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Abstract— By making use of dissipativity theory we can pro-
vide an easily verifiable condition which ensures a scalable L2-
gain in a network of nonlinear systems, i.e. a gain independent
on the number of systems. However, ensuring bounded L2-gains
may become insufficient, since the energy of the input may grow
unbounded. Therefore, we can also give a proof that the same
condition may be used to bound the energy of the local systems.
Such a bound ensures that the effects of increasing network size
do not accumulate in any of the systems. We end the paper with
an example in which we demonstrate that scaling the network
size does not lead to an accumulation in any part of the network.

I. INTRODUCTION

Current advances in technology and ongoing research
efforts are leading to a growing implementation of Multi-
Agent Systems, or interconnected systems, which can be
found for instance in the management of electrical grids,
[1], [2] and the coordination of vehicle platoons [3], [4],
[5]. It is expected that the use of Multi-Agent Systems will
continue to expand in the future, with network structure
becoming dynamic, changing as new agents join or leave
the network, or as interconnections are reconfigured. This
dynamic nature of network structure and size introduces new
challenges in terms of stability analysis. For instance, as
network size N grows, consensus protocols may become
unstable if the number of connections to each system do
not grow with N , [6].

As a result, requirements on local systems ensuring stabil-
ity of dynamic networks are needed. These conditions should
rely solely on local information and should be independent
of the number of systems (also referred to as subsystems
or agents) or structure of the network. Such conditions
would allow for a scalable performance, which has been
described in [7]. In our previous research we have focused
on linear systems, see [8] and [9], and provided locally
verifiable conditions to ensure a bounded scalable L∞-gain.
These results, however, do not extend naturally for nonlinear
systems. Other approaches for nonlinear systems, such as
[10] and later works [11], provide conditions on the gradient
of the local dynamics, which ensure a scalable L∞-gain.

In this paper we do not consider the L∞-gain, but instead
we turn to dissipativity theory in order to guarantee upper
bounds on the energy associated to the local systems. This
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leads to an abstraction of the system dynamics and leads to
conditions, which are easily interpreted and locally verifiable.

The seminal works on dissipativity of [12], [13], [14]
provided a generalisation of passivity and Lyapunov theory.
The concept of dissipativity provides an attractive abstraction
of the local dynamics for interconnected systems. Instead of
considering the dynamics directly, features of the systems
can be used to guarantee network properties, such as stability.

Dissipativity is indeed a useful concept to guarantee stabil-
ity of interconnected systems, as one may use properties of
the individual systems to verify if the interconnection will
be stable. In [15], a method using Sum of Squares (SOS)
was presented to find invariant safe sets, such that cascaded
failures are avoided. However, finding these sets using the
SOS-method may need non-local information.

In this paper, we introduce and analyze the notion of
a scalable L2-gain, i.e., an L2-gain on a network that is
uniform of the network size. Here, we rely on results on
dissipativity theory for networked systems [16]. We also
show that this scalable L2-gain does not necessarily prevent
network disturbances to accumulate at a single subsystem,
which might be undesirable. To address this, we introduce
an alternative signal norm, which we refer to as the L2(∞)-
norm. With this, we can use standard definitions of dis-
sipativity to find requirements on the local systems which
ensure that the effects of increasing network size do not
accumulate at any of the individual systems. Continuing,
such a bound on the energy of any system is found via a
supply rate using the ∞-norm, which during time intervals
may be formulated in a quadratic form. The supply rate over
a larger time interval can then be found as a summation of
the quadratic supply rates. In [17], a similar supply rate, i.e. a
summation of supply rates active on diffierent time intervals,
was used to show dissipativity in switching systems. Using
such a supply rate allows us to evaluate the problem as a set
of LMIs. However, due to the structure of the LMIs we will
see that the conditions may be easily verified. To the best
of our knowledge we have not found similar approaches to
use dissipativity for scalable networks. For a recent review
of the developments in dissipativity theory see [18].

Outline

In section II we will give a thorough problem definition,
including system definition and assumptions. We follow this
with our results regarding a scalable L2-gain in section III
before we extend this in section IV and show that the same
assumptions and conditions result in a scalable L2(∞)-gain.
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We end the paper with two examples regarding networks
with scalable L2(∞)-gains. Further, our contributions are

• a gain-constraint on the local systems ensuring a scal-
able L2-gain of the network, independent of size and
structure;

• a definition of the L2(∞) signal norm;
• a gain-constraint on the local systems which ensure a

bounded scalable L2(∞)-gain of the network, indepen-
dent of size or structure.

Notation: Let R denote the real numbers. We denote
the L2-norm as ∥ · ∥L2

and use ∥x(t)∥2L2
=

∫ t

0
|x(τ)|22dτ ,

where | · |2 denotes the Euclidean norm. wi denotes the
ith cartesian unit vector and I denotes the identity matrix
with suitable dimension. Additionally, with v ∈ Rn let
diag(v) denote a diagonal matrix with the elements of v
on its diagonal. Let ρ(A) denote the spectral radius of A,
i.e. ρ(A) = maxi |λi(A)|, λi(A) an eigenvalue of the matrix
A. Lastly, we use ∥ · ∥∞ to denote the induced ∞-norm.

II. PROBLEM STATEMENT

A. System definition

Consider a network of N systems of the following form

Σi :

{
ẋi(t) = fi(xi(t), ui(t)),

yi(t) = hi(xi(t)),
(1)

with state xi(t) ∈ Rn, input ui(t) ∈ Rm and output yi(t) ∈
Rm for all i ∈ {1, 2, . . . , N}. We will drop the dependency
on t and assume f(0, 0) = 0, h(0) = 0 in the remainder.

Definition II.1. Let a supply rate s : Rm × Rm → R be
given. A system of the form (1) is said to be dissipative with
respect to supply rate s(ui, yi) if there exists a continuously
differentiable function Vi : Rn → R with Vi(0) = 0
satisfying Vi(xi) ≥ 0, for all xi ∈ Rn, such that

∇Vi(xi)
Tfi(xi, ui) ≤ s(ui, yi), (2)

In particular, we make the following assumptions on the
systems defined in (1):

Assumption 1. All systems i, defined by (1), are dissipative
with respect to

s(ui, yi) =

[
ui

yi

]T
X

[
ui

yi

]
, X =

[
γ2 0
0 −1

]
. (3)

Assumption 1 ensures that all subsystems have a bounded
L2-gain, i.e. ∥yi∥L2

≤ γ∥ui∥L2
when the trajectories satisfy

xi(0) = 0. If, in addition, Vi(xi) > 0 holds for all xi ̸= 0,
then Vi(xi) acts as a Lyapunov function for the system Σi,
as can be concluded from (2) and (3) by setting ui = 0.

We can now focus on the interconnections in the network.
Let G(V, E) describe the directed graph formed by the
network, with V = {Σ1,Σ2, . . . ,ΣN} and E ⊆ V × V ,
with (i, j) ∈ E if system i has an incoming connection from
system j. Further, we define the adjacency matrix A(G) as

[A(G)]ij =

{
1 if (i, j) ∈ E
0 otherwise.

(4)

Σ1

. . .
ΣN

[
A(G) I

I 0

]
de

yu

Fig. 1. Visualisation of the network and the interconnections.

Let u =
[
uT
1 , . . . , u

T
N

]T ∈ RmN , y =
[
yT1 , . . . , y

T
N

]T ∈
RmN and add disturbances d = [dT1 , . . . , d

T
N ]T ∈ RmN ,

where di acts on system i. We also add performance outputs
e = [eT1 , . . . , e

T
N ]T ∈ RmN . The relationship between u, y, d

and e can be described by
u
y
d
e

 = M

[
y
d

]
, M =


A(G)⊗ Im I

I 0
0 I

I 0

 . (5)

We define networks by interconnecting the systems Σi

through the matrix M and graph G and we will use the
notation Σ(G, {Σi}) to consider a single network. In the
remainder we will be interested in families of Σ(G, {Σi})
which we obtain by instead considering classes of graphs and
a family of systems {Σi} satisfying some common proper-
ties. Given a class of graphs {G} and family {Σi} we denote
the corresponding family of networks as Σ({G}, {Σi}).
Further, we consider {G} with arbitrary number of nodes,
such as the class {G} with bounded in-degree. A block
diagram of a network with N systems can be seen in Fig. 1.

Remark II.2. The interconnection in (5) is defined for any
m ≥ 1, however, in the remainder we consider m = 1.

B. Problem statement

Broadly speaking, we are concerned with characteriz-
ing the gain from disturbance d to performance output
e and identifying locally verifiable conditions on systems,
which ensure the existence of a bounded gain in families
Σ({G}, {Σi}). Importantly, we are interested in ensuring that
the effects of disturbances d do not grow or accumulate in
any one system, even if the number of systems, N , within
a network increases. To accurately specify our problem, we
need the following definitions.

Definition II.3. Let {G} be some class of graphs. Then, the
family of networks Σ({G}, {Σi}) is said to have a scalable
L2-gain if there exists a β > 0 such that, for any graph
G ∈ {G} and any finite number of nodes N , each network
Σ(G, {Σi}) satisfies

∥e∥L2
≤ β∥d∥L2

, (6)

for any trajectory satisfying x(0) = 0.
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Thus, a family of networks Σ({G}, {Σi}) with a scalable
L2-gain has a uniform gain β for all graphs in {G} with an
arbitrary number of nodes N .

Definition II.3, however, does not prohibit the accumula-
tion of energy in some specific system in a network. This
may lead to a situation in which all energy in some network
in Σ({G}, {Σi}) is accumulated in a single system i, i.e.

∥yi∥L2
= β∥d∥L2

, ∥yj∥L2
= 0,∀j ̸= i.

To avoid this, we seek to limit the energy of the individual
systems i with respect to the energy of the disturbance.

Definition II.4. Let {G} be some class of graphs. Then, the
family of networks Σ({G}, {Σi}) has bounded accumulating
effects if there exists a β > 0 such that, for any G ∈ {G}
with any finite number of nodes N , every system Σi in
Σ(G, {Σi}) fulfills

∥yi∥L2
≤ β∥dmax∥L2

, (7)

for trajectories satisfying xi(0) = 0 and with dmax a signal
satisfying |di(t)| ≤ dmax(t) for all t ≥ 0 and all i.

To finalize our problem statement, we are interested in
finding conditions on the systems Σi, such that for some
class of graphs {G} the family Σ({G}, {Σi}) has bounded
accumulating effects and every Σi fulfills (7).

III. L2-SCALABILITY

Before we can state the main results on scalability, we
consider a single network Σ(G, {Σi}) by fixing some graph
G with nodes V = {Σ1, . . . ,ΣN}, for some arbitrary N , and
interconnection structure as in (5). Attempting to analyze its
properties, we define the function V (x) as

V (x) =

N∑
i=1

piVi(xi). (8)

with pi > 0 for all i. Then, using (2), it is clear that

V̇ (x) =
N∑
i=1

pi∇Vi(xi)
Tfi(xi, ui) ≤

N∑
i=1

pisi(ui, yi). (9)

Hence, if
N∑
i=1

pisi(ui, yi) ≤ s̄(d, e) (10)

for some network supply rate s̄(d, e), we have that the
network Σ(G, {Σi}) is dissipative with respect to s̄(d, e).
Here, we recall that the relationship in (5) holds. Motivated
by Definition II.3, we choose s̄(d, e) as

s̄(d, e) =

[
d
e

]T
W

[
d
e

]
, W =

[
β2I

−I

]
. (11)

Now, let P = diag(p1, . . . , pN ), and define

X =

[
γ2P

−P

]
. (12)

We state the following result from [16], which essentially is
a translation of (10) as a Linear Matrix Inequality (LMI).

Lemma III.1. Let G be a directed graph. A network
Σ(G, {Σi}), with each Σi defined as in (1) and fulfilling
Assumption 1 is dissipative with respect to (11) if there exists
pi > 0 for i ∈ {1, . . . , N} such that

A(G) I

I 0
0 I

I 0


T [

X
−W

]
A(G) I

I 0
0 I

I 0

 ≤ 0, (13)

with X as in (12). Furthermore, if Σ(G, {Σi}) is dissipative
with respect to (11) it has a bounded L2-gain with bound β,
i.e. (6) holds.

We can now state the following theorem.

Theorem III.2. Consider a family of networks
Σ({G}, {Σi}), with {G} defined as the class of graphs with
maximum in-degree less than or equal to N . Further, let
each system Σi, i = 1, . . . , N , be defined as in (1) and
fulfill Assumption 1. Then, if

γ2N 2 < 1,

the family Σ({G}, {Σi}) has a scalable L2-gain. In particu-
lar, β can be found by solving

(1− γ2N 2)α ≥ 1 +
α2γ4N 2

β2 − αγ2
(14)

for β2 > αγ2 and α > 0. In this case, for any network
Σ(G, {Σi}) in the family, the choice pi = α results in a
storage function (8) for dissipativity with respect to (11).

Proof: Let Σ be an arbitrary network drawn from
Σ({G}, {Σi}). Let pi = α for all i, such that P = αI.
Then, by performing the matrix multiplications in (13) and
reversing the inequality we get the following[

P − γ2A(G)TPA(G)− I −γ2A(G)TP
−γ2PA(G) β2I− γ2P

]
≥ 0. (15)

After substituting P = αI, by the Schur complement we
know that if β2 > αγ2 then (15) is satisfied if and only if

αI−αγ2A(G)TA(G)−I− α2γ4

β2 − αγ2
A(G)TA(G) ≥ 0. (16)

Since we assume that each system has a maximum
of N neighbours, we have ∥A(G)∥∞ ≤ N . Further,
as A(G)TA(G) is positive semi-definite, all eigenvalues
of A(G)TA(G) are real and non-negative and the maxi-
mum eigenvalue can be bounded by λmax(A(G)TA(G)) =
ρ(A(G)TA(G)) ≤ ∥A(G)∥2∞. This leads to the bound

λmax

(
αγ2A(G)TA(G)

)
≤ αγ2N 2.

Similarly as above,

λmax

(
α2γ4

β2 − αγ2
A(G)TA(G)

)
≤ α2γ4N 2

β2 − αγ2
. (17)

As (16) is equivalent to

αI ≥αγ2A(G)TA(G) + I+
α2γ4

β2 − αγ2
A(G)TA(G)
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we use [19, Cor. 7.7.4], which gives that (16) is satisfied if

α ≥λmax

(
αγ2A(G)TA(G) + I+

α2γ4

β2 − αγ2
A(G)TA(G)

)
.

From Weyl’s inequality [19, Thm. 4.3.1] the maximum
eigenvalue can be bounded from above according to

λmax

(
αγ2A(G)TA(G) + I+

α2γ4

β2 − αγ2
A(G)TA(G)

)
≤ αγ2N 2 +

α2γ4N 2

β2 − αγ2
+ 1. (18)

The combination of the above results shows that satisfying

α ≥ αγ2N 2 +
α2γ4N 2

β2 − αγ2
+ 1,

will ensure that (15) is fulfilled. This can be rewritten as

(1− γ2N 2)α ≥ 1 +
α2γ4N 2

β2 − αγ2
.

Which is equal to (14). If γ2N 2 < 1 as assumed in
the statement of the theorem, then (1 − γ2N 2) will be
positive and there exists α > 0 and β > 0 such that (15)
is satisfied and Σ is dissipative with respect to (11). In
order to show that this holds for any network in the family
Σ({G}, {Σi}) we emphasize that we have only made use
of the property of a maximum in-degree less than or equal
to N combined with each system Σi being dissipative with
respect to (3). Consequently, the family Σ({G}, {Σi}) has a
bounded scalable L2-gain according to Definition II.3.

Though the choice P = αI may lead to conservative
results it is out of the scope of this paper to find other choices
of P . From Theorem III.2 we can also deduce that the same
condition on the local systems ensures that the network has
a scalable L2-gain when there is only one disturbance acting
on the network and only one output is considered, as this
will not affect the eigenvalues of (15). This will be useful
in the continuation of the paper. To do this we define a new
interconnection structure as

M̃ =


A(G) wi

I 0
0 1
wT

j 0

 . (19)

Corollary III.3. Consider a family of networks
Σ({G}, {Σi}) and let each Σi be defined as in (1)
fulfilling Assumption 1 and connected through M̃ in (19).
Further, consider {G} as the class with maximum in-degree
less than or equal to N . Then, Σ({G}, {Σi}) has a scalable
L2-gain β if γ2N 2 < 1. The gain β can be found by
solving (14) for β2 > αγ2 and α > 0.

Proof: The proof follows from the proof of The-
orem III.2 using that λmax(w

T
j wj) = 1 followed with

rank(A(G)wi) = 1, which gives

λmax

(
(A(G)wi)

T
A(G)wi

)
= tr

(
(A(G)wi)

T
A(G)wi

)
≤ N .

Remark III.4. In Thm. III.2 and Cor. III.3 we considered the
class of graphs with a maximum in-degree in order to limit
the eigenvalues of A(G). However, other classes of graphs
and their adjacency matrices may give tighter bounds on the
scalable L2-gain. This can be seen in Theorem III.2 and (14),
in which the factor N 2 is used as a bound on the maximum
eigenvalue λmax

(
A(G)TA(G)

)
. Thus, for some classes of

matrices, e.g. classes of undirected graphs, it may be possible
to find a smaller bound r < N 2, such that for any graph G
of the class {G} λmax

(
A(G)TA(G)

)
≤ r.

IV. MIXED NORM

As the number of systems increases and each system is
subject to some bounded disturbance di, the overall energy of
the network increases as well. An issue with L2-scalability,
as discussed in Sec. II-B, is that there is no bound on the
energy of the individual outputs, other than the total amount
of energy in the network. Thus, an increase of energy in a
network can be accumulated in a single system. In particular,
Theorem III.2 together with Corollary III.3 guarantees

∥yi(t)∥L2
≤ β∥dj(t)∥L2

, ∀i, j (20)
∥y(t)∥L2

≤ β∥d(t)∥L2
. (21)

However, if multiple subsystems have disturbance inputs,
(20) and (21) will only guarantee ∥yi(t)∥L2

≤ β∥d(t)∥L2
.

In order to guarantee bounded accumulating effects, defined
as in Definition II.4, we define the following norm.

Definition IV.1. For a signal partitioned as y(t) =
[y1(t)

T, . . . , yN (t)T]T, with yi(t) ∈ Rm, its L2(∞)-norm
is defined as

∥y∥2L2(∞) =

∫ ∞

0

max
i

|yi(t)|22dt. (22)

We immediately have the following results.

Lemma IV.2. Let y be a signal partitioned as y =
[yT1 , . . . , y

T
N ]T. Then, for all i ∈ {1, 2, . . . , N},

∥yi∥L2
≤ ∥y∥L2(∞). (23)

Proof: This follows immediately from the definition as∫ ∞

0

|yi(t)|22dt ≤ max
i

∫ ∞

0

|yi(t)|22dt ≤
∫ ∞

0

max
i

|yi(t)|22dt,

proving (23).
Hence, the L2(∞)-norm gives an upper bound on the L2-

norms of the subsignals. By regarding ∥yi∥L2
as the energy

associated to system i in a network, we can use Lemma IV.2
to analyze how to provide bounded accumulated effects as
in Definition II.4. We start by defining a supply rate

s(d, e) = max
i

β2|di|22 −max
j

|ej |22 (24)

and see that if a network is dissipative with respect to (24)
it has a bounded L2(∞)-gain, as stated next.
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Proposition IV.3. Suppose a network Σ(G, {Σi}) is dissipa-
tive with respect to (24) for some β > 0. Then, Σ(G, {Σi})
has a bounded L2(∞)-gain with bound β, i.e.

∥e∥L2(∞) ≤ β∥d∥L2(∞),

for any trajectory satisfying x(0) = 0. Furthermore, if
Σ(G, {Σi}) has a bounded L2(∞)-gain it will have bounded
accumulating effects.

Proof: By Definition II.1, there exists a function V (x)
such that V̇ (x) ≤ s(d, e), which can be integrated over the
time interval [0, T ] to obtain

V (x(T ))− V (x(0)) ≤
∫ T

0

β2d̃2(t)− ẽ2(t)dt, (25)

where we have defined d̃(t) = maxi |di(t)|2 and ẽ(t) =
maxi |ei(t)|2. Noting that V (x(0)) = 0 and V (x(T )) ≥ 0,
rearranging terms in (25) gives∫ T

0

ẽ2(t)dt ≤ β2

∫ T

0

d̃2(t)dt, (26)

after which taking the limit for T → ∞ gives the desired
results. Further, by setting dmax(t) = d̃(t) and recalling the
relationship in (5) we see that

∥yi∥L2
≤ β∥dmax∥L2

,

such that Σ(G, {Σi}) has bounded accumulating effects,
according to Definition II.4.

We will now define matrices Wij in order to rewrite the
supply rate in (24) in a quadratic form. Let wi be a unit vector
with a one on index i = argmaxi |di(t)|22, and similarly wj

with j = argmaxi |yi(t)|22 = argmaxi |ei(t)|22. 1 We assume
that during an interval [tk, tk+1) the indices i and j do not
change. Now, let Wij be a matrix defined as

Wij =

[
β2diag(wi) 0

0 −diag(wj)

]
. (27)

Then, for t ∈ [tk, tk+1) (24) can be rewritten as

s(d(t), e(t)) =

[
d(t)
e(t)

]T
Wij

[
d(t)
e(t)

]
.

With the supply rate in (24) on this form, we can give the
following results regarding dissipativity with respect to (24).

Lemma IV.4. Let Σ(G, {Σi}) be a network, for some
graph G, with each Σi of the form of (1) and fulfilling
Assumption 1. Then, if

A(G) I

I 0
0 I

I 0


T [

X
−Wij

]
A(G) I

I 0
0 I

I 0

 ≤ 0 (28)

is satisfied for all possible combinations of i and j,
Σ(G, {Σi}) will have a L2(∞)-gain with bound β.

1If there are more than one maximum, i and j may be chosen arbitrarily
between those indices where the maximum is attained.

Proof: From [16] we know that if the inequality (28)
is satisfied with pi > 0 for some fixed i and j the network
Σ(G, {Σi}) is dissipative with respect to the supply rate[

d
e

]T
Wij

[
d
e

]
,

with storage function V (x) as in (8). If Wij are selected as
by (27), we can rewrite the dissipation inequality as

V (x(T )) ≤ V (x0)

+
∑
k

∫ tk+1

tk

[
d(t)
e(t)

]T
Wij

[
d(t)
e(t)

]
dt

= V (x0) +

∫ T

0

s(d(t), e(t))dt, (29)

for T = tk+1 and s(d(t), e(t)) equal to (24).
With Lemma IV.4 in place we can state the following theo-

rem, in which we show how to ensure bounded accumulating
effects. This will also conclude our main results.

Theorem IV.5. Let the family of networks Σ({G}, {Σi})
be defined over the class of graphs {G} with maximum in-
degree less than or equal to N . Further, let each Σi be of
the form of (1) and fulfill Assumption 1. Then, if

γ2N 2 < 1

there exists a β > 0 for which Σ({G}, {Σi}) has a L2(∞)-
gain with bound β. Further, this β can be found by solving
(14) for β2 > αγ2 and α > 0. Thus, the choice pi = α
will, for any network in the family Σ({G}, {Σi}), result
in a storage function as in (8). Such that, any network in
Σ({G}, {Σi}) is dissipative with respect to (24) and has
bounded accumulating effects.

Proof: Consider Σ to be a network drawn from the
family Σ({G}, {Σi}). From Thm. III.2 and Cor. III.3 we
know that if γ2N 2 < 1 there exists an α > 0, such that with
pi = α, Σ will fulfill (28) for any disturbance input j and
performance output i. Furthermore, with β2 > αγ2 fulfilling
(14) and Lemma IV.4 this ensures that the network Σ is
dissipative with respect to the supply rate in (24). Lastly, by
Proposition IV.3 a network dissipative with respect to (24)
has a bounded L2(∞)-gain.

Consequently, as we have only made use of the class {G}
having in-degree less than or equal to N combined with each
Σi being dissipative with respect to (3), we can conclude that
the family Σ({G}, {Σi}) has a bounded L2(∞)-gain less
than or equal to β. Thereby, Σ({G}, {Σi}) will also have
bounded accumulating effects.

V. EXAMPLE

A. Contour of feasible α and β

To visualise the feasible set of α and β for a 2-regular
network of fictive systems with L2-gain less than or equal
to γ = 1/2.1 the plot in Fig. 2 was created. The feasible
set was found via a grid search over solutions for (14) and
the lowest β was found as β = 10.02, the α for this β was
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Fig. 2. Contour of α and β fulfilling ensuring a scalable L2(∞)-gain. In
this example γ = 1/2.1 and N = 2.

Fig. 3. Outputs of the systems. The disturbance is the same for each system
and can be seen in black.

found to be α = 20.98. It should be noted that the lower
contour of the set is not linear, but rather satisfies β >

√
αγ.

B. Simulation results

To simulate a network with bounded L2(∞)-gain we
created a network connected in a circular graph with dis-
turbances acting on each subsystem, defined as below

Σi :


ẋi1 = x2

i2

ẋi2 = −0.1x3
i1
xi2 − 2.1xi2 + yi−1 + yi+1 + di,

yi = xi2 .

Thus, all systems fulfill γ2N 2 < 1 and according to
Thm. IV.5 there exists a L2(∞)-gain. From the simulations,
seen in Fig. 3-4, we can see that in the sequence of increasing
N there is no system with a monolithic increase in energy.

VI. CONCLUSION

In this paper we have presented locally verifiable condi-
tions on the L2-gain of systems which, if fulfilled, guarantee
a bounded scalable L2-gain of the network. Further, by
using the mixed L2(∞)-norm we have shown that the same
conditions may be used to ensure that an upper bound
of the energy of the local systems exists. As the same
condition on the local systems results in a scalable L2-gain
as well as limiting the energy of local systems we assume
that the conditions are conservative. Future research would
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Fig. 4. Norm of the system outputs and the disturbance. As expected,
∥d(t)∥L2

grows with N , whereas ∥y(t)∥L2(∞) does not.

entail describing and reducing the conservativeness of these
results.

REFERENCES

[1] F. D. Bianchi, J. L. Domı́nguez-Garcı́a, and O. Gomis-Bellmunt. Con-
trol of multi-terminal hvdc networks towards wind power integration:
A review. Renewable and Sustainable Energy Reviews, 2015.

[2] S. Schuler, U. Münz, and F. Allgöwer. Decentralized state feedback
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