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Abstract— Maximising energy output through advanced con-
trol strategies is pivotal for the economic viability of wave
energy converters (WECs). However, most existing literature
primarily focuses on theoretical case studies, where WECs are
constrained to operate in a single degree of freedom (DoF).
This simplification is made due to the added complexity of
optimizing across multiple DoFs. In this study, we assess the
necessity of incorporating multiple DoFs within the control
framework, evaluating its effectiveness in a numerical simu-
lation environment that replicates WEC performance across
multiple DoFs. To provide a basis for comparison, we contrast
the conventional PI controller with the innovative LiteCon
controller. Our study reveals two key findings: (i) Single DoF
control may suffice when the primary DoF of the power take-
off system is accurately identified, and (ii) the straightforward
LiteCon controller outperforms the traditional PI controller by
a significant margin.

I. INTRODUCTION

The energy sector is the largest emitter of greenhouse
gases (GHGs) into the atmosphere, being one of the main
contributors to climate change. Therefore, the transition
towards a carbon-neutral energy system is vital, which en-
tails, on the one hand, a significant reduction of energy
consumption and, on the other, a massive implementation
of renewable energies [1]. Such an expansion of renewable
energies will necessarily require the diversification of re-
newable sources, including technologies that are still under
development, such as marine renewable energies [2]. In this
sense, tidal and wave energies are expected to contribute to
approximately 10% of the future electricity demand [3], [4].

However, wave energy converters are currently in the early
stages of development. Therefore, as of its current stage of
advancement, wave power is anticipated to assume a distinct
role within the energy landscape. This role encompasses
providing energy to remote islands equipped with microgrids,
currently reliant on diesel generators for power generation
[5], as well as delivering a more dependable, less variable,
and highly predictable energy source [6], [7]. Furthermore,
in terms of predictability, wave energy holds a comparative
advantage when contrasted with other renewable resources
[8]. In any case, a significant effort is still required for
wave energy to become a real alternative for the niche
markets mentioned previously. In this sense, maximising
the energy absorption and generation capabilities of wave
energy converters (WECs) is one of the key aspects, as
highlighted in [9]. Advanced control algorithms can assist
in this endeavour [10].

Hence, the primary objective of this study is twofold:
(i) to emphasise the significance of distinguishing between

the degrees of freedom (DoFs) of the WEC and the power
take-off (PTO) system, and (ii) to evaluate the impact of
employing a more realistic device model on the assessment
of controller’s performance. It is important to note that for a
6-DoF floating device that harnesses energy from the relative
motion between the buoy and the mooring line, the motion
of the PTO is characterized by a combination of all six DoFs
of the buoy. However, the vast majority of the studies in the
existing literature introduce advanced controllers that assume
a simplified single DoF motion (typically heave) for the
WEC [11]. However, this assumption may not be accurate
when the device motion is not restricted to a single DoF,
which is often the case in real devices. By evaluating the
controller’s performance across different DoFs via a more
comprehensive WEC model, this research underscores the
importance of using models that are able to represent all
the effective DoFs of the WECs when developing control
strategies.

The remainder of this paper is organised as follows:
Section II introduces the dynamical equation of the WECs,
Section III describes the WEC control optimality condition
and the considered controller, Section IV proposes a case
study, and in Section V the results for such application case
are shown. Finally, Section VI draws some conclusions.

II. WEC MODELLING

In this section, we present the dynamic model of the
point absorber WEC, which expresses how the floating body
interacts with the fluid (water) and how the different DoFs
of the WEC interact with each other. Thus, we formulate
this model in the time-domain using Newton’s second law
as follows:

(m+ µ∞) ẍ(t) = fe(t)− fh(t)− fr(t)− fm(t)− fu(t), (1)

where the mass matrix, denoted as m ∈ RnDoF×nDoF , contains
the mass/inertia information of the WEC on the different
DoFs, while the off-diagonal elements account for inter-
actions and the state vectors x(t) ∈ RnDoF , ẋ(t) ∈ RnDoF

(or equivalently, v(t)), and ẍ(t) ∈ RnDoF (or equivalently,
a(t)) describe the position, velocity, and acceleration of the
WEC on the different DoFs, respectively. The forces/torques
acting on the WECs, as introduced in Equation (1), include
(i) the hydrostatic force, denoted as fh(t), resulting from
buoyancy and gravity forces, which is represented as Shx(t),
with Sh ∈ RnDoF×nDoF the hydrostatic stiffness matrix; (ii)
the radiation force, originating from waves radiated due to
WEC motion, is calculated using a convolution integral as
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fr(t) = kri,j (t) ∗ ẋj(t), with kr(t) representing the radiation
convolution kernel; (iii) the mooring force, modelled as a
spring-damper system, is expressed as fm(t) = kmx(t) +
bmẋ(t), where km ∈ RnDoF×nDoF and bm ∈ RnDoF×nn denote
the mooring stiffness and damping matrices; (iv) the wave
excitation force, represented as fe(t) ∈ RnDoF , denoting the
force exerted by the waves; and (v) the PTO control force,
expressed as fu(t) ∈ RnDoF .

Note that both the infinite frequency added mass matrix
(µ∞) and the radiation convolution kernel matrix (kr) can be
determined based on the frequency-domain radiation added-
mass and damping hydrodynamic coefficients (Ar(ω) ∈
RnDoF×nDoF and Br(ω) ∈ RnDoF×nDoF , respectively). This cal-
culation can be performed following Ogilvie’s relations [12],
which are expressed as follows:

Ar(ω) = µ∞ − 1
ω

∫ +∞
0

kr(t) sin(ωt)dt,

Br(ω) =
∫ +∞
0

kr(t) cos(ωt)dt.
(2)

Likewise, the radiation convolution kernel kr can also be
defined in the frequency-domain1, as

Kr(ω) = Br(ω) + ȷω [Ar(ω)− µ∞] . (3)

Hence, Equation (1) can be reformulated in the frequency-
domain using the force-to-velocity description [13] as:

V (ω) = Z−1
i (ω) [Fe(ω)− Fu(ω)] , (4)

where Zi(ω) ∈ InDoF×nDoF denotes the intrinsic impedance of
the system, defined as

Zi(ω) = Br(ω) + bm + ȷω

(
m+Ar(ω)−

sh + sm

ω2

)
. (5)

Note that all the hydrodynamic parameters required to
define the WEC dynamics (as shown in Eqs. (1) and (4))
can be obtained using standard boundary element method
(BEM) solvers, such as Nemoh [14] or WAMIT [15].

Additionally, it’s important to highlight that, for simulating
the WEC system’s motion in the time domain, we approxi-
mate the convolution term of the radiation force using a linear
time-invariant (LTI) system. This approximation allows us
to express Equation(1) in a state-space form, significantly
reducing the computational complexity of solving it. This
approach is widely used in the literature and various tools are
available to obtain the approximation of such a convolution
term, such as the FOAMM toolbox [16], [17].

Finally, in this study, we assume that the WEC is tethered
to a single pre-tensioned mooring line, with the PTO system
linking the buoy to the mooring line. Therefore, the PTO
harnesses energy from the relative motion between the buoy
and the pre-tensioned mooring line. This configuration aligns
with the common approach for near-shore point absorbers, as
employed by entities such as the CorPower-C4 device [18].

1Denoted by uppercase letters for frequency-domain variables.

III. WEC CONTROL

This section introduces the WEC controller considered in
this study. To this end, first, the optimality condition for
WECs is introduced in Section III-A, and then the LiTe-Con
strategy is described in Section III-B.

A. Optimality condition

For WECs, the energy absorbed (E) within the given time
interval [0, T ], with T ∈ R+, can be computed by integrating
the converted power as

E = −
∫ T

0

ẋ(t)fu(t)dt. (6)

Considering the model defined in Section II, the optimal
condition (in terms of fu(t)) for maximum energy absorp-
tion can be derived, in the frequency domain, from the
impedance-matching problem [13] as

Fu(ω) = −Z⋆(ω)V (ω), (7)

with Z⋆(ω) as the complex conjugate of Z(ω). Additionally,
such optimal condition can alternatively be expressed in
terms of the optimal velocity profile (V opt(ω)) as

V opt(ω) =
1

Z(ω) + Z⋆(ω)
Fex(ω) =

1

2Br(ω)
Fex(ω), (8)

which has purely real mapping and defines a zero-phase-
locking condition between the input excitation force fex(t)
and the velocity of the device [19]. In particular, Eqs. (7) and
(8) represent the well-known impedance-matching condition
[13]. Note that this condition can be reformulated in a control
context as Hfb(ω) = Z⋆(ω), defining a feedback (FB) control
structure that incorporates the controller Hfb(ω) within the
feedback loop [19]. It is important to note that, while the
solution is well-established in WEC control literature, the
inherent non-causality of Hfb(ω) renders it impractical for
real-world implementation (the interested reader is referred
to [19] for further insights).

When considering such an impedance-matching condition,
both the system G0(s) and the controller Hfb(s) can be
represented in the frequency domain as2:

G0(s)

∣∣∣∣
s=ȷω

= Re (G) + ȷIm (G) , (9)

Hfb(s)

∣∣∣∣
s=ȷω

=
1

Re (G)− ȷIm (G)
. (10)

Thus, the optimal mapping from Fex(ω) to V opt(ω) (in-
troduced in Equation(8)) can be now described as

V opt(ω)

Fex(ω)
= T opt

fex→v(ω) =
Re(G)2 + Im(G)2

2Re(G)
. (11)

2For simplicity in notation, let Re(G) = Re {G0(ȷω)} and Im(G) =
Im {G0(ȷω)}, which denote the real and imaginary parts, respectively.
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B. LiTe-Con strategy

The optimal condition introduced in the previous section
(see the mapping from Fex(ω) to V (ω) in Equation(11))
can equivalently be defined with a feed-forward (FF) control
structure as

Hff(ω) =
Re(G) + ȷIm(G)

2Re(G)
, (12)

where Hff(ω) denotes the FF mapping, which is equivalent to
the FB structure (Hfb(ω)) introduced in Eq. (10) and, hence,
Fu(ω) = Hff(ω)Fex(ω).

By means of frequency-domain system identification algo-
rithms, the LiTe-Con strategy approximates such FF mapping
Hff(ȷω) with an LTI dynamical system (denoted as H̃ff(s))
as:

H̃ff(s)

∣∣∣∣
s=ȷω

≈ Hff(ω). (13)

Note that, in this case, such approximation is carried out
using moment-matching-based identification algorithms [16].
Note that, even though the LiTe-Con strategy proposes a
constraint handling mechanism, no physical constraint have
been considered in this preliminary study and, hence, it is
not introduced here.

IV. CASE STUDY

This section highlights the importance of a comprehensive
motion description of the WEC motion when proposing a
realistic controller to avoid overestimating power production.
To this end, Section IV-A presents the considered WEC
system, Section IV-B introduces the studied wave conditions,
and Section IV-C details the analysed cases.

A. WEC system

In order to make an analysis with a realistic model, a
WEC similar to the CorPower-C4 device [18] is chosen here.
The device has an 8 m diameter, with a spherical shape in
the middle and conical top and bottom ends. To show the
similarities between the considered and real WEC geometry,
Fig. 1 shows both the mesh of the considered device (left
figure) and a picture of the real CorPower-C4 device (right
figure).
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Fig. 1: Mesh of the considered device on the left, and picture
of the CorPower-C4 device on the right.

To simplify the analysis, as explained in Section IV-C,
only up to 3 DoFs have been considered here: surge, heave,
and pitch. The required hydrodynamic coefficients have been
obtained using the well-known BEM solver Nemoh [14],
from Ecole Centrale de Nantes.

B. Wave conditions

To better comprehend the impact of simplifying the WEC
simulation model, all the cases analysed in this study are
evaluated with both regular and irregular waves. On the one
hand, regular waves offer a basis for comparing the results
against theoretically optimal outcomes, as a simple passive-
reactive controller can achieve the optimal (unconstrained)
performance of a WEC for a single wave frequency. On
the other hand, employing irregular waves creates a more
realistic scenario, rendering more meaningful results.

For both regular and irregular waves, three different 1000s-
long sea states (SSs) have been considered, specified in
Table I. In the case of regular waves, sinusoidal waves
with period and height as specified on the peak period (Tp)
and significant wave height (Hs) columns of Table I are
considered; while, on the case of the irregular SSs, waves
are generated using a JONSWAP distribution [20], with Tp
and Hs as defined in Table I and a peak enhancement factor
of 3.3 (which is widely used in the literature).

TABLE I: Parameters of the considered sea states.

Tp [s] Hs [m]
SS1 (small waves) 7 1

SS2 (medium waves) 10 2.5
SS3 (large waves) 12 4.5

C. Analysed cases

As mentioned in the introduction, authors usually simplify
the model of Equation(1) to consider a single DoF when
proposing their controllers. However, in the ocean, it is nearly
impossible to completely constrain these DoFs. Therefore,
it’s crucial to assess how incorporating these additional DoFs
in the simulation affects the controller’s performance. To this
end, from a motion point of view, three test cases (TCs) are
analysed here:

- TC1: The simulation of the WEC motion is carried
out considering a single DoF, heave. This is the most
analysed case in the literature, where the DoF of motion
of the device coincides with the DoF in which the PTO
absorbs energy. Thus, as shown in Fig. 2.a, the motion
of the PTO system (xm) is equal to the heave motion
of the buoy (z).

- TC2: The simulator considers a WEC with two DoFs,
surge and heave. In this case, the DoF of the PTO is
a function of the two DoFs of the WEC, as shown in
Fig. 2.b. The motion of the PTO can be described in
this TC as:
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Fig. 2: Diagram of the transformation from the WEC coordinate system to the PTO DoF for the considered TCs.

xm =

√
(z + lm)

2 + x2 − lm,

α = tan−1

(
z + lm

x

)
,

(14)

where lm is the length of the mooring line.
- TC3: The most complex case analysed in this study,

where the motion of the device is computed considering
three DoFs: surge, heave and pitch. As shown in Fig.
2.c, the definition of the PTO DoF is more complex in
this case and can be obtained as [21], [22]:

xm =

√
((lm + a+ z)− a cos θ)2 + (x− a sin θ)2 − lm,

α = tan−1

(
x− a sin θ

lm + a+ z − a cos θ

)
,

ϕ = θ − α,

(15)

where a is the distance between the centre of rotation
and the mooring connection point.

In addition to the three different TCs addressing device
motion introduced before, this study also evaluates two
distinct controllers. Firstly, we analyse a common passive-
reactive controller without constraints, which aids in comput-
ing optimal power in the context of regular waves, providing
a reference for the maximum attainable energy in such
scenarios. Secondly, we investigate the LiTe-Con strategy,
as outlined in Section III-B, which offers a more realistic
control approach, suitable for irregular wave conditions.
Additionally, within the passive-reactive controller, we ex-
plore two distinct approaches. The first approach involves
optimising the PTO damping and stiffness coefficients for the
motion of the PTO (xm). Conversely, the second approach
focuses on maximising the total energy of the system by
optimising PTO damping and stiffness values for each DoF
of the WEC. It’s important to note that the second approach
is highly unrealistic since developing a PTO system able to
extract energy from all the DoFs individually in a real sce-
nario would be nearly impossible. Nevertheless, this energy
calculation provides an upper limit of the available energy
in the system.

Finally, it should be noted that, for the sake of robustness,
the power of all cases is determined by calculating the slope
of a straight line obtained through a fitting process applied to

the cumulative absorbed energy curve. Additionally, in order
to avoid the transient behaviour of the WEC at the beginning
of the simulations, only the energy absorbed on the last %80
of the simulation time is considered to compute the power
(i.e. over the last 800s).

V. RESULTS

This section introduces the results obtained for the case
study introduced in Section IV. First, Section V-A shows
the results obtained when considering a passive-reactive
controller and, then, Section V-B those obtained with the
LiTe-Con strategy.

A. Passive-reactive controller

As previously mentioned, in the case of regular waves,
it is possible to calculate the optimal power (assuming
unconstrained motion) with a simple passive-reactive con-
troller. Furthermore, if we (hypothetically) assume that the
PTO system can extract energy from the different DoFs
independently (even though this is practically impossible),
we can compute the maximum power available for each
wave. Fig. 3 illustrates the maximum power available for
the three different SSs when considering that the WEC
moves in one, two, or three DoFs. It’s worth noting that,
in general, the total energy increases when considering more
DoFs. However, the difference in energy gain becomes less
significant when we move to the higher SSs (SS2 and
SS3). This phenomenon occurs because, in such SSs, the
primary contribution to the total power comes from heave
motion, making the contribution from the other two DoFs
less prominent.

As expected, the results differ when we consider that the
PTO can only operate along a single axis, as explained
in Section IV. As depicted in Fig. 4, the most noticeable
change is the reduction in power when we account for
multiple DoFs. Note that, for the single DoF case, the same
power extraction shown in Fig. 3 is achieved. Furthermore,
Fig. 4 illustrates the disparity between optimising the PTO
damping and stiffness coefficients for heave motion across all
TCs versus optimising a unique set of coefficients for each
TC. It is evident that the PTO values should be optimised
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Fig. 3: Absorbed power for the regular SSs (SS1 to SS3, from
top to bottom) with the passive-reactive controller, consider-
ing that the PTO can absorb energy from the different DoFs
separately.

individually for each TC rather than relying solely on those
obtained for the primary DoF, which, in this case, is heave.

Fig. 4: Absorbed power for the regular SSs (SS1 to SS3,
from top to bottom) with the passive-reactive controller,
considering the PTO DoF as a combination of the DoFs of
the WEC. Cases with the PTO coefficients optimised for such
TC are depicted with the wavy pattern.

Finally, when considering irregular waves, similar results
to those obtained for the regular SS cases are obtained. By
way of example, Fig. 5 shows the absorbed power when
the PTO only operates on a single axis, with the PTO
coefficients optimised for each TC. As explained before
in Fig. 4 for regular waves, the power decreases when
considering additional DoFs on the WEC. It should be noted
that the decrease on the absorbed power can be attributed to
two factors: (i) considering irregular waves, which inherently
contain less energy compared to their regular counterparts,
and (ii) the limitation of achieving optimal power absorption
in the case of irregular SS when using a simple passive-

reactive controller.

Fig. 5: Absorbed power for the irregular SSs (SS1 to SS3,
from top to bottom) with the passive-reactive controller,
considering the PTO DoF as a combination of the DoFs of
the WEC.

B. LiTe-Con controller

In this section, we present the results achieved using the
LiTe-Con controller. Unlike the passive-reactive controller,
which allows optimisation of PTO coefficients for any given
simulation, the LiTe-Con strategy requires a single-input
single-output (SISO) model of the system to describe the
controller (as detailed in Section III-B). In this context, and
due to the impracticality of characterising the PTO axis with
a SISO model (single DoF) across all TCs, the model of the
WEC on heave is considered to define the controller.

Figure 6 displays the total absorbed power under regular
SSs when employing the LiTe-Con strategy with the PTO
operating along a single axis. Comparing these results to
those obtained with the passive-reactive controller, shown in
Figure 4, it is evident that the LiTe-Con strategy achieves
lower power output in this scenario. This discrepancy may
be attributed (partially) to the approximation of the dy-
namical system H̃ff(s) at the frequencies corresponding to
the considered SSs. However, it should be noted that, if
H̃ff(s) = Hff(s), the results for the 1DoF TC should be
the same.

Conversely, in the case of irregular waves, the LiTe-
Con strategy exhibits superior performance compared to the
basic passive-reactive controller, as illustrated in Figure 7
(in contrast to Figure 5), for most scenarios. Notably, for
the largest SS (SS3), the LiTe-Con strategy outperforms the
passive-reactive controller in the one DoF case, but not for
the other two TCs.

Finally, in general, one could notice that, for both reg-
ular and irregular SSs, the results obtained with the LiTe-
Con strategy mirror the patterns observed with the passive-
reactive controller: As the number of DoFs impacting the
PTO axis increases, the absorbed power diminishes. This
highlights the significance of accounting for all WEC DoFs
and employing a realistic representation of the PTO DoF
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Fig. 6: Absorbed power for the regular SSs (SS1 to SS3,
from top to bottom) with the LiTe-Con strategy, considering
the PTO DoF as a combination of the DoFs of the WEC.

Fig. 7: Absorbed power for the irregular SSs (SS1 to SS3,
from top to bottom) with the LiTe-Con strategy, considering
the PTO DoF as a combination of the DoFs of the WEC.

during the controller design phase to avoid overly optimistic
results.

VI. CONCLUSIONS

The current study presents a practical case involving the
control of a point absorber wave energy converter (WEC) that
can move in one, two, or three degrees of freedom (DoFs).
The power take-off (PTO) system of the considered WEC
extracts energy from only one DoF, which is the relative
motion between the WEC and the pre-tensioned mooring
line. The study shows that, in theory, the system should
be capable of absorbing more energy when incorporating
additional DoFs, given the more extensive motion. However,
the application case reveals that, when realistic PTO systems
are considered, an increase in the number of DoFs in the
WEC description consistently results in reduced absorbed
power. Therefore, this study emphasises the significance of
accounting for all the DoFs of a WEC and providing an
accurate description of the PTO DoF when designing a
control strategy to obtain meaningful performance outcomes.
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