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Abstract— This paper deals with the design of a dynamic
output feedback controller of the same order as the plant.
The plant under consideration is a linear system subject to
saturating input and exponentially stable in open loop. The
design technique takes advantage of a non-quadratic Lyapunov
function involving sign-indefinite quadratic forms, which allows
exploiting additional degrees of freedom with respect to a
classical quadratic form. The design conditions, combining
adequate changes of variables and several sector conditions, are
stated in the form of linear matrix inequalities ensuring global
exponential stability of the closed-loop system, in addition to
a guaranteed prescribed local exponential convergence rate,
typically selected as faster than the open-loop plant exponential
convergence rate.

I. INTRODUCTION

In practice, the safety, physical or technological constraints
generally lead to magnitude limitations on the actuators (even
on the sensors) of the control systems. It is then well-
known that the negligence of such limitations may conduct
to catastrophic behavior (see, for example, [12]). Several
constructive methods based on linear matrix inequalities
(LMI) conditions associated to convex optimization prob-
lem have been proposed to design control laws and anti-
windup loops (see, for example, [5], [13], [14] and the
references therein). A common feature of these works is
the consideration of classical quadratic Lyapunov function
to certify the closed-loop stability, associated with adequate
ways to embed the saturation nonlinearity. The results based
on quadratic Lyapunov functions may be conservative (see,
for example, the discussion in [14, Section 4.4.1.1] or in [13,
Example 3.3]).

It is important to recall that the design of a dynamic
output controller of the same order of the linear plant is
convex based on congruence transformations and the use of
a quadratic Lyapunov function [10]. In the context of linear
systems subject to input saturation, this kind of results have
been extended by adding a static anti-windup loop to the
dynamic output controller to derive convex conditions [6],
[2], [4]. The objective of the current paper is to complete
these results by considering a more general Lyapunov func-
tion, namely a non-quadratic Lyapunov function involving
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sign-indefinite quadratic forms introduced in [9] for the
analysis case only. Later, the analysis results were extended
to the case where a local stabilizer is given, in which the
designs of static anti-windup loops ensuring global [8] and
regional [7] stability properties of the anti-windup augmented
feedback are presented. This paper further extends the use
of sign-indefinite matrices to propose sufficient and less con-
servative LMI conditions allowing to synthesize the whole
set of matrices of a dynamic output feedback controller
including a static anti-windup loop. The convex conditions
obtained guarantee global exponential stability of the closed
loop, recalling that global exponential stability can only
be provided under intuitive necessary conditions discussed
in [11]. Furthermore, it is worth to emphasize that the
conditions to design only the anti-windup loop proposed in
[7], [8] were not convex, whereas the design conditions of
the complete dynamic controller proposed in this note are.
The design conditions combine the use of sign-indefinite
quadratic forms, appropriate changes of variables inspired
from [10] and generalized sector conditions involving the
deadzone nonlinearity and its directional time derivative. The
proposed LMI conditions allow to compute the matrices
defining the dynamic output feedback controller ensuring
global exponential stability and a minimum convergence rate.
Also, point out that the guaranteed convergence rate is a local
property in the sense that is only ensured when the input
saturation is inactive.

The paper is organized as follows. Section II introduces the
system under consideration and the dynamic controller with
anti-windup loop to be synthesized. Section III presents the
main result based on the use of a sign-indefinite quadratic
form and appropriate changes of variables. Two numerical
applications are reported in Section IV and the proof of the
global exponential stability conditions is given in Section
V. Finally, some concluding remarks and perspectives are
discussed in Section VI.

Notation: MT is the transpose of the matrix M and
M−T the transpose of the invertible matrix M−1. Define
He (M) = M +MT. Let M be a constant matrix and M
an optimization decision variable. Rm is the Euclidean space
of dimensions m. Dm (Dm

>0) is the set of diagonal (positive-
definite) matrices of dimension m × m. Sm (Sm>0) is the
set of symmetric (positive-definite) matrices of dimension
m×m. Given any matrix M ∈ Rm×m, λ(M) is the set of
eigenvalues of M , λmin(M) the minimum eigenvalue of M
and λmax(M) the maximum eigenvalue of M . Finally, Im
is the identity matrix of dimensions m×m and 0 is the null
matrix of appropriate dimensions.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 973



II. SYSTEM DEFINITION

Consider the linear plant subject to input saturation

ẋp = Apxp +Bpsat (u)
y = Cpxp

, (1)

with state xp ∈ Rn and output y ∈ Rm. A plant-order
dynamic output feedback controller with anti-windup com-
pensation is designed in this note, with

ẋc = Acxc +Bcy + Ecdz (u)
u = Ccxc +Dcy

, (2)

where state xc ∈ Rn and output u ∈ Rm. Denote by
u → sat (u) the decentralized symmetric saturation func-
tion, with

sati(ui) := max{−ui,min{ūi, ui}}

for all i = 1, · · · ,m, where ūi > 0 is the upper
saturation limit and ui > 0 is the (absolute value of
the) lower saturation limit. Introduce the deadzone function
dz (u) := u − sat (u), in such a way that the term Ecdz (u)
plays the role of the anti-windup compensator component.
With these definitions, let Ac, Bc, Cc, Dc and Ec be the
controller state-space model and anti-windup gain matrices
to be designed.

Then, the closed-loop system between (1) and (2) can be
compactly written as

ẋ = Ax+Bdz (u)
u = Cx

, (3)

with x :=
[
xT
p xT

c

]T
and A B

C −

 =

 Ap +BpDcCp BpCc −Bp

BcCp Ac Ec

DcCp Cc −

 .
This note aims to propose a LMI-based method allowing to

compute the dynamic output feedback controller (2) ensuring
the two following properties:

1. Global exponential stability of the origin for the satu-
rated closed loop (3).

2. Matrix A above satisfies a prescribed spectral abscissa
of −α < 0.

Note that the condition on the spectral abscissa of A in (3)
ensures desirable local exponential stability with convergence
rate α. Such a convergence rate is clearly enjoyed by
small-signal responses that do not activate the saturation
nonlinearity. Furthermore, notice that having Ap Hurwitz is
a necessary condition to obtain global exponential stability
for (3) due to the presence of the saturation limits and the
resulting limitations of bounded stabilization [11].

III. SIGN-INDEFINITE QUADRATIC CERTIFICATES

Define the extended state vector

η =
[
xT dz (Cx)T

]T
.

Then, the linear dynamic controller synthesis of this letter
can be based on the Sign-Indefinite Quadratic form

V (x) := ηTPη = ηT
[
P11 P12

P T
12 P22

]
η, (4)

with P11 > 0. Notice that V is locally positive-definite if
P11 is positive-definite while P22 may be sign-indefinite,
reducing conservativeness as compared to solutions using the
classic quadratic forms xTQx requiring positive-definiteness
of Q, as in [2], [4], [13]. Note that (4) is nonquadratic in x
due to the piecewise affine dependence on x of the vector η.
Introduce the full-rank matrices X,Y ∈ Sn>0, X̂, Ŷ ∈ Sn>0

and M,N ∈ Rn×n such that

P11 =

[
X M

MT X̂

]
, P−1

11 =

[
Y N

NT Ŷ

]
. (5)

Using (5) and the fact that P11P
−1
11 = P−1

11 P11 = In, it can
be seen that (5) holds for suitable selections of X̂ and Ŷ if
and only if

XY +MNT = YX+NMT = In. (6)

More specifically, under (5) and (6), the following symmetric
selections for X̂ and Ŷ may be computed:

X̂ = −MTYN−T

= −N−1(Y −YXY)N−T,

Ŷ = −M−1XN
= −M−1(X−XYX)M−T.

(7)

Following similar derivations to those in [10], parametrize
the controller matrices in (2) as

Ac = M−1
(
Âc −X

(
Ap +BpD̂cCp

)
Y

−MBcCpY −XBpCcN
T
)
N−T,

Bc = M−1
(
B̂c −XBpD̂c

)
,

Cc =
(
Ĉc − D̂cCpY

)
N−T,

Dc = D̂c

Ec = M−1
(
Êc +XBpS

)
S−1.

(8)

and the remaining entries in (4) as

P12 =

[
Y In
NT 0

]−T [
W
Z

]
S−1,

P22 = S−1P̂22S
−1.

(9)

With the parametrization above, the bold matrices
Âc ∈ Rn×n, B̂c ∈ Rn×m, Ĉc ∈ Rm×n, D̂c ∈ Rm×m,
Êc ∈ Rn×m, P̂22 ∈ Sm, S ∈ Dm

>0, W ∈ Rn×m

and Z ∈ Rn×m are the decision variables of the convex
LMI-based synthesis formulated in the next theorem, which
allows designing the linear dynamic stabilizing controller (2)
for plant (1).

Theorem 1: Given a desired convergence rate α ≥ 0, if
there exist matrices X ∈ Sn>0, Y ∈ Sn>0, W ∈ Rn×m,
Z ∈ Rn×m, P̂22 ∈ Sm, S ∈ Dm

>0, Âc ∈ Rn×n,
B̂c ∈ Rn×m, Ĉc ∈ Rm×n, D̂c ∈ Rm×m, Êc ∈ Rn×m,
T̂pp ∈ Sn, T̂pc ∈ Rn×n and T̂cc ∈ Sn satisfying
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T̂ =

[
T̂pp T̂pc

T̂T
pc T̂cc

]
> 0, (10)

Ψ1 = He




1
2Y 0 W

Inp

1
2X Z

−Ĉc −D̂cCp
1
2 P̂22 + S


 > 0 (11)

and conditions (12) and (13) at the bottom of this page,
then the origin of (3) with the controller state-space model
matrices Ac, Bc, Cc, Dc and Ec as selected in (8) is globally
exponentially stable. Moreover, the eigenvalues of A in (3)
have real part smaller than −α.

Proof: The proof of Theorem 1 is presented in section V.

IV. NUMERICAL EXAMPLES AND SIMULATIONS

The solution proposed in Theorem 1 is applied to two
numerical examples.

A. Single input example

Consider the SISO plant with state-space model matrices

Ap =

[
−3 1
1 −2

]
, Bp =

[
1
0.5

]
,

Cp =
[
1 1

]
,

(14)

and ū = 2, M = In. In a first case, take α = 0.1.
The controller state-space model matrices obtained from
Theorem 1 are then

Ac =

[
−2.2293 0.7734
1.5373 −2.2945

]
, Bc =

[
−1.0674
−2.4750

]
,

Cc =
[
−0.0196 0.0567

]
, Dc = 0.6973,

Ec =

[
10.3178
9.4127

]
,

(15)

while the matrix P determined from (5), (7), (9) has eigen-
values

λ(P ) = {2.8377 · 103, 2.5999 · 102, −8.5063 · 10−3,

6.6814 · 10−3, 7.1259 · 10−4},

where there is a negative eigenvalue, showing that the
optimizer exploits a sign-indefinite P for V in (4). Figure 1
shows the input-output response of (3) with the plant and

controller matrices in (14) and (15), respectively, from the
initial state

x0 =
[
−2.5 −2.5 0 0

]T
,

carefully chosen to have an initial output y0 = −5. It is
possible to observe that the proposed controller synthesis
eliminates the overshoot and reduces the settling time, as
compared to the response obtained with the solution pro-
posed in [13, Proposition 3.18], which is founded on positive-
definite quadratic forms.

In a second case, let α = 1.5. With this given desired
convergence rate, the controller issued from the proposed
procedure is

Ac =

[
−2.7776 0.5282
0.6388 −2.7664

]
, Bc =

[
0.4417
−4.9914

]
,

Cc =
[
−0.0285 0.0439

]
, Dc = −0.0817,

Ec =

[
7.9591
6.1248

]
,

(16)

whereas the solution exposed in [13, Proposition 3.18] is not
able to find a feasible selection for the controller (2). Figure 2
shows the input-output response of the closed-loop (3) with
the plant (14) and controller (16).

B. Multiple input example
The proposed controller design is now applied to a MIMO

example based on [14, Example 4.3.2]. Let ū =
[
1 1

]T
,

M = In, α = 5 · 10−3 and

Ap =

[
−0.01 0

0 −0.01

]
, Bp =

[
1 0
0 1

]
,

Cp =

[
−0.4 0.5
−0.1 0.1

]
.

(17)

For this plant, the optimizer produces a state-space model
of the controller with

Ac=

[
−0.6882 0

0 −0.6882

]
, Bc=

[
8.4412 −10.5515
2.1103 −8.4412

]
,

Cc=

[
0.0108 0

0 0.0108

]
, Dc=

[
0.7927 −0.9909
0.1982 −0.7927

]
,

Ec=

[
6.0818 0

0 6.0818

]
,

(18)

Ψ2 = He





ApY +BpĈc Ap +BpD̂cCp 0 0 −BpS W

Âc XAp + B̂cCp 0 0 Êc Z

ApY +BpĈc Ap +BpD̂cCp −Y −Inp −BpS 0

Âc XAp + B̂cCp −Inp −X Êc 0

Ĉc D̂cCp WT + Ĉc ZT + D̂cCp −S P̂22

0 0 Ĉc D̂cCp −S −S




< 0 (12)

Ψ3 = He



ApY +BpĈc + αY Ap +BpD̂cCp + αIn T̂pp −Y T̂pc − In

Âc + αIn XAp + B̂cCp + αX T̂T
pc − In T̂cc −X

ApY +BpĈc + αY Ap +BpD̂cCp + αIn −Y −In
Âc + αIn XAp + B̂cCp + αX −In −X


 < 0 (13)
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Fig. 1. Response of closed-loop (3) with plant (14) from the initial state
x0 =
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−2.5 −2.5 0 0

]T. In red, response with controller (15). In
blue, response obtained with the solution presented in [13, Proposition 3.18].
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Fig. 3. Response of the closed-loop system (3) with plant (17) from the
initial state x0 =

[
−4.5455 −13.6364 0 0

]T. In red, response with
the controller synthesized (18). In blue, response obtained with the solution
presented in [13, Proposition 3.18].

and a positive-definite matrix P with eigenvalues

λ(P ) = {2.6155 · 10−3, 2.4781 · 10−1, 2.2429 · 102,
2.2429 · 102, 2.6155 · 10−3, 2.4781 · 10−1}.

Figure 3 reports on the input-output response of (3) with
the state-space matrices in (17) and (18) from the initial state

x0 =
[
−4.5455 −13.6364 0 0

]T
.

Analogous to the Example IV-A, these initial conditions are
chosen in such a way that y0 =

[
−5 −5

]T
. Notice that,

despite the positive-definiteness condition of P , a smoother
and faster convergence of outputs y1 and y2 is obtained, as
compared to the response found with the method suggested
in [13, Proposition 3.18] using a classic quadratic Lyapunov
function.

V. PROOF OF THEOREM 1

This section addresses the rationale behind the global
exponential stability certificate presented in Section III, thus
the Proof of Theorem 1. To this end, first, consider the
following preliminary facts (see [9, Facts 3-5]).

Global Sector Condition: For any T1 ∈ Dm
>0, it holds that

for all x ∈ R2n and all u ∈ Rm,

dz (u)T
T1(u− dz (u)) ≥ 0. (19)

Derivative of the Deadzone: For any T2 ∈ Dm, T3 ∈ Dm

and for almost all x ∈ R2n,

dz (Cx)T
T2(Cẋ− ḋz (Cx)) ≡ 0, (20)

ḋz (Cx)T
T3(Cẋ− ḋz (Cx)) ≡ 0, (21)

where ẋ is a shortcut for Ax+Bdz (u) as for (3) and ḋz (Cx)
denotes the time derivative of x → dz (Cx), which is well
defined for almost all values of x ∈ R2n. Define the extended
state-vector

υ =
[
xT ẋT dz (u)T ḋz (u)T

]T

and notice that, from dynamics (3), for any matrix K,

υTK(Ax+Bdz (u)− ẋ) = 0. (22)

Now, let V in (4) be a Lyapunov function candidate. With
selection (5), introduce the nonsingular matrix

Π =

[
Y In
NT 0

]
, (23)

for which the property

ΠTP11 =

[
In 0
X M

]
is easily verified by substitution. Due to matrix Π in (23),
using X̂ = −N−1YM , which is an allowable selection as
established in (7), it is immediate to show that

ΠTP11Π =

[
Y In
In X

]
. (24)
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Select the remaining entries of P in (4) as in (7) so that,
with the notation above,

ΠTP12S =

[
W
Z

]
, SP22S = P̂22. (25)

To prove now the positive-definiteness and radial unbound-
ness of V , select T1 = S−1 in (19). Then, the property

V (x) ≥ V (x)− 2 dz (Cx)S−1(Cx− dz (Cx))

= ηTΨ̃1η > 0 (26)

holds if

Ψ̃1 = He
([

1
2P11 P12

−S−1C 1
2P22 + S−1

])
> 0. (27)

Since both Π and S are nonsingular, then (27) holds if
and only if[

Π 0
0 S

]T

Ψ̃1

[
Π 0
0 S

]

= He




1
2Y 0 W

Inp

1
2X Z

−Ĉc −D̂cCp
1
2 P̂22 + S


 > 0,

whose expression stems from (24), (25) and which is positive
definite due to (11). Therefore, using

|η|2 ≤ |x|2 + |Cx|2 ≤ (1 + |C|2)|x|2

together with Ψ̃1 > 0, it holds that

λmin

(
Ψ̃1

)
|x|2 ≤ V (x)

≤ λmax(P )|η|2 ≤ λmax(P )(1 + |C|2)|x|2, (28)

which implies positive-definiteness and radial unbounded-
ness of V .

To prove now that V̇ (x) < 0 for almost all x ∈ R2n, first,
observe that selections (8) can be inverted as

Âc = X(Ap +BpD̂cCp)Y +MBcCpY

+XBpCcV
T +MAcN

T,

B̂c = XBpD̂c +MBc,

Ĉc = D̂cCpY + CcN
T,

D̂c = Dc,

Êc =MEcS−XBpS.

With the expressions above and after some cumbersome
calculations exploiting (23)-(25), it is possible to show that

ΠTP11AΠ =

[
ApY +BpĈc Ap +BpDcCp

Âc XAp + B̂cCp

]
,

ΠTP11BS =

[
−BpS

Êc

]
,

CΠ =
[
Ĉc D̂cCp

]
.

(29)

Now, consider selecting T2 = T3 = S−1 in (20), (21) and

K =
[
0 P11 −P12 − CTS−1 −CTS−1

]T

in (22). Then, the following holds:

0≤ ψ̃2,1(x)=2 dz (Cx)T
S−1(Cx− dz (Cx))

=υTHe




0
0

S−1

0

 [
C 0 −Im 0

] υ,

0= ψ̃2,2(x)=2 dz (Cx)T
S−1(Cẋ− ḋz (Cx))

=υTHe




0
0

S−1

0

 [
CA 0 CB −Im

] υ,

0= ψ̃2,3(x)=2 ḋz (Cx)T
S−1(Cẋ− ḋz (Cx))

=υTHe




0
0
0

S−1

 [
CA 0 CB −Im

] υ,

0= ψ̃2,4(x)=2 υTK(Ax+Bdz (u)− ẋ)

=υTHe




0
P11

−P T
12−S−1C
−S−1C

 [
A −I2n B 0

] υ.

Moreover, from (4) it may be computed

V̇ (x) = 2 ηTP

[
Ax+Bdz (u)

ḋz (Cx)

]

= υTHe



In 0
0 0
0 Im
0 0

P [
A 0 B 0
0 0 0 Im

] υ,

which allows upper bounding for V̇ (x) for almost all
x ∈ R2n as

V̇ (x) ≤ V̇ (x) + ψ̃2,1(x) + ψ̃2,2(x) + ψ̃2,3(x) + ψ̃2,4(x)

= υTΨ̃2υ, (30)

with Ψ̃2 given by

Ψ̃2 = He



P11A 0 P11B P12

0 0 0 0
P T
12A 0 P T

12B P22

0 0 0 0




+ He




0
0

S−1

0

 [
C 0 −Im 0

]

+ He




0
0

S−1

0

 [
CA 0 CB −Im

]
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+ He




0
0
0

S−1

 [
CA 0 CB −Im

]

+ He




0
P11

−P T
12 − S−1C
−S−1C

 [
A −I2n B 0

]

= He



P11A 0 P11B P12

P11A −P11 P11B 0
S−1C P T

12 + S−1C −S−1 P22

0 S−1C −S−1 −S−1


 .

Exploiting again the invertibility of Π and S, it holds that
Ψ̃2 < 0 if and only if

Π 0 0 0
0 Π 0 0
0 0 S 0
0 0 0 S


T

Ψ̃2


Π 0 0 0
0 Π 0 0
0 0 S 0
0 0 0 S



=He



ΠTP11AΠ 0 ΠTP11BS ΠTP12S
ΠTP11AΠ −ΠTP11Π ΠTP11BS 0

CΠ SP T
12Π+CΠ −S SP22S

0 CΠ −S −S




is negative-definite. Using (25) and (29), it is immediate to
check that the matrix above coincides with Ψ2 in (12), which
is negative-definite by assumption. Since Ψ̃2 < 0, taking
ϵ = −λmax

(
Ψ̃2

)
> 0, notice that, from (30),

V̇ (x) =
〈
∇V (x), Ax+Bdz (Cx)

〉
≤ − ϵ |x|2 .

Therefore, applying Proposition 1 of [3], which fits because
V in (4) is locally Lipschitz, it holds that〈
δv, Ax+Bdz (Cx)

〉
≤ −ϵ|x|2, ∀x ∈ Rn,∀δv ∈ ∂V (x),

(31)

where ∂V (x) denotes the Clarke generalized gradient of V
at x. Hence, combining (31) with the quadratic upper and
lower bounds of V in (28) and proceeding as in [1, Section
4.5] proves global exponential stability of the origin.

Finally, to prove that the spectral abscissa of A is smaller
than −α, it suffices to show that the matrix Â := A + αIn
is Hurwitz. Following a similar approach to [9, Proposition
2], introduce the matrix T ∈ S2n>0 defined as

T = Π−TT̂Π−1.

with T̂ defined as in (10). Then, using (24) and (29), observe
that property (13) assumed in the theorem implies[

Π 0
0 Π

]−T

Ψ3

[
Π 0
0 Π

]−1

= He
([
P11Â T − P11

P11Â −P11

])
< 0,

which pre and postmultiplied by
[
xT xTÂT

]
and its trans-

pose reads

xTTÂx = xTT (A+ αI2n)x < 0,

proving that Â is Hurwitz, thus completing the proof of
Theorem 1. □

VI. CONCLUDING COMMENTS

The paper addressed the design of a dynamic output
controller including an anti-windup loop for global exponen-
tially stable plants subject to input saturation. The designed
controller is of the same order as the plant order. The
design conditions are formulated as LMIs and re derived
by combining the use of sign-indefinite quadratic forms,
appropriate changes of variables inspired from [10] and
generalized sector conditions involving the dead-zone non-
linearity and its directional time derivative. Furthermore, the
proposed results pave the way for future works. In particular,
it would be interesting to consider the case where the plant is
exponentially unstable, leading to provide design conditions
guaranteeing the regional exponential stability for the closed-
loop system.
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