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Abstract— In this paper, we present a framework for com-
bined path and motion trajectory planning for the purpose
of coordinating fully automated vehicles in confined sites. The
path planning component utilizes a Monte-Carlo tree search
approach for computing the vehicle paths and the motion
trajectory component utilizes a two-stage optimization-based
algorithm that optimizes the state and input trajectories for
all vehicles while avoiding inter-vehicle conflicts. The motion
trajectories are tracked by a low-level controller and both
the path and motion trajectories are recomputed based on
the feedback signals. The performance of the framework is
validated through numerical simulations and results show both
improved energy efficiency and productivity.

I. INTRODUCTION

Ports, logistic centers, mines, etc., are examples of con-
fined sites where a known amount of vehicles and/or ma-
chines are required to accomplish a site-specific goal, for
example, extracting the desired amount of ore per day
or unloading ship containers as fast and energy efficient
as possible. To reduce CO2 emissions, the site operators
request to replace internal combustion engine-driven vehicles
with electric-driven vehicles. However, to retain productivity,
more electric vehicles would be required, due to limitations
such as range and towing capacity. Furthermore, to reduce
cost and the fact that more vehicles are sharing the same
space, it is beneficial to automate the operation of the
vehicles with the goal of improving site productivity. Due
to the enclosed nature of confined sites and the possibility
of having no unsupervised actors on the site, the deployment
of fully automated vehicles is eased in comparison to public
roads [1].

The challenge within confined spaces revolves around
efficiently utilizing machinery, vehicles, and road networks to
meet productivity requirements. This entails making various
crucial decisions, including task allocation and scheduling
(determining which vehicle performs which task and the
order of task execution), route planning (assigning spe-
cific routes to each vehicle), and motion planning (how
the vehicles should move). Attempting to solve all tasks
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Fig. 1. Architecture of the fleet motion planning system. This paper focuses
on the components in red.

in one problem would lead to an intractable large-scale
computational problem. A common approach to deal with
such problems is to decompose them into multiple tractable
sub-problems. Figure 1 shows a proposed decomposition
and system architecture. The Mission planner component is
responsible for assigning each available vehicle a transport
mission. A transport mission provides a high-level descrip-
tion of the objectives to be achieved and the required control
points to be visited, such as loading/unloading zones and for
electric vehicles also charging stations. For example, Vehicle
1 might be tasked with loading a specific amount of materials
from point A, while Vehicle 2 should recharge at charging
station C. The Path planner then determines the optimal
routes or paths for the vehicles, ensuring that they adhere to
the specified control points and road network. Using these
routes, the Coordination algorithm calculates the state and
input trajectories for all vehicles, with the goal of avoiding
conflicts between vehicles and ensuring efficient use of the
control points. The motion trajectories of all vehicles are
combined into a motion plan, which is communicated to each
vehicle in the Vehicle fleet. The vehicles try to follow the plan
and provide feedback on its execution.

This paper tackles the combined closed-loop path planning
and vehicle coordination problem. Typically literature covers
one of these problems. For example, [2] proposed a two-
level algorithm for optimal pathfinding, where the high-level
component performs a tree search based on conflicts between
individual agents which impose constraints on the motion
of the agents. The low-level component then performs a
search to find the optimal path satisfying the constraints.
The authors in [3] utilize reinforcement learning for cooper-
ative path planning for multi-vehicle systems. However, this
method makes the path planning decisions without relying
on a model, which can be detrimental to decisions such as
charging. In this paper, we utilize a Monte-Carlo Tree Search
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(MCTS) algorithm for centrally computing the vehicle paths
such that the mission plan is respected while aiming at
minimizing standstill time and avoiding undesirable vehicle
behavior such as a critical state of charge. This means
that the algorithm is tasked with computing the paths and
making decisions about which vehicle utilizes which load-
ing/unloading/charging zone in the confined site.

The coordination problem on the other hand has received
significant attention in public road scenarios, such as the
coordination of vehicles in intersections [4], [5]. Common
approaches leverage Model Predictive Control (MPC) [6],
[7], consensus-based methods [8], [9], direct optimal control
[10], [11], and trajectory optimization methods [12], [13], for
solving the problem. The confined site coordination problem
has been addressed as part of our previous work in [14], [15],
[16], [17]. In this paper, we leverage the method developed in
[16] which uses a two-stage optimization-based approach for
computing the motion profiles of the vehicles such that inter-
vehicle conflicts are avoided while minimizing the mission
time which is related to productivity and minimizing the
consumed energy. The optimization-based control algorithm
is adapted to the choice of a path-planning algorithm and
integrated into the closed-loop system.

In this paper, we proposed a framework that combines
path planning and vehicle coordination. The motion plan
from the coordination component is followed by a low-
level controller that provides actuation commands for all
vehicles and represents the motion of the vehicle fleet.
The components receive feedback from the fleet and are
capable of re-planning accordingly. The authors in [18]
propose an approach for the combined path and coordination
planning at intersections and the authors in [19] focus
on the routing problem with consideration of interactions
between the AVs and their movements. The path planning
and coordination algorithms in this paper differ from [18]
and [19], as [18] relies on a specific choice of vehicle model
for the coordination of the AVs, while [19] estimated travel
speeds inversely proportional to the number of AVs on the
road. Furthermore, the algorithms proposed in this paper are
adapted to the confined site case, which also explores other
problems such as loading and unloading the vehicles and
the charging process, which to the best of our knowledge
has not been addressed in the literature to date. The main
benefit of the approaches presented in this paper is that they
are not bounded by a specific choice of vehicle model and
are easily extendable to different confined sites. Moreover,
the approaches are capable of optimizing for the goal of
improving energy efficiency and productivity of the vehicles,
which are two vital factors in the deployment of automated
vehicles in confined sites.

The framework is evaluated with respect to an approach
with a simpler planning strategy in a simulation scenario of
a representable confined site. The simulation demonstrates
how the proposed approach can improve performance when
dealing with a typical mission within confined sites.

II. PROBLEM STATEMENT

In this paper, we consider a fully confined area, meaning
that non-controlled traffic participants such as pedestrians,
manually operated vehicles, bicycles, etc., are absent. Fur-
thermore, we assume that the site mission plan, which
determines the site production goal and how many vehicles
are required, has been computed and communicated to the
Path planner component. Consequently, we have Na fully
automated vehicles operating in the site on paths that include
cross-intersections, path merges, path splits, narrow roads,
and dwelling zones to achieve the total production goal. In
addition, we assume that overtakes are prohibited and that
no vehicle reverses.

A. Path Planning

The path planner refines the abstract site mission into
explicit paths for every vehicle while observing the current
state of the traffic environment and the vehicle fleet. From
the observation, the path planner gives commands, primarily
the next destinations, to the vehicles. In essence, the path
planner is required to primarily respect the control points
(positions that a vehicle must pass) that are communicated
by the mission planner components. In order to improve
performance, the path planner is further tasked to minimize
waiting time and ensure that the vehicles do not form a
deadlock. A deadlock can occur when a vehicle requires
access to an area that is already occupied by another vehicle.

The above-stated requirements and constraints can be
summarized as

Problem 1: (Optimal path planning problem) Obtain the
vehicle paths that respect the given mission goal by solving

min
t

Na∑
i=1

Jvehicle,i(t) + ϵ (e/s) (1a)

s.t. deadlock constraints, ∀i (1b)
state of charge, ∀i, (1c)

where Jvehicle,i is the individual cost of each vehicle. The
term ϵ is a parameter related to the constraint violation
that becomes a large positive number if any of the stated
constraints are violated, otherwise, it is equal to zero. The
constraints ensure the algorithm does not produce vehicle
paths that are undesired and/or unsafe.

B. Coordination of Automated Vehicles

Utilizing the computed vehicle paths we can form the
vehicle coordination problem into an Optimal Control Prob-
lem with the task of obtaining the optimal state and input
trajectories such that conflicts between the vehicles are
avoided. The problem can be stated as:

Problem 2: (Optimal coordination problem) Obtain the
optimal state and control trajectories X ∗ =

{
x∗
1, ..., x

∗
Na

}
,

U∗ =
{
u∗
1, ..., u

∗
Na

}
, given the initial state X0 =

3748



{x1,0, ..., xNa,0}, by solving the optimization problem

min
xi,ui,OMUTEX

Na∑
i=1

Jca,i (xi, ui) (2a)

s.t initial states xi,0 = x̂i,0,∀i (2b)
system dynamics ∀i (2c)
state and input constraints ∀i (2d)
safety constraints ∀i (2e)

where Jca,i(xi, ui) is the cost function for the coordination
algorithm, OMUTEX, groups the sets of occupancy orders
in which the vehicles enter the MUTually EXclusive zones
(MUTEX) zones and will be further explained in this section.

The problem is formulated in the spatial domain as it is
beneficial to optimize the trajectories of the vehicles over
their full paths. The rationale for using spatial dynamics is
that the time it takes for the vehicle to traverse a path is not
known a-priori. Thus, it is inappropriate to plan the vehicle’s
motion with time as the independent variable.

1) System dynamics and state and input constraints: The
system dynamics for vehicle i ∈ 1, ..., Na in the spatial
domain can be formed using that dpi

dt = vi(t) and dt =
dpi/vi(t) and stated as

dti
dpi

=
1

vi(pi)
(3)

dxi

dpi
=

1

vi(pi)
fi(pi, xi(pi), ui(pi)) (4)

0 ≤ h(pi, xi, ui). (5)

where pi ∈ R is the vehicle’s position, xi ∈ Rn is the vehicle
state, ui ∈ Rm is the control input, with i ∈ {1, . . . , Na}.
The state is subdivided as xi = (vi, zi), with the speed along
the path vi ∈ R and zi ∈ Rn−1 collecting possible other
states.Note that what the remaining state variables (zi) are,
depends on what model is used for the system dynamics.
We assume that the functions fi and hi, which describe the
vehicle system’s dynamics and constraints, are smooth.

2) Safety constraints: Conflicts between vehicles can oc-
cur in MUTEX zones, such as intersections, narrow roads,
merge-splits, and dwelling zones as each zone has limited
simultaneous vehicle occupancy capacity. Failure to properly
account for the capacity of these zones leads to a loss of
optimality or conflict.

Intersections and narrow roads: In the intersection and
narrow road MUTEX zones, meeting oncoming vehicles is
not possible. From a safety perspective, this translates to
“reserving” the zone for one or more vehicles coming from
the same direction. The vehicles coming from the opposite
direction are not allowed to occupy the zone until it is
vacated.

Merge-splits: In the merge-split case, two vehicles coming
from different roads, but moving in the same direction of
travel, join together on a common patch of road. After some
distance, the roads separate. For efficiency, it is desirable to
have several vehicles in the zone at the same time, instead

of blocking the whole zone. This requires imposing rear-
end collision constraints once the vehicles have entered the
merge-split zone.

Dwelling zones: The dwelling zones consist of a road
patch that leads to either a charger or a loading or unloading
station and a road patch after the station until a merge point
with the remainder of the road. When a vehicle visits a
dwelling zone, it is required to make a full stop at the station
and after some time, the vehicle leaves the station with
either an increased state of charge or increased/decreased
vehicle mass. The mission planner assigns the amount of
time that each vehicle is supposed to be at the station which
corresponds to a certain increase in state of charge or mass
change. However, in reality, depending on external factors the
vehicles would not always charge or load/unload the exact
specified amount. For example, the mission planner could
assign that the vehicle should charge for two minutes and
thus increase its state of charge by ten percent. However,
due to factors such as grid power, the vehicle might not
charge exactly ten percent for that time interval. We capture
this stochasticity in the dwelling zones in the Vehicle fleet
component by adding bounded random noise to the charging,
loading, and unloading amount.

Each MUTEX zone corresponds to a specific occupancy
order that is required to be computed. The order for all the
zones is grouped in the set OMUTEX. The mathematical details
of these constraints are given in [16].

III. METHODS
This section describes the methods that are used for

solving the path planning problem, Problem 1, and the
vehicle coordination problem, Problem 2.

A. Path Planning Algorithm

The path planner models a site as a directed graph, G =
(V, E), where V and E are the vertex (nodes) and edge sets,
respectively. A node can have itself as a destination if the
node is a dwelling zone, i.e., a charging, loading/unloading
zone. An example of a directed graph that is investigated
in this paper is depicted in Figure 2. A primary property of
the nodes in the path planner is that the time distance in
between is constant, where the time between two nodes is
in the order of seconds. Relatively long time steps between
the nodes heavily speed up the path planning analysis, as
the time horizon is typically required to be in the order of
minutes. This is a necessary trade-off between improved per-
formance due to a longer horizon and tractable computation
corresponding to the time steps between the nodes.

Using the site graph, the path planner is required for each
vehicle to compute a path such that a desired performance
objective is achieved considering the capabilities of the
vehicles. In this paper, the performance objective aims at
minimizing the standstill time meaning that we can define
the individual vehicle cost Jvehicle,i as

Jvehicle,i(t) =

{
0 (is absorbed)

1
th,i

(cstilltstill,i + cchtch,i) (else)
(6)
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Fig. 2. Directed graph example including two dwelling zones.

where tstill,i, tch,i, and th,i denote the standstill time, the
charging time for vehicle i, and the search horizon in
seconds, respectively. The terms cstill and cch are related to the
cost of standing still and the charging cost and are valued in
euros per second. Note that the cost per vehicle is zero in the
case when the vehicle is in a dwelling zone, i.e., the vehicle
is absorbed in a node. The intuition behind this choice is
that the routing problem would not penalize necessary stops
at these zones.

The path planner requires that the vehicle states in the
controlled fleet are the present and the destination nodes, the
state of charge, and the current absorption time. The present
and destination nodes inform the planner of the current and
the intended positions, the state of charge represents the
present battery energy level and the current absorption time is
correlated to the dwelling zones. Specifically, the absorption
time only increases when the vehicle is in one of the dwelling
zones and is necessary for the planner to determine when the
vehicle would need to leave the dwelling zone. Consequently,
the absorption time is equal to zero outside the dwelling
zones.

The evolution of these states, can, for example, be mod-
eled according to a longitudinal vehicle dynamics model.
However, the approach is not specifically restricted by the
choice of model.

1) Monte-Carlo tree search: An approach that is capable
of handling path planning problems of the above-defined
form is the Monte-Carlo Tree Search (MCTS) [20], [21].
MCTS is a widely adopted decision-making algorithm in the
field of artificial intelligence and game theory and originates
from the field of computer board games, such as chess
and Go. MCTS is a heuristic search algorithm designed to
explore large decision spaces efficiently and is characterized
by its ability to balance exploration and exploitation, making
it suitable for path-planning problems.

The MCTS consists of four major steps, namely, selection,
expansion, simulation, and backpropagation. Based on a
selection strategy, the algorithm starting from the root node
iteratively selects child nodes. In the next step, the selected

node is expanded to create one or more child nodes repre-
senting possible actions or states. Following the expansion,
a simulation is performed from one of the newly expanded
nodes, often following a randomized policy or heuristics.
Finally, the results of the simulation are backpropagated
through the tree to update node statistics, such as visit counts
and estimated values. In this paper, we utilize an adapted
tree-step expansion and a selfish default policy. The adapted
tree-step expansion method only expands with more than one
child node to the selected leaf node if a vehicle is located on
a split node or if a vehicle is entering a conflict zone where a
deadlock could occur. The restricted expansion significantly
reduces the tree branching. A selfish default policy is a policy
that minimizes the waiting time for the individual vehicle
with respect to its constraints, i.e., it is the locally optimal
solution for the vehicle without considering the effect on
other vehicles.

Adapting MCTS to path planning for autonomous vehicles
involves representing the problem as a search tree, where a
tree node represents a set of vehicle states and every edge in
the tree reflects a cost, as defined in eq. (1a). As the MCTS
steps are repeated the search tree grows. Once a termination
condition is met, for example after a certain amount of
time, the path that minimizes the cost can be extracted and
forwarded to the Coordination algorithm component. The
tree size, and hence the computational cost, increases with
the branching of the tree.

B. Decomposition Strategy for the Coordination of AVs

For the coordination of AVs in confined sites we employ
the framework presented in [16].

The safety constraints in Problem 2 correspond to a
specific MUTEX occupancy order that is required to be com-
puted. Thus, the optimal vehicle coordination problem can
be stated as a Mixed Integer Nonlinear Program (MINLP),
where the crossing order corresponds to the “integer part”
and the state and control trajectories corresponds to the “NLP
part”. However, finding a solution to MINLP problems is
known to be difficult, especially when the constraints or the
objective function are non-convex [22]. Therefore, a common
procedure is to apply an approach where the integer part
of the solution is obtained first using a heuristic, and the
continuous part of the solution thereafter is obtained by
solving the NLP that results from fixing the integers to the
values found with the heuristic.

The approach presented in [16] approximates the integer
part of the solution of the coordination problem by solving
a Mixed Integer Quadratic Problem (MIQP) resulting in
an optimal crossing order for the approximated problem.
The MIQP is formed as a quadratic approximation of the
coordination problem, similarly to how QP sub-problems are
formed in SQP methods [23]. Following the MIQP, we solve
a “fixed-order coordination” NLP, for obtaining the state and
control trajectories. Fig. 3 depicts the control structure of the
heuristic. The proposed MIQP has an exponential complexity
in the decision variables (i.e., amount of MUTEX zones) and
the NLP has a cubic complexity in the number of stages, i.e.,
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Fig. 3. Optimal coordination of vehicles heuristic structure

Fig. 4. Mock-up confined site.

the sum of vehicles and discretization points per vehicle. The
specifics of the decomposition strategy are given in [16].

IV. SIMULATIONS

In this section, we present a simulation example where the
combined path planning and vehicle coordination is demon-
strated and evaluated with respect to a baseline solution.

A. Simulation Setup

For the simulation scenario, we consider a mock-up
confined site with a layout shown in Figure 4. The site
has three loading stations, one unloading station, and one
station where the vehicles can unload while simultaneously
charging. Furthermore, there is one narrow road on the
site and multiple merge-split zones. The loading process
requires 30 seconds for loading one tonne of goods, while
the unloading process requires 10 seconds for unloading one
tonne of goods. The vehicles are charged for 120 seconds,
while they unload one tonne of goods and get a 10 %
increase in their state of charge. We investigate the case
when there are in total five vehicles operating on the site
and the mission for the site is to continuously transfer load
between the loading and unloading stations. The vehicles
that are used in this simulation represent the Volvo TARA
machine (TA15). To represent the fully electric machine, we
use a model derived using Newton’s second law of motion
which can be stated as:

ṗi(t) = vi(t), (7a)

v̇i(t) =
1

mi
(FM,i(t)− Fd,i(vi, t)− Frg,i(pi, t)) (7b)

˙SOCi(t) =
−Pb,i (vi, FM,i)

Eb,max,i
, (7c)

where pi, vi, mi and Eb,max,i are vehicle i’s position, veloc-
ity, mass, and battery energy, respectively. The forces are the

TABLE I
SIMULATION PARAMETERS IN SI UNITS.

Parameter Na m ρ A ca
Value 5 20000 1.18 10 1
Parameter cr P b P b Rint,i Ncells,i
Value 0.01 240 (kW) 240 (kW) 0.001 200
Parameter Kt,i Eb,max rw Mf v
Value 5 13.6 (kWh) 0.536 49.16 0.1
Parameter v alon alon alat Tax

Value 6.94 -2 2 2 0.5
Parameter ∆v ∆v ∆p ∆p ∆SOC
Value -0.1 0.1 -0.5 0.5 -0.01
Parameter ∆SOC ∆m ∆m th
value 0.01 -100 100 30

motor force FM,i, the force generated by the friction brakes
Fb,i, the aerodynamic drag Fd,i, and the rolling resistance
and gravitational force Frg,i. The aerodynamic drag and the
rolling resistance and gravitational force can be described as

Fd,i(vi, t) =
1

2
ρAica,ivi(t)

2 (8a)

Frg,i(pi, t) = mig(sin(θ(pi(t))) + cr,icos(θ(pi(t)))),
(8b)

where ρ is the air density, Ai is the frontal area of the vehicle,
ca,i is the aerodynamic drag coefficient, cr,i is the rolling
resistance coefficient and θ is the road gradient.

We model the battery as an ideal voltage source with
internal resistance. We thus define battery power as the
difference between the product of velocity and motor force
and the internal battery losses due to the resistance as

Pb,i (vi, FM,i) = FM,i(t)vi(t)− Ploss(t) (9)

P b,i ≤ Pb,i ≤ P b,i, (10)

with P b,i, P b,i representing the power limits, and

Ploss(t) =
Rint,iNcells,i

K2
t,i

T 2
M,i(t), (11)

where Rint,i is the internal resistance of the battery, Ncells,i
is the number of cells of the battery, Kt,i represents the
electric machine’s torque constant and TM,i is the motor
torque defined as

TM,i(t) =
rw,iFM,i(t)

Mf,i
, (12)

where rw,i is the wheel radius and Mf,i is the transmission’s
final gear ratio.

The Coordination Algorithm is defined in space and thus
this model is converted into the spatial domain for its use
in the component, as done in [16]. Along with the defined
model, the coordination algorithm bounds the velocity and
acceleration of the vehicles as

vi ≤ vi(pi) ≤ vi (13)
ai,lon ≤ ai(pi) ≤ ai,lon, (14)(

ai(pi)

ai,lon

)2

+

(
κi(pi)vi(pi)

2

ai,lat

)2

≤ 1, (15)

3751



where the vehicle position, pi is now the independent
variable, ai represents the vehicle’s acceleration and the
constraint in eq. (15) is resulting from the curvature of the
road.

The objective function for this component consists of
minimizing the power of the battery, the squares of the
acceleration, and the end time. The first term is related
to energy-efficient driving while the second term is related
to driving comfort and component wear. The last term
“motivates” the vehicles to arrive at their end destination
as fast as possible, i.e., it affects to mission end time. In
this paper, the objective weight parameters related to the
minimization of the power of the battery and the acceleration
are equal to one and the objective weight parameter related
to the minimization of the end time is equal to ten.

The low-level controller in the Vehicle Fleet is set up as
a Model Predictive Control (MPC), [24], in the time domain
with a prediction and control horizon of five seconds that
tracks the position and velocity reference computed in the
Coordination Algorithm and uses the model as defined in
(7). The control signal from the MPC is sent to a Vehicle
Fleet model that deviates from (7) by having an additional
lag element, denoted as Tax,i, in the acceleration term to
represent the dynamic powertrain time constant. In addition,
the position and velocity states of the vehicle fleet are subject
to a random noise from a bounded interval, i.e., ∆pi ∈
[∆p

i
,∆pi] and, ∆vi ∈ [∆vi,∆vi]. Furthermore, in the

dwelling zones, there is additional noise that influences how
much the vehicle is charged or the loading/unloading amount,
which can be denoted as ∆SOCi ∈ [∆SOCi,∆SOCi], and
∆mi ∈ [∆mi,∆mi]. In this way, we attempt to bridge the
simulation closer to reality, where the position and velocity
noise is related to sensor and measurement inaccuracies,
while the noise related to the charging process is related to
non-linear charging, and the noise in the loading/unloading
amount is related to the inaccuracies while loading and
unloading. The additive noise and model uncertainty param-
eters along with the rest of the simulation parameters are
summarized in Table I.

The exchange of information between the components is
done through a local server from which the components are
able to post and get information. This communication is set
up via a REST protocol [25]. The Path planner posts the
paths of all vehicles to the Coordination algorithm and gets
from the Vehicle Fleet the current states and if the vehicle is
in an absorption node the dwelling time. The Coordination
Algorithm also gets the current states from the Vehicle Fleet.
The path plan is recomputed every second, while the motion
plan is recomputed either every eight seconds or when there
is a significant difference in the tracking of the plan or
if the recomputed path plan goes to a different dwelling
zone. Note that by recomputing the path plan, the “dynamic”
cases such as when a new vehicle enters the site operations
or when a path is blocked can be effectively managed
by the Path planning component and consequently by the
Coordination algorithm. The Path planner is implemented in
Java and the Vehicle Fleet and the Coordination algorithm

V1

V2
V4

V3
V5

Fig. 5. One instance of the vehicle paths.

are implemented in MATLAB and utilize Gurobi for solving
the MIQP and IPOPT [26] for solving the NLPs.

B. Baseline

We compare the proposed approach with a rule-based
motion planning strategy that has the same path planner
component as stated in this paper. This allows us to focus
on the benefit of the MIQP-based coordination algorithm.

In practical applications, rule-based strategies are fre-
quently employed because they can be formulated without
the need for optimization. While these approaches are rel-
atively straightforward to implement, they encounter chal-
lenges related to optimality, scalability, and adaptability.
Essentially, to enhance performance, the rules need to be
adjusted for each unique use case, such as different confined
site scenarios.

In this paper, the rule-based approach is structured in a
way that involves progressing all vehicles through time, and
specific rules for MUTEX zone occupancy are developed.
These rules grant access to the zone to the first vehicle
entering an area surrounding the zone. The area around the
zone includes an additional 20-meter margin from the entry
point to allow later-arriving vehicles to stop if necessary.
To control each vehicle’s behavior over time, we employ
an MPC scheme. The MPC is structured such that the cost
function is the same as the one used in the Coordination
algorithm and uses the same dynamics and state and input
constraints, but formulated in the time domain. For the
MUTEX zone occupancy constraints, the MPC is also subject
to position constraints that are imposed at specific time steps.
The MPC is created with a ten-second prediction and control
horizon. The MPC prediction horizon and the additional
margin added to the zone are sufficient for a vehicle to make
a full stop from vi.

C. Results

To demonstrate the benefit of the MIQP-based heuristic
we investigate the closed-loop motion profiles for a specific
scenario when multiple vehicles are approaching the narrow
road zone. The specific scenario is depicted in Figure 5.
Furthermore, we investigate the performance benefit in terms
of total consumed energy and mission end time for when
the vehicles are required to complete twenty laps of the
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(a) Zone occupancy using the MIQP-based heuristic
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(b) Zone occupancy using the rule-based approach

Fig. 6. Zone occupancy of the narrow road with the different heuristics. The red zones depict the conflict zone occupancy for the vehicles. A collision
occurs if the red zones intersect.

site (corresponding to each vehicle transporting 20 tons of
goods).

Figure 6 depicts the occupancy of the narrow road zone
for the interacting vehicles using the MIQP-based heuristic
and the rule-based baseline approach. The motion profiles
are recorded from the Vehicle fleet and thus include the
measurement noise and model mismatch. To account for the
noise the safety constraints related to the zone occupancy
are tightened by extending the zone which is a common
approach, [11]. In this paper, we extend the zones by an
additional five meters. The red rectangles are obtained from
the entry and exit times of the vehicles in the zone, and these
rectangles must not intersect with each other, otherwise, the
vehicles have entered the zone while another vehicle has
still not left the zone. Both approaches manage to avoid
occupancy conflicts, however, as it can be noticed in Figure 7
there is a significant difference in how that is accomplished.
The MIQP-based heuristic leverages the full available path
plan to make adequate long-term changes. The effect of the
full path planning is particularly visible for the fifth vehicle,
where the MIQP-based heuristic avoids stopping and queuing
the vehicle. Note that Vehicle 2 and Vehicle 4 are on the
same road, i.e., a merge-split zone, and are subject to rear-
end collision constraints that are also not violated. We omit
depicting the speed profile for Vehicle 3 as that vehicle is not
passing through the narrow road for the investigated scenario.

Utilizing this capability and overall determining the oc-
cupancy order in the zones based on an approximation
of the complete problem, the MIQP-based heuristic also
demonstrates improved energy consumption. Specifically, for
the investigated site mission when every vehicle is required
to transport 20 tonnes of material, the MIQP-based heuristic
results in a 5.41 % improvement of the total energy consump-
tion with respect to the rule-based approach. The mission end
time for the MIQP-based heuristic is 6885 seconds, whereas,
for the rule-based heuristic, all vehicles have completed their
missions after 6911 seconds. Note that different sites will
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Fig. 7. Speed profiles for the narrow road crossing resulting from the
MIQP-based heuristic (solid lines) and the rule-based approach (dashed
lines). The colors in the figure correspond to the vehicles indicated in Figure
5. In order to satisfy the safety constraints the rule-based approach has to
queue the fifth vehicle.

lead to different values of these metrics.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a framework for combined
path and motion planning for automated vehicles in confined
sites. The approaches do not depend on a specific choice of
motion model, constraints, and objective, which allows for
the framework to be easily adapted to different sites with
different objectives and operating vehicles. The path planning
component is tasked to reduce stand still times which are
related to productivity, while to motion planning component
is tasked with obtaining energy-efficient motion profiles for
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the vehicles that can be followed by the vehicle fleet. The
performance of the framework was analyzed through closed-
loop simulations and compared with respect to an alternative
strategy, where a benefit in terms of energy efficiency is
demonstrated.

One improvement to the path planning approach is to
include a long-term memory which can be obtained using
a learning-based method to assist in making charging deci-
sions. Experimental validations of the approach also present
a natural extension of the presented framework alongside
refining the modeling of the battery within the path planning
component.
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