
A contract negotiation scheme for safety verification of interconnected
systems

Xiao Tan, Antonis Papachristodoulou, and Dimos V. Dimarogonas

Abstract— This paper proposes a (control) barrier function
synthesis and safety verification scheme for interconnected
nonlinear systems based on assume-guarantee contracts (AGC)
and sum-of-squares (SOS) techniques. It is well-known that
the SOS approach does not scale well for barrier function
synthesis for high-dimensional systems. In this paper, we show
that compositional methods like AGC can mitigate this problem.
We formulate the synthesis problem into a set of small-size
problems, which constructs local contracts for subsystems,
and propose a negotiation scheme among the subsystems at
the contract level. The proposed scheme is then implemented
numerically on the room temperature regulation example.

I. INTRODUCTION

In many engineering applications, system states need to be
confined to a specific set of safe states. Designing active con-
trol to achieve this property and verifying a given closed-loop
system regarding this property are known as safety synthe-
sis and verification problems. Many safety-ensuring control
approaches have been proposed in the literature, including
reachability analysis [1], control barrier functions (CBF) [2],
model predictive control [3], prescribed performance control
[4] among many others. In particular, when a CBF is shown
to exist, safety-ensuring feedback can be constructed, and
the safety of the system is certified [5]. Thus, there has been
lots of interest in synthesizing valid control barrier functions
numerically, by, for example, sum-of-square approaches [6],
[7], learning-based approaches [8], [9], and Hamiltonian-
Jacobi reachability analysis [10]. However, most of these
approaches are limited to dynamical systems of small to
moderate size, and will become computationally intractable
for large-scale systems.

Many complex, large-scale systems naturally impose an
interconnected structure. It is thus essential to exploit this
structure to deal with the numerical scalability issue. Along
this line of research, the idea of compositional reasoning
has been leveraged so that one could establish properties
of the interconnected system by reasoning properties on its
components. As for system safety/invariance property, [11],
[12] propose to synthesize local barrier functions, establish
local input-to-state safety properties, and compose the local
properties by checking a small-gain-like condition. However,
it remains unclear how to adapt local safety properties if
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the condition fails. On the other hand, [13] certifies the
safety property by seeking a Lyapunov function of the
interconnected system. Safety is thus certified if a subset of
the constructed Lyapunov function has no intersection with
the unsafe region. It is worth noting that the search for a
Lyapunov function is solved as a centralized semi-definite
problem, and is still computationally demanding when the
size of the interconnected system becomes larger.

In the literature of formal methods and model checking
[14], the composition of system properties is usually ap-
proached through the notion of an assume-guarantee contract
[15]. In plain words, a contract describes the behavior
that a system will exhibit (guarantees) subject to the in-
fluence of the environment (assumptions). Originally, the
main application domain of a contract in model checking
was for discrete space systems. When contracts are applied
to certify the safety of complex continuous space systems,
circular reasoning of implications might exist. This is not
a trivial problem in general, and the AGC framework is
always sound only if a hierarchical structure exists [16].
[17] introduces parameterized AGCs, laying the foundation
for finding local AGCs that can be composed of. [18] deals
with invariance properties of discrete-time linear systems.
The authors show that the composition of all local AGCs
can be formulated as a linear program when using zonotopic
representation to parameterize the constraint set and input
set. In [19], the authors consider a finite transition system
and propose to determine how safe a state is by applying
value iterations. The contracts are iterated locally, yet no
completeness guarantee can be asserted.

Recently, there are a few works that apply AGCs to control
synthesis problems for continuous-time systems. [20] utilizes
behaviour AGC for control design for linear systems, and
[21] applies AGCs to design local feedback law under signal
temporal logic specifications.

In this work, we provide a tractable safety verifica-
tion scheme for continuous-time interconnected nonlinear
systems, leveraging sum-of-square techniques and assume-
guarantee contracts. Our result is built upon [16] on the
invariance AGCs for continuous-time systems that circum-
vent circular reasoning under mild assumptions. Our pro-
posed approach consists of the construction of local AGCs
and the search for compatible AGCs. In contrast to [13],
[18], we propose to negotiate local contracts only with its
neighbors, and thus no central optimization is needed. A set
of compatible AGCs, when found by our algorithms, certifies
the safety of the interconnected system. Moreover, we show
that the proposed algorithms will find a solution whenever
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one exists under relevant technical assumptions in the case
of acyclic interconnections or homogeneous systems.

II. NOTATION AND PRELIMINARIES

Notation: For Z ⊆ Rn, we denote by M(Z) the set
of continuous-time maps z : E → Z, where E ∈
{[0, a], a ≥ 0} ∪ {[0, a), a > 0} ∪ {R+} is a time interval.
Let x ∈ Rn be an independent variable. Denote by R[x]
the set of polynomials in the variable x. We call a polyno-
mial p ∈ R[x] sum-of-squares if there exist polynomials
g1, g2, . . . , gN in the variable x such that p =

∑N
i=1 g

2
i .

Denote by Σ[x] the set of sum-of-squares polynomials in
x. Let R[x1, x2, . . . , xn],Σ[x1, x2, . . . , xn] denote the sets
of polynomials and SOS polynomials of independent vari-
ables x1, x2, . . . , xn, respectively. Consider a directed graph
(I, E), E ⊆ I × I. Denote by N(i) = {j ∈ I : (j, i) ∈ E}
the set of parent nodes of node i, and Child(i) = {k ∈ I :
(i, k) ∈ E} the set of its child nodes. We say that node i is a
root node if N(i) = ∅; node i is a leaf node if Child(i) = ∅.

We first introduce the definitions of continuous-time sys-
tems, their interconnections, and assume-guarantee contracts
tailored from [16] for the safety verification problem. Due
to space limit, preliminaries on control barrier functions
and sum-of-squares programs, all proofs, as well as many
intuitive interpretations to the obtained results are omitted
and can be found online [22].

A. Systems and Interconnections

In this work, we consider continuous-time systems for-
mally defined as follows.

Definition 1 (Continuous-time system). A continuous-time
system G is a tuple G = (U,W,X, Y,X0, T ), where the sets
U,W,X, Y,X0 represent the external input set, the internal
input set, the state set, the output set, and the initial state set,
respectively. u ∈ U,w ∈ W,x ∈ X, y ∈ Y are the external
input, internal input, local state, and local output variables.
T ⊆M(U ×W ×X × Y ) characterizes all the trajectories
that are described by a differential equation

ẋ(t) = f(x,w) + g(x,w)u (1)

and o : x 7→ y is the output function.

To guarantee the existence and uniqueness of the system
trajectory, we conveniently assume that the vector field and
the output map are locally Lipschitz. Now we formally define
an interconnected system.

Definition 2. Given N subsystems {Gi}i∈I , Gi =
(Ui,Wi, Xi, Yi, X

0
i , Ti), I = {1, 2, . . . , N}, and a binary

connectivity relation E ⊆ I ×I, we say {Gi}i∈I is compat-
ible for composition with respect to E if Πj∈N(i)Yj ⊆ Wi,
where N(i) = {j : (j, i) ∈ E} is the index set of subsystems
that influence Gi. Gj (Gi) is referred to as a parent (child)
node of Gi (Gj).

In this definition, a set of subsystems is compatible for
composition when, for each subsystem, the output space of
all parental subsystems is a subset of its internal input space.

When the subsystems {Gi}i∈I are compatible for com-
position w.r.t. E , the composed system, also referred to as
the interconnected system, is denoted by ⟨(Gi)i∈I , E⟩ =
(U, {0}, X, Y,X0, T ), where U = Πi∈IUi, X =
Πi∈IXi, Y = Πi∈IYi, X

0 = Πi∈IX
0
i . Denote the com-

posed state by x, the composed external input u, and the
composed output y. Then (u(t), 0, x(t), y(t)) ∈ T if and
only if for all i ∈ I, there exists (ui(t), wi(t), xi(t), yi(t)) ∈
Ti and wi(t) = (yj1(t), yj2(t), . . . , yjp(t)), where N(i) =
{j1, j2, . . . , jp}.

B. Assume-guarantee contracts for invariance

To begin with, we introduce notation that will help us
define the set of all continuous trajectories that always stay
in a set. Let a nonempty set S ⊆ Rn. Define IES = {z :
E → Rn ∈ M(Rn) : ∀t ∈ E, z(t) ∈ S}, where E is a
time interval. In the following, the superscript E is neglected
as it is usually chosen as the maximal time interval of the
existence of solutions to the continuous-time system. An
invariance assume-guarantee contract (iAGC) is defined as
follows:

Definition 3. For a continuous-time system G =
(U,W,X, Y,X0, T ), an invariance assume-guarantee con-
tract (iAGC) for G is a tuple C = (IW , IX , IY ) where
W ⊆ W,X ⊆ X,Y ⊆ Y . We refer to IW as the set of
assumptions on the internal inputs, and IX , IY as the sets
of guarantees on the states and outputs. We say a system
G satisfies a contract C = (IW , IX , IY ), denoted G |= C,
if there exists a feedback control k(·, ·) : X × W → U
such that for all t > 0, for all w|[0,t]∈ IW , the state
and output fulfill x|[0,t]∈ IX , y|[0,t]∈ IY for all trajectories
(u(t) = k(x,w), w(t), x(t), y(t)) ∈ T .

A key result that establishes the compositional reasoning
of the system property is the following:

Lemma 1 (Compositional reasoning). Consider an inter-
connected system ⟨(Gi)i∈I , E⟩ = (U, {0}, X, Y,X0, T )
composed of N subsystems with a compatible binary
connectivity relation E . If for each subsystem Gi =
(Ui,Wi, Xi, Yi, X

0
i , Ti), there exists an invariance assume-

guarantee contract Ci = (IW i
, IXi

, IY i
) such that Gi |= Ci

and Πj∈N(i)IY j
⊆ IW i

, then ⟨(Gi)i∈I , E⟩ |= C with
C = ({0},Πi∈IIXi

,Πi∈IIY i
).

While this lemma may seem intuitive, it is worth high-
lighting that we can not deduce directly the conclusion
due to possible circular reasoning of implications. One
such example for systems with non-locally Lipschitz vector
fields is shown in [16, Example 6]. The AGC framework
helps to circumvent possible circular reasoning and enables
compositional reasoning of the forward invariance property
of interconnected systems.

C. Problem formulation

In this work, we aim to numerically verify the safety prop-
erty of interconnected systems. The following sub-problems
are considered:
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(P1) For a continuous-time subsystem Gi =
(Ui,Wi, Xi, Yi, X

0
i , Ti) and a given safe region

Qi ⊆ Xi, construct an invariance assume-guarantee
contract Ci = (IW i

, IXi
, IY i

) such that Gi |= Ci and
X0

i ⊆ Xi ⊆ Qi;
(P2) For an interconnected system ⟨(Gi)i∈I , E⟩ =

(U, {0}, X, Y,X0, T ) and a safe region Q = Πi∈IQi,
Qi ⊆ Xi, construct an invariance contract
C = ({0}, IX , IY ) such that G |= C and X0 ⊆ X ⊆ Q.

If such a X is found, then safety of the interconnected system
is certified.

Assumption 1. We assume the following:
1) the local feedback law ui = ki(xi, wi) ∈ Ui is known,

but it does not necessarily render the interconnected
system safe;

2) The class K function α(·) in CBF condition is chosen
to be a linear function with constant gain a.

3) The initial set X0
i , safe region Qi, and the internal input

set Wi are super-level sets of (possibly vector-valued)
differentiable functions, i.e., X0

i = {xi : b0i (xi) ≥
0},Qi = {xi : qi(xi) ≥ 0},Wi = {(yj1 , yj2 , . . . , yjp) :
dijk(yjk) ≥ 0, k = 1, 2, . . . , p},where N(i) =
{j1, j2, . . . , jp}.

4) b0i , qi ∈ R[xi], d
i
jk
∈ R[yjk ], fi, gi, ki ∈ R[xi, wi] are

polynomials.
5) The subsets of Wi,Qi, i.e., W i,Qi are chosen in the

form of
Qi = {xi : qi(xi) ≥ ζ1 for some ζ ≥ 0},
W i = {(yj1 , . . . , yjp) : dijk(yjk) ≥ δ1 for some δ ≥ 0}.

6) When searching for non-negative polynomials, we re-
strict the search to the set of SOS polynomials up to a
certain degree.

For notational simplicity, we define the projection of
an internal input set Wi of subsystem Gi with respect to
subsystem Gk as Projk(Wi) = {yk : dik(yk) ≥ 0} if
k ∈ N(i), and Projk(Wi) = ∅ otherwise.

III. PROPOSED SOLUTIONS

The proposed approach consists of 1) numerically con-
structing iAGCs for subsystems by synthesizing local (con-
trol) barrier functions, and 2) negotiating iAGCs among sub-
systems to certify the safety property of the interconnected
system. We also discuss the convergence properties of our
approach.

A. Local barrier function and AGC construction
In this subsection, we will focus on tackling Problem

(P1) for a subsystem Gi = (Ui,Wi, Xi, Yi, X
0
i , Ti). Under

Assumption 1, the closed-loop subsystem dynamics is
ẋi(t) = fi(xi, wi)+gi(xi, wi)ki(xi, wi) := Fi(xi, wi). (2)

In this subsection, for the sake of notation simplicity, we
will drop the subscript i when no confusion arises.

First we show the relations between a) finding a con-
trol barrier function, b) constructing an invariance assume-
guarantee contract, and c) establishing the safety property of
a subsystem.

Proposition 1. Consider a continuous-time system G =
(U,W,X, Y,X0, T ), a safe region Q and an internal input
set W ⊆W . Consider the following claims:

1 there exists a CBF h with respect to the internal input
set W . Denote by C = {x : h(x) ≥ 0};

2 the system G |= C, where C = (IW , IC , Io(C));
3 X0 ⊆ C ⊆ Q;
4 the system is safe with respect to W ;

We have 1 =⇒ 2 ; 2 and 3 =⇒ 4 .

Numerically, one can formulate the conditions of 1 and
3 of Proposition 1 as a set of SOS constraints, as follows.

Proposition 2. Consider a continuous-time system G =
(U,W,X, Y,X0, T ) and a safe region Q. If there exist
SOS polynomials σinit, σsafe ∈ Σ[x], σk ∈ Σ[x, yk], k =
1, 2, . . . , p, polynomial h ∈ R(x), and positive ϵ, a, δ such
that

h(x)− σinitb
0(x) ∈ Σ[x]; (3a)

−h(x) + σsafeq(x) ∈ Σ[x]; (3b)
∇h(x)F (x, y1, . . . , yp) + ah(x)

−
p∑

k=1

σk(dk(yk)− δ)− ϵ ∈ Σ[x, y1, . . . , yp]. (3c)

then, letting W = {(y1, . . . , yk . . . , yp) : dk(yk) ≥ δ}, 1 ,
2 , 3 , 4 in Proposition 1 hold.

Even though (3) is only a sufficient condition for system
safety, it is a condition we can verify numerically (and
efficiently when the system size is small). For this reason, we
say that G is certified to be safe in Q w.r.t. W if condition
(3) holds. We introduce the following special sets that are
useful for contract composition later. In what follows, we
take 0 < ϵ << 1 and a in (3) to be positive constants.

1) Maximal internal input set: To quantify the largest in-
ternal input set a subsystem can tolerate while still remaining
safe, we propose the following optimization problem:

min δ s.t. (3a), (3b), (3c), δ ≥ 0, (4)

where the decision variables include SOS polynomials
σinit, σsafe ∈ Σ[x], σk ∈ Σ[yk], k = 1, 2, . . . , p, polynomi-
als h ∈ R(x), and a scalar δ. It should be noted that although
(4) contains a bilinear term σinputδ, this can be solved
efficiently by bisection as δ is a scalar. If (4) is feasible,
denote the optimal value by δ⋆ and the corresponding internal
input set W ⋆. We call W ⋆ the maximal internal input set for
a given subsystem G and safe region Q.

2) Minimal safe region: Given a subsystem G with an
internal input set W , to quantify the least impact on its child
subsystem, we propose the following optimization problem:

max ζ

s.t. (3a), (3c), ζ ≥ 0

− h(x) + σsafe(q(x)− ζ) ∈ Σ[x];

(5)

where the decision variables include SOS polynomials
σinit, σsafe ∈ Σ[x], σk ∈ Σ[yk], k = 1, 2, . . . , p, polyno-
mials h ∈ R(x), and a scalar ζ. We take ϵ, a to be positive
constants. δ in (3c) is known as we assume W is given. It
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should be noted that although (5) contains a bilinear term
σsafeζ, this can be solved efficiently by bisection as ζ is a
scalar. If (5) is feasible, denote the optimal value by ζ⋆ and
the corresponding safe region Q⋆. We call Q⋆ the minimal
safe region for a given W .

We have the following properties about the maximal
internal input set W ⋆ and the corresponding minimal safe
region Q⋆.

Proposition 3. Under Assumption 1, for a continuous-time
system G = (U,W,X, Y,X0, T ) and a safe region Q, the
following results hold:

1) If (4) is feasible for some δ′ ≥ 0, then (4) is also
feasible for δ′′, δ′′ ≥ δ′. If (5) is feasible for some
ζ ′ > 0, then (5) is also feasible for ζ ′′, 0 ≤ ζ ′′ ≤ ζ ′.

2) Consider two safe regions Q′ ⊆ Q′′ ⊆ Q. If (4) is
feasible for the safe region Q′, then (4) is also feasible
for Q′′. Denoting the respective optimal values by δ′, δ′′

and the corresponding internal input setsW ′,W ′′, then
δ′′ ≤ δ′ and W ′ ⊆ W ′′ ⊆ W .

3) Consider two internal input setsW ′ ⊆ W ′′ ⊆ W . If (5)
is feasible with the internal input set W ′′, then (5) is
also feasible for W ′. Denoting the respective optimal
values by ζ ′, ζ ′′ and the corresponding safe regions
Q′,Q′′, then 0 ≤ ζ ′′ ≤ ζ ′ and Q′ ⊆ Q′′ ⊆ Q.

4) If (4) is feasible, then W ⋆ is the largest internal input
set w.r.t. which G is certified to be safe; if infeasible,
then there exists no W ⊆ W w.r.t. which G can be
certified to be safe.

5) If (4) is feasible, letting W = W ⋆, then (5) is feasible
and Q⋆ is the smallest safe region in which G is safe
w.r.t. W ⋆.

Proposition 3’s items 2 and 3 show a monotonic relation
between the internal input sets and the safe regions. Intu-
itively, with a larger safe region, the system can tolerate a
larger disturbance (internal input set); with a larger distur-
bance (internal input set), the most confined safe region will
become larger. Proposition 3’s items 4 and 5 further state
that, for a given safe region, W ⋆ is the largest internal input
set that a system can bear while remaining safe; for a given
internal input set, Q⋆ is the most confined influence a system
has for its child subsystems.

B. Contract composition and negotiation

In this section, we consider the interconnected system
G = ⟨(Gi)i∈I , E⟩, Gi = (Ui,Wi, Xi, Yi, X

0
i , Ti) with safe

region Qi ⊆ Xi. We have the following results on the safety
properties of the interconnected system.

Proposition 4. If, for each subsystem Gi, an iAGC Ci =
(IW i

, IXi
, IY i

) exists such that X0
i ⊆ Xi ⊆ Qi and

Πj∈N(i)Y j ⊆W i, (6)

then the interconnected system ⟨(Gi)i∈I , E⟩ is safe.

We refer to the condition (6) as the contract compatibility
condition as it indicates whether the contract of a subsystem
agrees with that of its parent subsystems. In the general case,

the contracts Ci, i ∈ I found locally may not satisfy this
condition, and we have to refine them so that (6) holds. We
call this refinement process negotiation. In what follows,
we consider different cases and propose several different
algorithms. We note that all algorithms are sound, but differ
in finite-step termination and completeness guarantees.

1) Acyclic connectivity graph: In this case, we assume
that there exists no cycle in the connectivity graph (I, E). In
this case, the hierarchical tree structure resembles a client-
contractor relation model. For k ∈ Child(i), we could view
Gk as a client with an iAGC (IWk

, IXk
, IY k

), who gives
specifications on the behaviour of its parent node Gi (viewed
as contractors) by W k. Based on this interpretation, we
propose Algorithm 1.

In Algorithm 1, I0, I1, I−1 represent the index sets of
ready-to-update, to-be-updated, and updated subsystems, re-
spectively. The algorithm starts with the local contract con-
struction for the leaf nodes. Following a bottom-up traversal
along the connectivity graph, for each subsystem Gi in I0,
Algorithm 1 first updates its safe region Qi such that it
agrees with all its child nodes. This is explicitly conducted
in Algorithm 2, while no operation is needed for leaf nodes.
The set intersection in Algorithm 2 is again cast as a SOS
program, as follows:

min
ζ≥0

ζ

s.t. qi(xi)− ζ − σk(d
k
i ◦ oi(xi)− δk)

∈ Σ[xi],∀k ∈ Child(i),

(7)

where the decision variables include σk ∈ Σ[xi], k ∈
Child(i), and a scalar ζ. Recall here oi is the output
map of subsystem Gi, Proji(W k) = {yi : dki (yi) ≥
δk}. Denoting the optimal value by ζ ′ and Q′

i = {x :
qi(xi) ≥ ζ ′}, Q′

i is then the largest inner-approximation of⋂
k∈Child(i) o

−1
i (Proji(W k)) ∩ Qi. Recall that the subset of

Qi is parameterized by ζ from Assumption 1.5.
After updating the safe region, Algorithm 1 calculates the

maximal internal input set W ⋆
i (Line 6), which can be seen

as the least requirement on its parent nodes as discussed in
Proposition 3. Algorithm 3 then moves Gi to I−1, and checks
for every to-be-updated subsystems whether all their child
subsystems have been updated. If yes, then that subsystem
is moved to the set of ready-to-update subsystems I0 and
will be updated accordingly.

Proposition 5. Consider an interconnected system with
an acyclic connectivity graph (I, E). Algorithm 1 has the
following properties:

1) Algorithm 1 terminates in finite steps and returns either
True or False.

2) If Algorithm 1 returns True, then iAGCs Ci =
(IW i

, IXi
, IY i

), i ∈ I satisfy the conditions in Propo-
sition 4.

3) If Algorithm 1 returns False, then there exist no iAGCs
Ci = (IW i

, IXi
, IY i

), i ∈ I that satisfy the conditions
in Proposition 4 under Assumption 1.

2) Homogeneous interconnected system: In this case, we
consider the homogeneous interconnected system in the

2225



Algorithm 1 Contract construction for
acyclic graph

Require: Gi, Qi,∀i ∈ I
1: I0 ← set of leaf nodes, I1 ← I \ I0, I−1 ← ∅.
2: while I0 ̸= ∅ do
3: for each subsystem Gi, i ∈ I0 do
4: Q′

i ← update the local safe region Qi by Alg. 2;
5: try
6: calculate δ⋆i by solving (4) with Q′

i;
7: compute the corresp. iAGC (IW⋆

i
, IXi

, IY i
)

8: catch infeasible
9: return False;

10: end try
11: update I0, I1, I−1 by Alg. 3.
12: end for
13: end while
14: return True.

Algorithm 2 Update safe region

Require: Safe region Qi and iAGCs (IWk
, IXk

, IY k
) for all

k ∈ Child(i).
1: Mi ←

⋂
k∈Child(i) o

−1
i (Proji(W k)) ∩Qi

2: Q′
i ← largest inner-approximation of Mi by (7)

3: return Q′
i.

following sense.

Definition 4. An interconnected system ⟨(Gi)i∈I , E⟩ is
called homogeneous if Gi = Gj and Qi = Qj ,∀i, j ∈ I.

Algorithm 4 starts with solving for one subsystem the
maximal internal input set and the corresponding minimal
safe region. If the compatibility condition is met, then
we have verified the safety of the interconnected system;
otherwise, we will reduce the safe region by taking the set
intersection in Algorithm 2 and start the same process with
the updated safe region Q′

i. We have the following results:

Proposition 6. Consider a homogeneous interconnected sys-
tem as per Definition 4. Assume that {xi : qi(xi) ≥ a} ⊆ X0

i

for some a > 0. Algorithm 4 has the following properties:

1) Algorithm 4 returns either True or False eventually.
2) If Algorithm 4 returns True, then iAGCs Ci =

(IW⋆
i
, IX⋆

i
, IY ⋆

i
), i ∈ I satisfy the conditions in Propo-

sition 4.
3) If Algorithm 4 returns False, then there exists no

common contract C0 = (IW 0
, IX0

, IY 0
) such that Gi |=

C0, i ∈ I and that the conditions in Proposition 4 are
satisfied under Assumption 1.

A common practice to bound the total number of iterations
is to add extra termination conditions, e.g., Algorithm 4
terminates if the updated safe region Q′

i in Line 9 (with
its level value ζ ′) is close in size compared to the original
one Qi (with its level value ζ), i.e., ζ ′−ζ < ϵ for some small
positive constant ϵ. Other termination conditions include the
maximal number of iterations allowed. When the algorithm
is terminated because of these conditions, we do not have a
definite conclusion on the existence of compatible contracts.

Algorithm 3 Update I0, I1 and I−1

Require: Subsystem Gi, I0, I1 and I−1.
1: I0 ← I0 \ {i}, I−1 ← I−1 ∪ {i},
2: for each subsystem Gk, k ∈ I1 do
3: if Child(k) ⊆ I−1 then
4: I0 ← I0 ∪ {k}, I1 ← I1 \ {k},
5: end if
6: end for

Algorithm 4 Contract construction for
homogeneous systems

Require: Gi,Qi

1: try
2: calculate δ⋆i by solving (4);
3: calculate ζ⋆i by letting δi = δ⋆i and solving (5)
4: compute the corresp. iAGC Ci = (IW⋆

i
, IX⋆

i
, IY ⋆

i
)

5: catch infeasible
6: return False;
7: end try
8: Assign all subsystem Gj , j ∈ I with an iAGC Cj =

(IW⋆
j
, IX⋆

j
, IY ⋆

j
) with W ⋆

j = W ⋆
i , X

⋆
j = X⋆

i , Y
⋆
j = Y ⋆

i .
9: if Y ⋆

j ⊆ Projj(W
⋆
i ) for all j ∈ N(i) then

10: return True.
11: else
12: Q′

i ← update the local safe region Qi by Alg. 2;
13: Goto Step 1 with updated safe region Q′

i

14: end if

IV. ROOM TEMPERATURE EXAMPLE

In this example, we consider a room temperature regula-
tion problem [23] in a ring-shaped building. Each room has
its temperature xi, which is affected by neighboring rooms,
the heater, and the environment as follows
ẋi(t) = α(xi+1 + xi−1 − 2xi) + β(te − xi) + γ(th − xi)ui,

yi(t) = xi,

where xi+1, xi−1 are the temperatures of room i + 1 and
i − 1 (and we conveniently let x0(t) = xN (t), xN+1(t) =
x1(t)), te, th are the temperatures of the environment and
the heater, respectively. α, β, γ are the respective conduction
factors for the neighboring room, the environment, and the
heater. ui denotes the valve control to the heater. Choose
(te, th, α, β, γ) = (−1, 50, 0.05, 0.008, 0.004), and ui =
0.05(xi+1 + xi−1 − 2xi) + 0.05(25 − xi). The initial set
is SI,i = [24, 26] and the safe region is Qi = [20, 30] for
every room.

We model the temperature system as an intercon-
nected system. In particular, each subsystem Gi =
(Ui,Wi, Xi, Yi, X

0
i , Ti) has xi as the state, (xi−1, xi+1) as

the internal input, ui as the external input, oi(xi) = xi,
Ui, Xi, Yi = R,Wi = R2, X0

i = {xi : 1− (xi − 25)2 ≥ 0},
and Qi = {xi : 52 − (xi − 25)2 ≥ 0}. The connectivity
relation E is defined that (j, i) ∈ E if and only if j =
i ± 1, i = 1, 2, . . . , N . Per Definition 4, this interconnected
system is homogeneous and we will apply Algorithm 4 for
this example.

At the first iteration, by solving (4) and (5), we obtain
δ⋆ = 20.575, ζ⋆ = 0. Thus, we have constructed a local
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Fig. 1: Assume/guarantee sets for the room temperature
example. Left: iteration 1, right: iteration 2.

iAGC Ci = (IW i
, IXi

, IY i
) with

W i = {(xi−1, xi+1) : −x2
j + 50xj − 620.575 ≥ 0, j = i± 1},

Xi = Y i = {xi : −x2
i + 50xi − 600 ≥ 0}.

After assigning the same local contract to all subsystems, one
verifies that the contract compatibility condition (6) does not
hold. According to Step 12 of Algorithm 4, we update the
safe region for each room to be Q′

i = {xi : −x2
i + 50xi −

−620.575 ≥ 0} and start over. For the second iteration, we
obtain local iAGC Ci = (IW i

, IXi
, IY i

) with
W i = {(xi−1, xi+1) : −x2

j + 50xj − 622.138 ≥ 0, j = i± 1},
Xi = Y i = {xi : −x2

i + 50xi − 623.575 ≥ 0}.
This time, one verifies that the compatibility condition (6)
holds, and thus, certifies the safety of the room temperature
system. An illustration of the assume and the guarantee sets
is given in Fig. 1. We note that the computation expense
is not related to the number of rooms N , and only small-
size SOS optimization problems involving 3 independent
variables are to be solved. This is in contrast to a naive
SOS approach for synthesizing a barrier function, which will
become intractable when thousands of rooms are involved.

Another numerical example on vehicle platooning is
shown in [22], where we showcase how to apply the
safety verification algorithms for interconnected systems
with acyclic connectivity graphs.

V. CONCLUSIONS

In this work, we propose a safety verification scheme
for interconnected continuous-time nonlinear systems based
on assume-guarantee contracts (AGCs) and sum-of-squares
(SOS) programs. The proposed scheme uses SOS optimiza-
tion to calculate local invariance AGCs by synthesizing
local (control) barrier functions, and then negotiates among
neighboring subsystems at the contract level. If the proposed
algorithms find compatible local contracts, safety property of
the interconnected system is certified. We also show that the
algorithms will terminate eventually and will always find a
solution when one exists in the case of acyclic connectivity
graphs or homogeneous systems. We also demonstrate the
effectiveness of the proposed algorithms for an room tem-
perature regulation example.
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