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Abstract— In this paper, we present a synchronizing DMPC
scheme that employs two ingredients: (i) a cost function that
penalizes the deviation of the MPC control input from an
unconstrained synchronization control law based on algebraic
graph theory and (ii) an invariant family of constraints admissi-
ble terminal sets for MASs in closed-loop with an unconstrained
synchronization control law. We prove that the developed
DMPC scheme with a shrinking prediction horizon guarantees
finite-time controllability to a family of invariant terminal sets
and recursive feasibility. Compared to existing LMI methods
for computing a family of constraints admissible invariant
sets, we reduce conservatism by exploiting specific graph
properties common to MASs. The developed DMPC algorithm
for achieving constrained synchronization is tested in different
benchmark examples, including balancing capacitor voltages
for modular multilevel converters and harmonic oscillators,
yielding faster synchronization.

I. INTRODUCTION

Controlling multi-agent systems (MASs) with cooperative
agents is a challenging problem, especially when constraints
on the control inputs and states are presented. Such systems
can be found in many critical applications, e.g., energy
system management (EMS), microgrids or modular multi-
level converters (MMCs). In these cases, distributed model
predictive control (DMPC) is a well-established methodology
to control the constrained agents, see, e.g. [1], [2]. However,
there are two key challenges in DMPC: (i) guaranteeing
local closed-loop stability and (ii) distributed computation
of local terminal ingredients such as terminal cost and sets.
This paper addresses these challenges in a specific control
problem of cooperative MASs, i.e., output synchronization.

Regardless of the control problem, the mentioned DMPC
challenges are predominantly handled using two methodolo-
gies: (i) synthesis of structured global terminal costs, e.g., [3]
and (ii) distributed synthesis of terminal costs, e.g. [4], [5].
In this paper, we study the distributed synthesis of terminal
costs due to tractable computational complexity Among these
methods, the results from [4], [5] have special relevance.
They use Lyapunov theory to calculate local time-varying
terminal sets computed in a cooperative framework, i.e.,
the influence of the neighbour agents is considered but not
as a disturbance. In these cases, the time-varying terminal
sets are computed in an online fashion, which can limit
the controller implementation when synchronization of the
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outputs is needed. Moreover, in [4], even when updating the
time-varying terminal sets is not computationally costly, a
global MPC problem needs to be solved at each sample time.

This paper considers the synchronization problem defined
in [6], i.e., the challenge of steering all the agents’ outputs
to a common output trajectory. Achieving synchronization
is a distributed cooperative control task since the agents
have a common objective but a local controller with limited
information about their neighbours’ states. DMPC methods
have been successfully used in this task, e.g., [7]–[11].
However, in these applications, local stability and recursive
feasibility are challenging to guarantee, too. The first DMPC
that guarantees synchronization and recursive feasibility was
introduced in [11]. In that case, the synchronization is
ensured using local cost functions to minimise the distance
of the agent output to those of their neighbours while
simultaneously tracking the corresponding target steady-state
and input pair. The terminal ingredients are computed non-
cooperatively, resulting in time-varying terminal sets corre-
sponding to the target steady-states. Albeit stable and recur-
sive feasible, in [10], it was shown that the DMPC from [11]
may yield conservative solutions, i.e, the synchronization rate
is slower than for other DMPCs such as [7]–[10].

This paper proposes a synchronizing DMPC (S-DMPC)
scheme for constrained MASs with synchronization and
recursive feasibility guarantees. Firstly, we consider the local
dynamics of each agent in closed-loop with an unconstrained
synchronizing control law constructed using standard results
[6]. This leads to dynamically coupled local agent dynamics
because the local control laws depend on the outputs of
neighbouring agents. To guarantee feasibility, we then use
the concept of an invariant family of sets introduced in [12]
to construct a terminal set for the closed-loop dynamics of
each agent. LMI computation of an invariant family of sets
was proposed in [13], but their solution is infeasible for the
synchronizing closed-loop dynamics considered in our paper.
Hence, to reduce conservatism, we exploit the reducibility
properties of the Laplacian matrix to arrive at simpler set
dynamics that render the LMIs for computing the invariant
family of sets feasible. Secondly, we use a cost function as
in [10], i.e., which only penalizes the difference between
the MPC control input and the unconstrained synchroniz-
ing controller, and a shrinking horizon to steer the output
trajectories of the agents to the family of terminal sets in
finite-time. The developed S-DMPC algorithm for achieving
constrained synchronization is tested in different benchmark
examples, namely, balancing capacitor voltages for MMCs
and harmonic oscillators, yielding faster synchronization.
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Basic Notation: The identity matrix is denoted as In.
A block diagonal matrix with matrices A1 to Am on the
diagonal is denoted by diag (A1, . . . , Am).

We write A ≻ 0(A ≽ 0) for a symmetric, positive
(semi)definite matrix A = A⊤∈Rn×n. The closed Euclidean
unit ball is given by Bn :=

{
x∈Rn :

√
xTx≤1

}
. The

Minkowski set addition for two sets X ⊆ Rn and Y ⊆ Rn,
is defined by X ⊕ Y := {x + y : x ∈ X , y ∈ Y}.
The cardinality of vector is obtained by | · |, suhc that
| · | : Rn×1 → n∈N+. The operation ∥ · ∥A : Rn → R
such that ∥x∥A = x⊤Ax. The i eigenvalues of a matrix
A∈Rn×n are denoted by λi(A) and the spectral radius of A
is ρ(A) := max {|λ1(A)|, ..., |λn(A)|}.

A communication network comprising of systems called
agents is defined by directed graph, i.e., as G(V, E), where
V ∈ Nn is the set of agents and E ∈ Zn×n is the edge
matrix describing the connection between agents. For the ith

agent of the communication network, their set of neighbours,
which share information with, is denoted by Ni. The matrix
representations of G, such as the adjacency A ∈ Zn×n ,
degree D ∈ Zn×n and Laplacian L ∈ Zn×n matrices, are
obtained using the methodology from [6].

II. PRELIMINARIES AND PROBLEM DESCRIPTION

In this paper, we consider a homogeneous multi-agent
system (MAS) with a leader-follower topology comprising
of Na follower agents and one leader agent, i.e., ΣL. The
follower agents are labelled by 1, 2, ..., Na and present linear
dynamics defined as

Σi

{
xi(k+1) = Aixi(k)+Biui(k),

yi(k) = Cixi(k),
(1)

where, for all time instant k ∈ N yi ∈ Yi ⊂ R, xi ∈ Xi ⊂
Rni and ui ∈ Ui ⊂ Rmi are the ith follower output, state
and control input, respectively. The leader agent labelled by
L, i.e., L = Na+1, has linear dynamics, such that

ΣL

{
xL(k+1) = ALxL(k)+BLuL(k),

yL(k) = CLxL(k).
(2)

Additionally, the set containing all the agents of the MAS
(V) is defined as V = {1, .., Na, L}. In this case, we consider
a communication network with a fixed topology. Finally, an
overall system is defined as

Σd :=

{
x(k+1) = Ax(k)+Bu(k),

y(k) = Cx(k),
(3)

with

A=diag (A1, ..., AL) , B=diag (B1, ..., BL) ,

C=diag (C1, ..., CL) ,

where the state, control input and output vectors are

x(k) := [x1(k), . . . , xL(k)]
⊤ ∈ X ⊂ Rn(Na+1),

u(k) := [u1(k), . . . , uL(k)]
⊤ ∈ U ⊂ Rm(Na+1) and

y(k) := [y1(k), . . . , yL(k)]
⊤ ∈ Y ⊂ RNa+1.

A. Synchronization: Problem Description

We say that the MAS as in (3) achieves synchronization
if for all the initial states xi(0), the agent outputs yield

lim
k→∞

(yi(k)− ys(k)) = 0, ∀i ∈ V, (4)

where ys(k) is the synchronous trajectory. In [6, Chapter 4],
a solution for the synchronization problem is proposed using
local output feedback controllers, i.e.,

ūi(xNi
(k)) = −kfi

L∑
j=1

aij(yi(k)− yj(k)), (5)

where aij are the coefficients of the adjacency matrix, i.e.,
A. Note that, there exists a kfi ∈ R such that (4) holds if the
following assumptions hold.

Assumption II.1 The pairs (Ai, Bi) and (Ai, Ci) in (1) are
stabilisable and detectable for all i ∈ {1, . . . , L}.

Assumption II.2 As in Definition 4.3 from [6, page 168],
we assume that for the set {Σ1, . . .,ΣNa ,ΣL}, there exists
a system intersection, i.e., Σs :=

⋂L
i=1 Σi, such that for

every initial states (xs(0) ∈ Rns ) there exist initial states
x1(0) ∈ Rn1 , . . ., xL(0) ∈ RnL for which the system Σd

behaves synchronously, i.e., y1(k) = ... = yL(k), k ≥ 0.

The adjacency matrix of a communication network with a
leader yields aLj=0 for all j∈V . Hence, the leader closed-
loop dynamics is independent of the followers’ dynamics,
yet the leader’s output defines the synchronisation trajectory,
i.e., yL(k)=ys(k).

Theorem II.3 (Unconstrained synchronization [6])
Consider a MAS as (3) with identical follower agents, i.e.,
(Ai, Bi, Ci)=(A,B,C) for all i∈{1, ..., Na}, a controller as
(5), and suppose that Assumption II.1 and II.2 hold, then if

∃kfi ∈ R : ρ
(
Ai − kfi BiC|Ni|

)
< 1, ∀i∈{1, ..., Na}, (6)

the closed-loop system composed by (3) and (5) reaches
synchronization, i.e., limk→∞ y(k)=1Lȳ, where ȳ = yL∈R
is the synchronizing trajectory, i.e., the leader output.

III. MAIN RESULTS

To guarantee stability and recursive feasibility in S-DMPC,
we first construct an invariant family of sets considering
synchronized MASs closed-loop dynamics.

A. Invariant Family of Sets for MAS

Definition III.1 (Positively Invariant Set) A set S ⊆ X
with X a proper compact set, is said to be positively invariant
for the system x(k+1) = Ax(k) if it holds AS ⊆ S .

Definition III.2 (Invariant family of sets [13]) Given
a set of parameters Θ⊆Rn

+ and a collection of sets
S={Si ⊆ Xi : i ∈ Ni}, where Xi ⊂ Rni .
Then, a parameterized family of sets, i.e., S(S,Θ) :=
{(θ1S1, θ2S2, · · · , θnSn) : θ = [θ1, θ2, · · ·, θn]⊤ ∈Θ}, is a
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positively invariant and constraint admissible family of sets
for the agents (1) in closed-loop with (5) expressed as

Σi : xi(k+1) = Axi(k) +Bui(k) +
∑
j∈Ni

ϕi,j(xj(k)), (7)

if for all θ(k) ∈ Θ and i ∈ Ni there exists θ(k+1) ∈ Θ,
such that xi(k) ∈ θi(k)Si ⊆ Xi implies ui(k) ∈ Ui and
xi(k+1) = f(xi(k), ui(k)) ∈ θi(k+1)Si ⊆ Xi.

The closed-loop dynamics of (7) follows the formulation
from [13]. In our case, due to the designed output feedback
controller (5), the agent dynamics as in (1) are rewritten
in the form of (7) with the interconnection function, i.e.,
ϕi,j(·) : Rnj → Rni , defined as

ϕi,j(xj(k)) = kfi BiCixj , (8)

and the local control input is reformulated as

ui(k) = Kixi(k), (9)

where Ki=−kfi |Ni|Ci. Note that ϕi,j(·) is a linear function,
hence, for all j ∈ Ni and β∈R, ϕi,j(βxj) = βϕi,j(xj).

As in [13], we reduce the computational complexity by
assuming the neighbour’s behaviour is bounded over the
scaled Euclidean ball with a factor ηi,j .

Assumption III.3 (Bounded Neighbour’s Dynamics) For
all i∈Ni, ∃ηi,j such that ϕi,j(Xj)⊆ηi,jBni for all j∈Ni.

For a MAS as in (3), the factor ηi,j is formulated as

ηi,j = ∥kfi BiCix
max
j ∥∞, (10)

where xmax
j is defined by the constraint of Xj . This choice

is based on the results from [6], where it is known that if
Assumption II.1 and II.2 hold, there exists a kfi , such that

Āi = Ai − λi{L}kfi BiCi, ∀i = {1, 2, ..., Na} (11)

with ρ(Āi) ≤ 1, for all i = {1, 2, · · · , Na}.

Remark III.4 In Definition III.2, finding the invariant fam-
ily of sets depends on the existence of a vector of scaling
factors, i.e., θ, that evolves in time such that θi(k)Si ⊆ Xi

and θi(k+1)Si ⊆ Xi. The dynamics of θ can be expressed
in an autonomous linear fashion, i.e.,

θ(k+1)=Mθ(k), with M=

 M11 ... M1Na

...
. . .

...
ML1 ... MLL

 ,

(12)
where Mij ∈ R+ for all (i, j) ∈ {1, ..., L}. Note, ρ(M) ≤ 1
ensures that θi are contracting scalar factors compatible with
Definition III.2. In this case, we can exploit the relationship
between the Laplacian matrix and M to reduce the conser-
vatism of the LMIs, i.e., [13, (2h), (5h)].

Lemma III.5 Let us define the state constraints and the
control input constraints as

Xi := {xi ∈ Rni : g⊤i,txxi ≤ 1,∀tx ∈ {1, 2, ..., si}}, (13a)

Ui := {ui ∈ Rmi : h⊤
i,tuui ≤ 1,∀tu ∈ {1, 2, ..., li}}, (13b)

where si, li ∈ N, and suppose the Assumption II.1 and II.2
are satisfied. Consider a MAS as in (3), output feedback
controller as (5) such that Ki = −kfi |Ni|Ci ∈ Rmi×ni ,
ηij ∈ R+ as in (10) and 0<ξi,i<1. If there exists Qi, Zi,
αi>0 and ξi,j for all i ̸= j and (i, j)∈V such that:[

ξi,iZi (AiZi+BiQi)
⊤

AiZi+BQi Zi

]
≽ 0, (14a)

∀j∈Ni, Zi ≽ ξi,jη
2
i,jIni

, (14b)

∀tx∈{1, ..., si},
[

Zi Zigitx
(Zigitx)

⊤ αi

]
≽ 0, (14c)

∀tu∈{1, ..., li},
[

Zi Qihitu

h⊤
itu

Qi
⊤ αi

]
≽ 0, (14d)

0 < αi ≤ 1, (14e)
ξi,j ≥ 0, (14f)

where Qi=KiZi, then S := {Si ⊆ Xi : i ∈ V} with

Si := {xi ∈ Rni : x⊤
i Pixi ≤ 1}, andPi = Z−1

i (15)

define an invariant family of sets for all agents i ∈ V
connected via a communication network with a reducible
Laplacian matrix.

Proof: The LMIs (14) can be rewritten as:

(Ai +BiKi)
⊤Pi(Ai +BiKi) ⪯ ξi,iPi (16a)

∀j∈Ni, η2ijIdi ⪯ ξi,jP
−1
i (16b)

∀tx∈{1, 2, ..., si},
1

√
αi

√
g⊤itxP

−1
i gitx ≤ 1 (16c)

∀tu∈{1, 2, ..., li},
1

√
αi

√
h⊤
itu

KiP
−1
i K⊤

i hitu ≤ 1 (16d)

0 < αi ≤ 1 (16e)
ξi,j ≥ 0 (16f)

where (16a)-(16d) are obtained by applying Schur comple-
ment, respectively. If (16) is feasible for a given 0 < ξi,i < 1,
Ai ∈ Rni×ni , B ∈ Rni×mi , ηi,j ∈ R+, gitx and hitu

of compatible dimension for all j ∈ Ni, tx∈{1, 2, ..., si}
and tu∈{1, 2, ..., li}, then i) (Ai + BiKi)Si ⊆

√
ξi,iSi,

ii) ηi,jBni ⊆ ξ−0.5
i,j Si, iii) 1√

αi
Si ⊆ Xi, iv) Si ⊆ Xi, v)

1√
αi
KiSi ⊆ Ui.

Since ϕi,j(Sj) ⊆ ϕi,j(Xj) ⊆ ηi,jBnj ⊆ ξ−0.5
i,j Si and

θjϕi,j(Sj) = ϕi,j(θjSj), we have

ϕi,j(θjSj) ⊆ ξ−0.5
i,j θjSi, (17)

and, as in (12), the scaling factors dynamics yields

θ(k+1) = Mθ(k), (18)
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where

Mij =


ξ0.5i,i , if i = j

ξ−0.5
i,j , if j ∈ Ni

0, otherwise

.

Note that having a reducible L implies that M is a lower
triangular matrix. Hence, the spectral radius of M is defined
by the given values of ξi,i. Together with (Ai +BiKi)Si ⊆√
ξi,iSi, we can have

(Ai +BiKi)θiSi

⊕
j∈Ni

ϕij(θjSj) ⊆ ξ0.5i θiSi

⊕
j∈Ni

θjSi (19)

with
ξ0.5i θiSi

⊕
j∈Ni

θjSi = θi(k + 1)Si, (20)

which means whenever xi(k) ∈ θiSi, we have xi(k+1) ∈
θi(k+1)Si, for all i∈V . Hence, we have constructed an
admissible invariant family of sets.

The main difference concerning the conditions given in
[13] is the constraints of ξi,j in [13, (5h)]. Most of the
arguments in the proof [13] still apply; nevertheless, for
completeness, we presented the full derivation of the results.

Remark III.6 (16c), (16d) yields that 1√
αi
Si ⊆ Xi. Hence,

an admissible initial value for θi is θi(0)=
1√
αi

and then
θ(k+1) = Mkθ(0) for all k∈N+. Nonetheless, θi(0) is not
an upper limit.

B. Synchronizing Distributed Model Predictive Control

Next, for implementing the distributed model predictive
control (DMPC) to synchronize the MAS (3), we define the
prototype local MPC problem for each follower agent.

Problem III.7 (Local MPC problem) Consider a MAS as
(3), then for each agent i ∈ {1, ..., Na},

min
Ui(k)

Ji(Ui(k), xNi
(k)) (21a)

s.t. xi(h+1|k) = Aixi(h|k)+Biui(h|k), (21b)
yi(h|k) = Cixi(h|k), ∀h ∈ {0, ..., N(k)}, (21c)
yi(h|k) ∈ Yi, ∀h ∈ {1, ..., N(k)}, (21d)
xi(h|k) ∈ Xi, ∀h ∈ {1, ..., N(k)}, (21e)
ui(h|k) ∈ Ui, ∀h ∈ {0, ..., N(k)−1}, (21f)
xi(0|k) = xi(k), (21g)

xi(N(k)|k) ∈ XT
i , (21h)

where Ji(Ui(k), xNi
(k)):RN(k)mi×R|Ni|ni → R is the local

cost function; N(k)∈N+ is the prediction horizon; the sets
Xi, Yi, Ui and XT

i are the constraints of the state, output,
control input and terminal states respectively.

Theorem III.8 Consider Problem III.7 with XT
i =θi(0)Si as

Lemma III.5 and local cost function as

Ji (Ui(k), ūi(k)) =

N(k)∑
h=0

∥ui(h|k)−ūi(xNi(k))∥
2
Ri

, (22)

where N(k) is a shrinking prediction horizon such that

N(k) =


N̄ ∈ N+, if k = 0

N̄(k−1)− 1, if 1 ≤ k ≤ N̄ − 1

1, if k ≥ N̄

. (23)

Then the MAS system (3) obtained by clustering the dynam-
ics of all agents in closed-loop with the corresponding DMPC
controller as in Problem III.7 achieve synchronization. More-
over, Problem III.7 is recursively feasible for all agents and
the closed-loop trajectories of all agents reach the invariant
family of terminal sets, i.e., XT

i , in N̄ steps or less.

Proof: Let us assume that xi(0) belongs to a constraints
admissible feasible set, i.e., xi(0) ∈ XF

i ⊆ Xi, such that

∃ N̄ ∈ N+ : xi(h|0) ∈ XT
i , ∀h ≥ N̄ , (24)

where XT
i =θi(0)Si with θi(0) defined as in Remark III.6.

Consequently, there exists an optimal control input, i.e.,
U∗
i (k) = [u∗(0|k)u∗(1|k) ... u∗(N(k)|k)]⊤. By shifting

U∗
i (k), the optimal control input at the next time step, i.e.,

k+1, yields

U∗
i (k+1) = [u∗

i (1|k)u∗
i (2|k) ... u∗

i (N(k)|k)]⊤ . (25)

Consequently, xi(N(k+1)|k+1) ∈ XT
i with N(k+1) =

N(k)−1, meaning that the new appended local control law,
i.e., U∗

i (k+1), is feasible too. Thanks to the feasibility of
U∗
i (k+1), the prediction horizon keeps decreasing, i.e.,

N(k + 1) < N(k). (26)

Hence, due to the shrinking horizon policy, there exists a
finite time k∗ such that N(k∗)=1 and x(1|k∗) ∈ XT

i . For all
k ≥ k∗+1, N(k)=1 and the optimal control input sequence,
i.e., U∗

i (k) reduces to the unconstrained synchronizing con-
trol law, which is feasible in terminal set, i.e.,

u∗
i (0|k) = ūi(k), ∀k ≥ k∗ + 1. (27)

Then synchronization follows from Theorem II.3.

Remark III.9 The results of Lemma III.5 can also be used
to guarantee recursive feasibility for the formulation of
Problem III.7 where the horizon N is kept constant (i.e., non-
shrinking), as in [10], or for any synchronizing cost func-
tion that calculates the references using the unconstrained
synchronization protocol, e.g., as in [7]–[9]. However, it
is generally beneficial to reach the family of terminal sets
in finite time, as this can speed up synchronization. More-
over, Theorem III.8 can be extended to achieve finite-time
synchronization, since there exists a finite-time feedback
synchronization, see [14, Theorem 1]. Hence, combining
it with a shrinking-horizon policy, synchronization can be
reached in k∗FT=N̄+2ni.
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IV. ILLUSTRATIVE EXAMPLES

In this section, we present two illustrative examples:
(i) MMCs and (ii) harmonic oscillators. For assessing the
synchronization level, we use the consensus index, i.e.,

Jc(k) :=
1

L

L∑
i=1

∥∥∥∥∥∥yi(k)− 1

L

L∑
j=1

yj(k)

∥∥∥∥∥∥ . (28)

Hence, in the following section, we compare S-DMPC
with terminal constraints (labelled S-DMPC[X]) and without
(labelled S-DMPC).

A. Modular Multilevel Converters (MMCs)

Distributed balancing control of the capacitor voltages of
the MMCs have been discussed in [10]. In this case, we
synchronize the capacitor voltages using an arc path network
that has a reducible Laplacian matrix. The module dynamics
are expressed as

Σi : xi(k+1) = xi(k)−
NaTsi

r

Cy
ui(k), (29)

for all i∈V , where Na=21, xi ∈ R is the state describing
the capacitor voltages (vCi

), ui ∈ R is the control input
describing the insertion indeces, k ∈ N, Ts=0.2ms is the
sampling period, Cy=0.4mF and ir=10A. The constraints
are defined as 8.7485kV≤xi≤8.7505kV and −1≤ui≤1. The
S-DMPC[X] is comprised of Ri=1, ξi,i=0.25, kfi =1 and
N̄=15. The values Pi, and αi are common to all agents due
to identical agents and the communication network structure.

Fig. 1: Comparison of the MMC capacitor voltage dynamics
with respect to XT

i (0) from different DMPCs: (a) S-DMPC[X]

as (21) and (b) S-DMPC without terminal constraints.

By applying Lemma III.5, we obtain a Pi = 2.9380, ξi,j =
1.5097 and αi = 0.7439. As in Remark III.6, XT

i (0) =
θi(0)Si with θi(0) = 1√

αi
= 1.1594 and Si = {x ∈ R :

x⊤Pix ≤ 1}. In Figure 1, we compare the performance
of S-DMPC[X] and the S-DMPC by analysing the capacitor

voltage dynamics. Both solutions synchronize the MMC, yet
it seems like S-DMPC[X] has a better performance as the
agents reach the initial terminal set, i.e., XT

i (0)=θi(0)Si, in
less than 15 discrete-time steps. Figure 2 shows the Jc(k)
dynamics corresponding to both DMPC schemes. The S-
DMPC[X] achieves the fastest synchronization of the MMC.
Note that at time step 30, we observe a 20% improvement
of the S-DMPC[X]. On average, the S-DMPC[X] consensus
index improves by 5.12%.

Fig. 2: Comparison of Jc(k) from different DMPCs: (-) S-
DMPC[X] as (21) and (-) S-DMPC.

B. Harmonic oscillators

As in [6], we examine two AC generators, i.e., harmonic
oscillators, connected by an arc path network and modelled
as

Σi :

 ẋi(t) =

(
0 1

−ω2 0

)
xi(t) +

(
0
1

)
ui(t)

yi(t) =
(
0 1

)
xi(t)

(30)

where ω=5Hz, −1≤ui≤1 and −201ni≤xi≤201ni . Sys-
tem (30) is discretized using the zero-order-hold method
with sampling time Ts=2ms. The S-DMPC[X] is comprised
of Ri=Imi

, ξi,i=0.995, kfi =0.5 and N̄=200. Similar to
the MMC, we used an arc path that communicates with
the leader AC generator and the other two followers’
AC generators. By applying Lemma III.5, we find Pi =[

19.622 0.2005
0.2005 0.7892

]
and αi = 0.62. The initial terminal

set (XT
i (0)) and initial scaling factor (θi(0)) are defined as

in III.6 like in section IV-A.
Figure 3 and 4 show the state trajectories for the followers

AC generators and the leader AC generator, i.e., the black
dashed line. In this case, Figure 3 shows that having a
terminal set increases the convergence speed when the S-
DMPC[X] is used. Both AC generators’ initial conditions are
outside the terminal set, i.e., xi(0) /∈ XT

i (0),∀i ∈ {1, 2}.
The resulting autonomous auxiliary system, i.e.,

θ(t+1)=Mθ(t) for all t=k−k∗∈N, yields ρ(M)≤1,
where

M=

 0.9995 0 0
0.1274 0.9995 0

0 0.1274 0.9995

 . (31)

Note that even when Pi, and αi are common to all agents
due to the identical agents and the communication network
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Fig. 3: Comparison of state trajectories of Agent 1: (- -)
leader trajectories,i.e., xL; (-) S-DMPC[X] as (21) and (- -)
S-DMPC with x1(0) denoted by (♦) and XT

i (0) as (•).

Fig. 4: Comparison of state trajectories of Agent 2: (- -)
leader trajectories,i.e., xL; (-) S-DMPC[X] as (21) and (- -)
S-DMPC with x1(0) denoted by (♦) and XT

i (0) as (•).

structure, the trajectories of θi are not identical, see Figure 5.
There, we can observe the stable trajectory of θ and confirm
the validity of invariant family of sets since, θ2(543)S2∈X2,
i.e., the maximal parameterized set is within constraints.

V. CONCLUSIONS

In this paper, we proposed a S-DMPC with stability and
recursive feasibility guarantees, denoted as S-DMPC[X]. In
this case, by exploiting the characteristics of the Laplacian
matrix, we relaxed the LMI formulation of [13] to com-
pute an invariant famility of terminal sets for the MASs
dynamics in closed-loop with an unconstrained synchroniz-
ing control law. The proposed method is limited to MAS
which has a communication network with a spanning tree
and reducible Laplacian matrix. Nonetheless, communication
networks with those properties are commonly found in many
applications since all the strongly connected graphs have
that property. The experiment results showed that besides

Fig. 5: Trajectory of θi(t) and corresponding parameterized
invariant set of the AC generator 2 at iteration t = 543, i.e.,
θ2(t)S2.

recursive feasibility, faster synchronization is obtained using
the proposed method.
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