their starting positions and desti-
nation directions, the only available control parameter is the
navigation speed. CAVs should make their decisions within
a limited time interval (in our approach, this decision relates
to the CAV adopted speed) and coordinate the navigation
actions of all CAVs.

In the speed profiles generation part, we adopt a method
similar to [12]. We generate a set of possible speed profiles
(the number of speed profile generated for each vehicle is
same, marked as Ns) based on each vehicle’s initial speed,
the legal maximum speed at the intersection, and dynamic
constraints such as the vehicle’s maximum acceleration and
deceleration (cf. Figure 2). Each speed profile is called a
strategy of that vehicle. After a stable solution has been found
in the initial planning, secondary speed planning is conducted
to seek a more optimal solution with the same method based
on the stable solution from the first optimization.

However, what sets this method apart from the speed
generation method in [12] is that the proposed approach
employs spline curves for speed generation. The speed curves
generated using this method are smoother from a kinematic
perspective.

Fig. 2: Speed profiles in searching space [14]

B. Elementary of PIDP-Based Risk Management

The Predicted Inter-Distance Profile (PIDP) is used in [15]
[16][17][11] for the evaluation and execution of overtaking
maneuvers on highways or roundabouts, depicts how the
distance between two vehicles or a vehicle and an obstacle
will change over a future time frame. If the information of
both vehicles’ paths and speed profiles is known by each
other, and assuming these factors remain constant during a
certain time horizon of prediction, it becomes feasible to
project the evolution of the inter-vehicle distance between
them. The PIDP will be recalculated at the beginning of each
optimization iteration.

As shown in Figure 3, the safety distance dsafety is the
minimum distance between two vehicles without collision:

dsafety = ri + rj +Margin (1)

Where ri is the safety radius of vehicle i, Margin is a
certain distance to guarantee to take into account the different
uncertainties linked to the system as well as the capacity of
maximum braking of the vehicles.

mPIDP is the minimum value of the PIDP curve, which
represents the shortest distance between the two vehicles in
the future. If mPIDP is smaller than the safety distance
dsafety , it means that if neither speed changes, the two
vehicles will collide. For convenience, we define ePIDP
as the difference between mPIDP and dsafety:

ePIDP = mPIDP − dsafety (2)

If ePIDP is positive, it indicates no collision risk, and
if it is negative, it signifies the presence of collision risk.
From Figure 3, the mPIDP between vehicle 1 and vehicle
3 is less than the safe distance, but it is not the case between
vehicle 1 and vehicle 2. Therefore, under the current velocity
profile case, it can be concluded that there is a collision risk
between Vehicle 1 and Vehicle 3, but there is currently no
collision risk between Vehicle 1 and Vehicle 2.

The core of the proposed algorithm is to select the
acceleration or deceleration behavior of the vehicles based on
PIDP curve features. When the current ePIDP with another
vehicle is negative, it means that the current solution is not
feasible.

Unlike on highways or merging areas, in cases where the
collision type is not a rear-end collision in the intersection,
both accelerating to pass the intersection quickly and decel-
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Fig. 3: PIDP curves and the corresponding mPIDP and
ePIDP

(a) Speed

(b) PIDP

Fig. 4: PIDP-based decision-making

erating to allow another vehicle to pass the intersection are
viable solutions. However, the goal is to find the optimal so-
lution while avoiding the collision. Therefore, it is necessary
to assess the current state to determine whether accelerating
or decelerating for each vehicle is the most suitable to cross
the intersection.

The proposed approach to avoid collisions between vehi-
cles is illustrated in Figure 4. Based on the current speed
profile, select the increased speed profile and the decreased
speed profile, and calculate the PIDP curve according to the
conflicted vehicle. The decision to accelerate or decelerate is
determined based on the numerical values of both obtained
ePIDP (cf. Figure 3):

1) If ePIDP in > 0 > ePIDP de it means the increased

speed profile doesn’t have collision but the decreased
still has the collision, so, select the increased one is
better.

2) If ePIDP de > 0 > ePIDP in, the decreased speed
profile is a better choice.

3) If both of them are positive, it is selected the speed
with a smaller absolute value of ePIDP because it has
lower cost in terms of modification of the initial vehicle
state.

4) If both of them are negative, we select the speed
profile with a smaller absolute value of ePIDP too,
because it has the larger minimum distance between
other conflicted vehicles, even if it doesn’t avoid the
collision yet.

5) If they have the same value, select the decreased speed
profile to prevent unknown risks.

In the Figure 4(a), examples of the original speed profile,
the increased speed profile, and the decreased speed profile
are shown, with their corresponding PIDP curves are shown
in Figure 4(b). In this case, the ePIDP of the increased
speed profile is positive but the decreased one is negative,
which means the increased speed profile is a feasible solution
for this case but the decreased one is not.

C. Multi-Risk Management

In Section II-B, we only consider the simplest scenario.
However, the actual situation is usually more complicated.
Let us consider a scenario that most of vehicles around the
intersection are at risk of collision with multiple vehicles. In
such cases, we encounter a special situation: the output of
PIDP-based risk management between a CAV and the first
collision vehicle is to accelerate, but the output of the second
collision vehicle is to decelerate.

In order to deal with this problem, the PIDP-based risk
management is extended to multi-risk management method.
The final decision of vehicle i is represented as Decisioni:

Decisioni =
∑
j∈Ci

(|ePIDP opt
ij | ∗ sij) (3)

Ci is the set of vehicles at risk of collision with vehicle i. If
Decisioni is positive, the increased speed profile will be se-
lected as the current favorite strategy, otherwise the decreased
speed profile will be selected as the current favorite strategy.
ePIDP opt

ij is the optimized ePIDP between vehicle i and
vehicle j through the method shown in Section II-B. sij
indicates the motion of ePIDP opt

ij , if the optimized speed
profile is the increased speed, sij = 1, otherwise sij = −1:

sij =

{
1 if ePIDP opt

ij = ePIDP in
ij

−1 if ePIDP opt
ij = ePIDP de

ij

(4)

D. Objective Function

In this paper, the objective is to enable CAVs to reach
an optimal collision-free route through the intersection and
minimize CAVs speed changes as much as possible during
MRMCO-PIDP. Therefore, the objective function is written
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as:

f(S) =Wsafety

Nv∑
i=1

C∑
j ̸=i

cijePIDPnc
ij +

Wcross

Nv∑
i=1

tmax∑
t=0

(vmax − vi(t))+

Wpenalty

Nv∑
i=1

C∑
j ̸=i

cij |ePIDPwc
ij |

(5)

where S is a joint strategy of all the CAVs, it is a
strategy set consisting of one strategy for each vehicle.
Wsafety,Wcross,Wpenalty are weights, and all of them are
positive real values. In the first part, ePIDP is used to
describes the speed changes of CAVs, nc is “no collision”.
In the second part, it is used to encourage CAVs to select the
faster speed to cross the intersection quickly. The last part is a
penalty function, if a collision happens, the penalty function
will output a very large cost to make this combined strategy
will not be accepted. wc is “with collision”. ePIDPnc

ij and
ePIDPwc

ij are given by:

ePIDPnc
ij =

{
ePIDP opt

ij if ePIDP opt
ij > 0

0 if ePIDP opt
ij ≤ 0

(6)

ePIDPwc
ij =

{
0 if ePIDP opt

ij > 0

ePIDP opt
ij if ePIDP opt

ij ≤ 0
(7)

E. Optimization Process

The optimization process is similar to the PC algorithm
proposed in [12]. Each simulation iteration can be split into
two parts: Optimization and negotiation.

In the optimization part, the method shown in Section II-
C will be run by each CAV. In the negotiation part, each
CAV proposes their current favorite joint strategy. The best
one will be selected to compare with the current best joint
strategy, the best one will be accepted as the new current
best joint strategy and proposed to all the CAVs.

More details can be found in Algorithm 1. Results of
simulation are given in Section IV-A.

III. PROPOSED HYBRID COORDINATION
OPTIMIZATION ARCHITECTURE

The proposed hybrid approach consists of two parts: the
Multi-Risk Management Cooperative Optimization approach
based on the Predicted Inter-Distance Profile (MRMCO-
PIDP), and the Epsilon Probability Collective algorithm
(Epsilon-PC) [14]. The methodology of MRMCO-PIDP is
detailed in Section II. Epsilon-PC algorithm is extended
from PC algorithm by adding TTC as a collision detection
constraint. The advantages and disadvantages analysis is
presented in Section IV-A. In summary, MRMCO-PIDP has
a short processing time and fast iteration speed, making
it advantageous in high-frequency intersection management
systems, allowing it to rapidly produce an optimized solution.
However, this solution may not be a global optimum. On the

Algorithm 1 MRMCO-PIDP Algorithm

1: Generate speed profile Xifor each vehicle
2: Generate best combined strategy Sbest

3: Initialize current strategy Xi
current to the the initial

speed
4: while Sbest is not convergence do
5: for Each vehicle i do
6: Get strategies X(i) from Si

7: if Collision then
8: for Vehicle j ∈ collision list CLi do
9: Calculate ePIDP opt

ij

10: if ePIDP opt
ij == ePIDP in

ij then
11: sj = 1
12: else
13: sj = −1
14: end if
15: end for
16: decisioni =

∑
j∈CLi

|ePIDP opt
ij | ∗ sj

17: else
18: decisioni = 1;
19: end if
20: if decisioni > 0 then
21: Xi

current ← Xi
current+1

22: else
23: Xi

current ← Xi
current−1

24: end if
25: Form new combine strategy set Si with the updated

Xi
current

26: end for
27: Find Si minimizing f(Si)
28: if f(Si) < f(Sbest) then
29: Sbest ← Si

30: for all vehicle i do
31: Si ← Sbest, Xi

current ← Xi ∈ Si

32: end for
33: end if
34: end while

other hand, Epsilon-PC takes slightly more time to execute
and is more advantageous in low-frequency intersection
management systems. It also has a probability of finding a
better solution than MRMCO-PIDP.

A. Intersection Management System

A general intersection management is shown in Figure 5.
The gray area is the buffer area, which is used to connect
CAVs and the intersection management system. The green
area is the decision-making area, which is used to do the
optimization and negotiation. The blue area is the action
area, vehicles in this area will not change their decisions
again. The red area is the core area, which is the shared
space with other CAVs, generally it’s the intersection zone.
Before a CAV enters the action area, all its optimization and
negotiation should be completed.
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Fig. 5: General intersection management with CAVs [18]

B. Time-Slot-Based Negotiation System

Time-slot-based (TSB) is a negotiation mechanism pro-
posed in [14], which is shown in Figure 6. It is used to
define the negotiation mechanism between CAVs. tmax is
the maximum time for decision-making process, ∆tsol is the
processing time of each iteration.

Fig. 6: Time-slot-based negotiation mechanism

C. Hybrid Coordination Optimization Architecture

As introduced in Section III-A, if the optimization ap-
proach is used in that scenario, the most important is whether
the approach can find a sub-optimal solution or a feasible
solution before leaving the decision-making area. However,
the disadvantage of the Epsilon-PC is its processing time
which is too long, which means ∆tEpsilonPC

sol is large. Given
that the simulation’s horizon time is fixed, longer iteration
times mean fewer available iterations. This is the primary
challenge hindering the practical application of the Epsilon-
PC algorithm: an algorithm that cannot quickly find a feasible
solution is not acceptable, even if its output of the stable
solution is an optimal or sub-optimal solution. Its advan-
tages and disadvantages are complementary to MRMCO-

PIDP: MRMCO-PIDP can provide an optimized solution
very quickly, but this solution may not be optimal.

Based on the respective advantages and disadvantages
of the two algorithms, we propose a hybrid coordination
optimization architecture: at the beginning of the optimiza-
tion process, the MRMCO-PIDP algorithm is prioritized
to rapidly output a feasible solution, which is set as the
current preferred solution. During the subsequent decision-
making process before entering the intersection, the Epsilon-
PC algorithm is employed to search for a better solution
than the current preferred one. If a better solution is found,
it is used to update the CAVs’ preferred solution. If not,
at least MRMCO-PIDP ensures that CAVs have a collision-
free feasible solution before entering the intersection. More
details can be found in Figure 7.

Due to the significant difference in processing time be-
tween the two algorithms (cf. Table II and III), we will
use different iteration time intervals at different stages. For
MRMCO-PIDP, with each iteration taking less than 0.02
seconds, the negotiation frequency can be set to 10Hz or
even faster (i.e., the iteration time interval ∆tMRMCO

sol < 0.1
seconds). For Epsilon-PC, with an average processing time
per iteration of up to 0.6 seconds, assuming its processing
time can be reduced to less than 0.5 seconds with code
optimization, its negotiation frequency should not exceed
2Hz (i.e., the iteration time interval ∆tEpsilonPC

sol > 0.5s).

IV. SIMULATION RESULTS

All experiments were conducted using a program de-
veloped in MATLAB on a computer equipped with Core
i7-12700H, 2.30GHz and 16GB RAM. All scenarios are
generated by a random scenarios generator, which includes:
initial position, initial speed, final direction. Given that
Epsilon-PC is a probabilistic algorithm, the solutions it
provides often vary after each simulation run. Therefore,
in the simulations involving this method, each scenario is
repeated 10 times. For each repetition, the average of the
optimized solutions is considered to comparison with the
corresponding optimized solution by MRMCO-PIDP. In the
case of MRMCO-PIDP, as a local search algorithm, the
output remains consistent when the initial conditions (initial
position, initial speed, final direction) are kept the same,
so there is no need to conduct multiple tests for the same
scenario. Some examples of the simulation can be found
https://youtu.be/5vUSt66qYmU

A. Simulation Results of MRMCO-PIDP

One hundred different scenarios were randomly generated
for the passage of 3, 4, and 5 vehicles through the unsignal-
ized intersection. These scenarios were separately optimized
using the MRMCO-PIDP and Epsilon-PC algorithms. A
comparison was made by analyzing the distributions of the
average vehicle crossing times and the overall optimization
times for random scenarios to illustrate the advantages of the
MRMCO-PIDP method. Main parameters considered in the
simulation are summarized in Table I.
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Fig. 7: Flowchart of the proposed hybrid coordination opti-
mization architecture

We can observe that the MRMCO-PIDP method exhibits a
slight advantage in optimizing the average vehicle crossing
time from Figure 8 and Figure 10, . In specific scenarios,
MRMCO-PIDP either performs exceptionally well or poorly
when compared to the Epsilon-PC algorithm. However, in
terms of simulation time, MRMCO-PIDP exhibits a signif-
icant advantage. It can achieve an overall solution slightly
better than Epsilon-PC in much less processing time, some-
times as low as 4% of the processing time of Epsilon-PC.

Furthermore, these advantages become more pronounced
with an increase in the number of vehicles in the simula-
tion. This also demonstrates the excellent performance of
MRMCO-PIDP in handling complex intersection scenarios.
The results analysis is detailed in Tables II and III.

Additionally, Figure 9 shows the comparison of optimiza-
tion process of average crossing time for each method. In
Figure 9(a), we observe that the average crossing time of
Epsilon-PC decreases very quickly in each iteration, and
there is a probability of finding a better solution, which

TABLE I: Parameters of vehicles and simulation

Parameters Value Parameters Values

amax 2[m/s2] WSafety 0.1
[vmin, vmax] [0,10][m/s] Wcross 0.9

rsafety 1.5[m] Wpenalty 1000
Tsample 0.1[s] Ns 10

(a) 3 vehicles

(b) 4 vehicles

(c) 5 vehicles

Fig. 8: Simulation time with different number of vehicles

reflects to Epsilon-PC’s efficiency in achieving a feasible
solution with fewer iterations„ as shown in Table II.

However, considering that the time of each optimization
iteration in Epsilon-PC is much longer than MRMCO-PIDP,
we transfer the x-axis in Figure 9(a) from iteration number
to simulation time, the results are given in Figure 9(b) and
9(c). We can see that Epsilon-PC took more time to find a
feasible solution, while MRMCO-PIDP’s processing time is
significantly less than Epsilon-PC.

Here, we can draw conclusions:
1) If CAVs have a high negotiation frequency (greater than
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TABLE II: Analysis of Epsilon-PC

Parameters 3 vehicles 4 vehicles 5 vehicles

Average
crossing time 3.75s 3.81s 4.35s

Variance
crossing time 0.447 1.168 0.668

Average
simulation time 21.03s 40.04s 63.05s

Average
processing time 0.42s/iter 0.58s/iter 0.74s/iter

Avg iteration number
for feasible solution 1.15 1.16 1.18

TABLE III: Analysis of MRMCO-PIDP

Parameters 3 vehicles 4 vehicles 5 vehicles

Average
crossing time 3.67s 3.62s 3.93s

Variance
crossing time 0.733 0.736 0.411

Average
simulation time 0.70s 1.44s 2.48s

Average
processing time 0.011s/iter 0.015s/iter 0.020s/iter

Avg iteration number
for feasible solution 1.75 2.16 3.58

5Hz), then MRMCO-PIDP has a clear advantage. If
the negotiation frequency is low (less than 2Hz), then
Epsilon-PC has a relatively larger advantage.

2) MRMCO-PIDP is more stable than Epsilon-PC algo-
rithm, similarly, it also loses the ability of Epsilon-PC
to potentially find some optimal solutions.

B. Simulation Results of Hybrid Coordination Optimization
Architecture

In this section, the results of the hybrid architecture
are given to compare with MRMCO-PIDP and Epsilon-PC
algorithm in same scenarios. Main parameters considered
in the simulation are summarized in Table I and Table IV.
Figure 10 shows the boxplot distribution of these algorithms
with different numbers of vehicles. Average and variance
parameters are detailed in Table V.

We observe that, in both the simple 3-vehicle simulation
and the complex 5-vehicle simulation, the hybrid architecture
significantly outperforms MRMCO-PIDP and Epsilon-PC in
terms of mean and median crossing times. Additionally,

TABLE IV: Parameters of hybrid optimization architecture

Parameters Value Parameters Values

NEPC
opt_max 20 tmax 10s

∆tMRMCO
sol 0.1s ∆tEPC

sol 0.5s

(a) Number of iterations

(b) Processing time of Epsilon-PC

(c) Processing time of MRMCO-PIDP

Fig. 9: Convergence speed comparison between Epsilon-PC
and MRMCO-PIDP

it exhibits lower variance, indicating remarkable stability
of the hybrid method when addressing randomly generated
scenarios.

V. CONCLUSION AND PROSPECTS

This paper proposed an efficient local search distributed
algorithm MRMCO-PIDP for CAVs crossing unsignalized
intersection. It also proposed a hybrid coordination optimiza-
tion architecture consisting of MRMCO-PIDP and Epsilon-
PC. MRMCO-PIDP is a fast approach that is used to get a
feasible optimized solution. Vehicles at risk of collision can
utilize their PIDP curve to identify the quickest collision
avoidance strategy, whether by accelerating or decelerating.
Simulation results demonstrate its superior performance in
multi-vehicle collision problems. This hybrid architecture
combines the advantages and disadvantages of Epsilon-PC
and MRMCO-PIDP, allowing them to complement each
other. It enables Epsilon-PC to be potentially applied in real-
world scenarios without significantly increasing its process-
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(a) 3 vehicles

(b) 4 vehicles

(c) 5 vehicles

Fig. 10: Crossing time with different number of vehicles

TABLE V: Analysis of Hybrid Architecture

Parameters 3 vehicles 4 vehicles 5 vehicles

Average
crossing time 3.67s 3.62s 3.93s

Variance
crossing time 0.296 0.615 0.219

ing time. Compared with Epsilon-PC algorithm, the proposed
method’s optimization efficiency significantly increases as
the number of vehicles grows.

In future research, we aim to integrate the PIDP method
with dynamic environments, developing a fully reactive al-
gorithm to address uncertainties such as pedestrians, human-
driving vehicles, and unexpected accidents.
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