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Abstract— Future aquaculture operations demand a higher
degree of autonomy as new aquaculture locations are estab-
lished in more exposed environments. In this study, we evaluate
the feasibility of automating traditional fish farm operations
through the utilization of a vessel-mounted robotic arm. We
focus on a novel approach for automating the removal of
deceased fish. Our work encompasses the technical design of a
hose attachment and hook mechanism, simulations replicating
realistic vessel and net pen motions, real-time prediction of fish
cage collar positions using autoregressive models, and motion
compensation control for the robotic arm. Scaled experiments
indicate the feasibility of the proposed concept from a control
perspective. This research contributes to the broader research
challenge in robotics of managing interactions between a robotic
arm mounted on a mobile platform and an environment that
is also in motion.

I. INTRODUCTION

Exposed aquaculture aims to cultivate fish in open water
environments, primarily driven by the limited availability of
suited sheltered locations and the higher costs associated
with land-based farming. By venturing into open waters,
exposed aquaculture endeavours to unlock untapped areas for
fish cultivation. This approach seeks to capitalise on various
expected advantages, such as enhanced water circulation,
reduced risk of disease, and improved fish welfare. Moreover,
exposed aquaculture holds the potential for sustainable ex-
pansion of the aquaculture industry, addressing the increasing
global demand for seafood while simultaneously preserving
natural ecosystems.

However, there are several considerations associated with
transitioning to more exposed locations. When evaluating
traditional fish farms comprised of multiple net pens, lim-
ited accessibility for conducting daily tasks emerges as a
significant challenge. This issue stems from longer travel
distances and harsher environmental conditions, resulting in
shorter time windows for safe operation. Consequently, a
fundamental overhaul of operations with a greater reliance
on autonomy is necessary.

Collection of deceased fish is one of several daily oper-
ations pertaining to fish handling, which are currently done
semi-manually [1]. Regulations state that deceased fish must
be removed daily to limit the spread of potential disease
[2]. Typically, the vessel is moored to the net pen, workers
are brought on board the pen and a crane is used to handle
the hose of the evacuation system used to transfer the
deceased fish. Contact-free operations have been proposed

as a potential solution to automate such work tasks. Contact-
free operations entail carrying out tasks without the need to
moor the vessel, instead relying on station-keeping next to
the cage. This approach opens the possibility of redesigning
certain operations to be partially automated without exposing
personnel on the cage by using a crane or, as explored in this
paper, a robotic arm.

Related work: Contact-free operations with a robotic arm
was only recently proposed, see our previous work [3],
resulting in limited related research for such operations.
While dead fish removal has previously been considered
using intervention remotely operated vehicles (ROVs) in
rearing tanks [4] and net cages [5], the concept of automated
dead-fish removal proposed here is novel. There are similar-
ities to work on offshore crane control [6], vessel-to-vessel
transfer [7], motion compensation of gangways [8], and
robotic arms on vessels [9], yet they differ significantly from
our proposed concept. In this work, motion planning and
heave prediction are developed for a contact-free dead fish
removal use case, tested experimentally on realistic vessel
motions for typical operating conditions on exposed net pens.
The simulations of vessel motions used here are previously
described in [3], yet here, we also simulate the fish cage
motions. Similar vessel simulations were also used in [7],
although not as representative of environmental conditions
at exposed aquaculture sites.

Contributions: The main contributions of the article can
be summarized as follows:

• Introduction of a novel concept for automating dead-
fish removal operations, enabling the operations to be
conducted in a contact-free manner.

• Development of a technical design involving a hose
attachment and hook mechanism, facilitating the exper-
imental demonstration of the proposed concept.

• Simulations of realistic absolute motions of the vessel
and net pen.

• Results from scaled experiments to assess the capability
of a robotic arm mounted on a vessel to grasp objects
in motion.

• Evaluation of the feasibility of the proposed concept,
considering its practical applicability and effectiveness.

Outline: The article is organized as follows: Section II
describes the simulations of vessel and pen collar; Section III
describes the methods used to enable the pick-up and place-
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down of a hose with a robotic arm in motion (i.e., motion
prediction and trajectory generation). The experimental setup
and necessary calibration procedures are introduced in Sec-
tion IV, while the results are given in Section V. Finally,
discussions and conclusions can be found in Section VI and
Section VII, respectively.

II. VESSEL SIMULATIONS

A. Vessel model

For the presented simulations the service vessel AQS
Loke1 was used, as shown in Fig. 1 and presented in earlier
work [3]. The vessel was chosen as an example of a modern
aquaculture service vessel of sufficient size to be suitable for
the simulated operation. Vessel information was provided by
the vessel owner and was modelled without further modifi-
cations or optimizations of its operational performance.

Fig. 1. Aquaculture service vessel AQS Loke.

The vessel motion results are based on Response Ampli-
tude Operators (RAOs) for the centre of gravity, calculated
by the 2D linear strip theory vessel response code VERES
[10], [11], along with the 3D potential vessel motion analysis
software WAMIT2. The purpose of combining these tools
for calculating the vessel response model is to utilize the
frequency-dependent added mass and damping, as well as
wave drift forces, from WAMIT, while VERES allows esti-
mation of the viscous roll damping contributions.

As described in [3], the vessel motion calculations encom-
pass the following parameters:

• One loading condition (see Table I).
• Zero speed.
• Wave heading of 150◦ (relating to port-side stern quar-

tering waves).
• Wave periods calculated from 3 s to 60 s.
• Linear 6 DOF motion RAOs[3].

TABLE I
ADAPTED LOADING CONDITION.

Draught [m] GMT [m] VCG [m] R44 [m] R55 [m]

2.20 8.27 2.90 5.36 6.09

1https://aqs.no/vessels/aqs-loke/
2https://www.wamit.com/

For the definition of the vessel load condition as presented
in Table I, the midship draught, the transverse metacentric
height GMT , the vertical centre of gravity VCG, radii of
gyration for roll R44 and pitch R55 for the vessel are
specified.

B. Environmental model

The vessel motions were simulated in a colinear environ-
ment using the following environmental input data:

• Long-crested JONSWAP wave spectrum with signifi-
cant wave height HS, peak wave period TP and peak
enhancement factor γ, as given in Table II.

• Constant current speed of 0.5m/s.
• 100m water depth.

TABLE II
PARAMETERS OF THE WAVE SPECTRA FOR THE TWO SIMULATIONS.

HS [m] TP [s] γ

1 1.0 6.0 3.3
2 1.5 8.0 3.3

The wave height and period combinations of the chosen
sea states represent a typical undisturbed wind sea, gener-
ally encountered in partly shielded coastal sea areas. The
simulated relatively steep waves are most demanding for
small vessels, as used in this study, with short roll and pitch
resonance periods.

C. Simulations

The subsequent time-domain simulations were performed
using SIMO [12] within the workbench and modeling en-
vironment of the SIMA platform [13]. The thrusters were
modeled using SIMO 4.1 formulations for a conventional
propulsion system and tunnel thrusters. For the tunnel
thrusters, thrust losses due to thruster-hull and thruster-
thruster interactions were included.

The robot base was positioned at the aft deck on the
starboard side of the vessel, as seen in Fig. 2. During the
simulation, the vessel was located next to the net pen. The
pen motions were calculated separately using the fishery and
aquaculture simulator FhSim [14]. The same wave realization
was utilized in SIMO to calculate the vessel motions. The
dynamic positioning (DP) controller used a point on the net
pen collar as a reference position. The resulting footprint
motions of the robot arm base and the point on the net pen
collar are shown in Fig. 3.

III. PREDICTION AND TRAJECTORY PLANNING

A. Problem statement and related transformations

We consider the task of manipulating a moving object
from a separately moving reference frame, in this case to
perform pick and place of an object attached to a floating
sea structure using a vessel-mounted robot manipulator arm.
The task is illustrated conceptually in Fig. 2. We introduce
the inertial frame I, robot base frame B, robot end effector
frame E and target object frame O.
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Fig. 2. Illustration of the proposed concept for dead fish removal. A vessel-
mounted robot manipulator arm compensates for the relative motion of the
net pen collar, and retrieves the hose onboard to perform the daily dead fish
removal operation.
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Fig. 3. Zero-centered footprints for vessel under DP (blue) and point
of interest on fish cage collar (red) in North-East frame, for simulations
with HS = 1.0m and HS = 1.5m. The vessel heading (black arrow) is
north, while the wave and current direction (blue arrow) is 30° north east,
corresponding to stern quartering seas.

B. Trajectory planning

To complete a pick and place task while the robot base and
target object are in motion, trajectory blending is used. This
provides smooth motion between different frames, under
the assumption that the relative motion between the frames
is smooth. Specifically, linear interpolation is used for the
desired end effector translation p⋆:

p⋆(t) = p0(t) + β(s(t))(pf (t)− p0(t)), (1)

where p0 and pf are the initial and target translations,
respectively. A monotonically increasing blending function
β(s) : [0, 1] 7→ [0, 1] is used to transition from the initial
frame to the target frame. SLERP [15] interpolation is used
for the desired end effector rotation quaternion q⋆:

q⋆(t) = q0(t)⊗
(
qf (t)⊗ q0(t)

−1
)β(s(t))

, (2)

where q0 and qf are the initial and target rotation quaternions,
respectively, and ⊗ denotes the quaternion product. The
quintic polynomial β(s) with zero initial and final derivatives

is used to blend between the frames:

β(s(t)) = 6s(t)5 − 15s(t)4 + 10s(t)3. (3)

s(t) is scaled to interpolate between 0 to 1 over the duration
of the current step, i.e., s(t) = (t − t0)/(tf − t0) for t ∈
[t0, tf ]. We add additional substeps between the coordinate
frames to achieve safe and controlled approach and retreat
trajectories for the pick and place task.

C. Wave crest prediction using autoregressive models

Our method also incorporates a model for predicting
the height of the next wave crest. Preliminary experiments
highlighted a frequent issue, where due to latency within the
control loop, the robot arm would often trail behind the hose
and follow it down into the wave trough. To counteract this
issue, a model was developed to forecast the wave’s heave
motion. The prediction of the next wave crest is used to
guide the robot’s actions with the intent to grasp the hose at
the apex. This approach reduces the motion required by the
end effector and also allows execution of the grasp when the
speed of the hose is relatively low.

The vertical motion of the hose is modeled using an
autoregressive (AR) model. AR models are capable of cap-
turing the sinusoidal patterns anticipated in the heave motion
and have previously been applied to similar problems [9].
Our model assumes that the vertical displacement z of the
hose at any given time t is given by a linear combination
of the previous K lagged displacements ∆t, governed by
learnable weights θ:

ẑ(t) =

K∑
i=1

θiz(t− i∆t). (4)

The model is continually refitted using L2-regularized least
square regression to a moving window of the last H−

seconds of observed z values. To extrapolate into the future,
we feed the predictions back into the model. This process is
repeated until a forecast of the impending H+ seconds of ẑ
is obtained. Lastly, a B-spline is fitted to the forecast, and
its derivatives and their roots are examined to determine the
time and height of the next crest.

The raw predictions of z are post-processed to obtain a
more stable control target. Let t be the time we make a
prediction, ẑ+ be the predicted height of the impending crest
at time t+ ∈ (t, t+H+], and z− be the height of the most
recently observed crest at time t− ∈ [t − H−, t]. We then
interpolate between the values of z− and ẑ+ based on where
t falls in the interval [t−, t+]. In the first third, we use the
value of z−; in the last third, we use ẑ+; and in the middle
third, we linearly interpolate between the two. This prevents
sharp discontinuities immediately after a crest is passed.

IV. EXPERIMENTAL SETUP

A scaled experiment was developed to test the feasibility
of the proposed automated dead fish removal task, see the
experimental setup in Fig. 4. The previously introduced
coordinate frames for the inertial, robot base, end effector
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Fig. 4. Experimental setup with UR10e robot mounted on hexapod platform
and Franka robot holding the hose. In the lower right corner the full scale
analogue of the experimental setup is shown. The robot base frame B, robot
end effector frame E , target object frame O and inertial frame I are also
shown, and relevant transformations between these.

and target object frames are shown. In addition, the corre-
sponding homogeneous transformations that map vectors in
the base, end effector and object frames to the inertial frame,
T I
B , T I

E and T I
O respectively, are shown.

A Symétrie3 Sirocco motion hexapod with a maximum
payload of 2 tons was used to generate the scaled simulated
vessel motions. A Universal Robots4 UR10e robotic arm with
a payload capacity of 10 kg and reach of 1.3m was mounted
on the platform and used to perform the pick and place task.
The simulated motion of the point on the net pen collar was
recreated using a 7 DOF Franka Emika5 Panda robot with
a payload capacity of 3 kg and reach of 0.855m. The collar
motion trajectory was tracked using the franka-interface and
frankapy [16] control stack. Both the Franka robot arm and
the UR10e robot arm received commands at a frequency
of 100Hz. The recreated motions using the hexapod and
Franka robot arm were synchronized in time using the UDP-
broadcasted start signal from the hexapod platform.

Froude similarity was used to preserve acceleration when
scaling down the simulated vessel motions. The simulated
motions for the vessel (hexapod) and point of interest on the
fish collar (Franka robot) were scaled by a factor of λ = 4.84
in R3 and

√
λ = 2.2 in time, as in [3].

A mechanical attachment to a hose was designed and 3D-
printed, which was connected to a ”hand rail” end effector
on the Franka robot with a hook, see Fig. 5 and Fig. 6. An
OnRobot6 MG10 magnetic gripper was used with the UR10e
robot to grasp the hose and detect a successful grasp.

The considered task was broken down into a series of

3https://symetrie.fr/
4https://universal-robots.com/
5https://franka.de
6https://onrobot.com/

Fig. 5. Render of hose attachment with two connection points for the
magnetic gripper and hook attached to the fish cage.

Fig. 6. End effector for Franka robot with hook for connecting the hose.
Optical markers are added to the structure for motion tracking. The two
bolts on the hose are used as connection points for the magnetic gripper on
the UR10e robot manipulator arm.

steps: approaching the collar point from above, grasping the
hose attached to the handrail on the collar, moving the hose
back onboard the vessel to perform the dead fish removal,
and finally moving the hose back to the net pen and releasing
it on the holder. A simplified version of this operation was
demonstrated, without a hose attached to the hook.

To track the relevant frames in the environment a Qual-
isys7 motion capture (MOCAP) system was used. Specif-
ically, five Arqus 12 cameras were used, running at a
frequency of 100Hz. Reflective markers were added to the
robot base and Franka robot end effector, to track T I

B and
T I
O in real-time. The desired grasp pose is then computed at

every frame as

TB
E⋆ = T I

B
−1

T I
O⋆TO

E⋆ . (5)

Here T I
O⋆ is the predicted pose of the hose at the next wave

crest, generated by the heave predictor. TO
E⋆ is the static

transform between the hose attachment and the UR10e tool
flange, which is calibrated a priori. The trajectory blending
approach in Section III-B is used to interpolate back and
forth between the initial pose of the robot manipulator and
the desired transformations for grasping or releasing the
hose.

7https://qualisys.com/
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The hyperparameters for the crest prediction model are
selected empirically from validation against a separate vessel
motion dataset. We use an AR model with K = 10
autoregressive terms spaced ∆t = 0.1 s apart in time. The
model is fitted to the last H− = 20 s of observed data and
makes predictions at 20Hz with a horizon of H+ = 4s.
The sequence of predictions is smoothed using a second-
order Butterworth filter with a critical frequency of 5Hz and
restricted so that the maximum speed of the control target
cannot exceed 5 cm/s. As a final safeguard, we also clamp
the control target so that it can never go below the currently
observed heave.

V. RESULTS

For both datasets, generated with HS = 1.0m and HS =
1.5m waves respectively, a series of consecutive pick-and-
place tests were completed. Statistics for the two series of
tests are given in Table III. While for the HS = 1.0m tests
a success rate of 95.46% is reported, there is a significant
decrease to 69.57% for HS = 1.5m. The failure modes,
their possibly remedies and the ramifications for full scale
field tests are discussed in detail in Section VI.

TABLE III
STATISTICS FOR THE TWO SERIES OF CONSECUTIVE TESTS.

HS [m] Total tests Failures Success rate [%]

1.0 22 1 95.46
1.5 23 7 69.57

Fig. 7 shows still images from the first pick and place
sequence with HS = 1.5m, and provides an overview of
the different steps of the task. In the second image the robot
hovers directly above the desired grasp position on the ”hand
rail”, which is estimated by the wave crest predictor, and
waits for a safe window to grasp the hook. Similarly, once
the robot reaches the desired position directly above the drop
pose (in second to last image), the robot awaits a safe window
to release the hook, i.e., at the next wave crest. Additional
video material from the tests are made available8.

For the same test, the control target derived from predicted
crest height is shown with the actual wave height over the
test duration in Fig. 8. We observe that the predictive model
usually maintains a reasonable height. However, it dives
down into the abnormally wide trough centered around t =
17 s. The abrupt drop can be explained by the small bump
at the bottom of the trough. Because of its slight negative
curvature, the bump is considered a crest by the model.
Additionally, due to the flat region and the model’s short
context size (10 autoregressive terms - 1 second), the sharp
rising edge at the far side of the trough is not anticipated
sufficiently early. At this point, the clamping safeguard is
activated and the control target follows the wave until the
hose is dropped off around t = 20 s.

8https://youtu.be/USwijqDTdLM?si=
K8jwl1RKfNPHOHIz

The desired and actual flange positions for the UR robot
manipulator over the test duration are shown in Fig. 9. In
Fig. 10 the corresponding tracking error is shown, given by
the norm of the translational error and the arc length of the
rotational error. The main component causing the tracking
errors is the time delay in the internal robot controller. Thus
the actual flange pose lags the desired pose, and the largest
errors in Fig. 10 are seen for the steps in the pick-and-place
task where the highest flange velocities are commanded, i.e.,
the states where the robot is moving towards or away from
the target.

VI. DISCUSSION

The results show how, for favorable weather conditions, it
is feasible to perform pick and place operations to automate
simple work tasks on the net pen using a robot arm on the
vessel. Dead fish removal is considered here as an exemplary
pick and place work task which may be automated, thus
avoiding the need to transfer workers onboard the net cage.
This may be extended to other operations, such as ROV
launch and recovery, handling of the feeding tube, etc.

However, as seen in Table III, for larger wave height there
is a significant increase in the number of grasp failures. All
failures were due to a single failure mode: the magnetic grip-
per briefly connecting, detecting a magnetic contact, and then
disconnecting due to a misaligned connection. This is caused
by multiple factors. Firstly, the significant relative motion
between the robot and the object means that time delay has
a large influence on the accuracy of the grasping task, which
must be precise to connect with the magnetic gripper. This
is identified as a general challenge for manipulation tasks
in moving frames where motions are not easily modeled or
known a priori. The time delay is partially caused by latency
in the motion capture system and additional computation
delays. However, the main factor is the actuation delay in
the UR10e robot. The robot’s internal controller smooths
the trajectory with a minimum time window of 30ms. This
makes it more probable for the gripper to establish contacts
which are not perfectly centered, and thus lose contact with
the object.

Moreover, the developed magnetic connection mechanism
was found to be particularly sensitive to motions in the xy-
plane of the target object (see Fig. 4). It was seen that fast
relative motions in xy-direction during grasping would often
result in a misaligned connection and was considered the
main contributor to the resulting failed grasps. In Fig. 11 the
mean velocity in the xy-plane of the inertial frame around the
moment of contact is shown separately for the successes and
failures . While the sample size is small and there is a small
roll offset between the inertial frame and the hose frame, the
plot shows a tendency for higher xy velocity during contact
to result in failed grasps. Other factors may influence these
results, yet this indicates a deficiency in the design of the
current magnetic connection mechanism to handle sideways
motions. Because of this sensitivity it was deemed important
for further development to develop a mechanical solution that
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Fig. 7. Image sequence from pick and place task. Motion hexapod platform and Franka robot are moving according to scaled simulated vessel and fish
cage motions, with HS = 1.5m waves and scale factor λ = 4.84.
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Fig. 8. Height of fish cage motion zc (blue) and control target derived
from predicted crest height ẑc (orange). The two black markers indicate
the two contact points when the hose is picked up and placed back down,
respectively.

passively guides the connection plate into a safe contact lock,
instead of relying on accurate trajectory tracking alone.

It is seen that it is essential to develop technology for
estimating the sea state and especially the motion of the
targets on the net cage in real time to lower risk. While heave
motion is the most critical to predict, we also observed a
potential benefit of predicting the full 3D motion. As shown
in Figure 11, failures were more likely to occur if the grasp
coincided with high xy-plane velocity. Predictions of motion
in the xy-plane would improve the tracking, which would
reduce the relative shear motion between the gripper and the
object. Alternatively, predictions could be used to initiate a
grasp when the speed is expected to be low. The grasping
strategy could also be improved by limiting pick and place to
the rising edge of the current wave or by ignoring crests with
height lower than a long-running statistic, e.g., estimated
significant wave height.

The AR model presented here only employed 10 au-
toregressive terms, corresponding to a one-second window
of wave motion. Consequently, it mainly made predictions
based on information about the local curvature of the heave
motion. When regular crests arrived with a period of around
2-3 seconds, this worked well. However, the short memory
proved a potential issue during periods of less regular wave
motion and longer spacing between the relevant crests. Ad-
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Fig. 9. UR10e robot flange position in inertial frame, in blue. Shown with
the desired grasp pose for the point on the cage, in dashed. The two black
markers denote the two contact points during the test, when the hook is
picked up and placed back down, respectively.

ditionally, low-frequency motions, such as those induced by
the natural frequency of the cage structure, are very difficult
to infer from just one second of data. This limitation can
be overcome by widening the context window and including
more autoregressive terms, but this will in turn introduce
extra model parameters and demand more data, making
online training impractical. Future work may explore higher-
capacity models that have been pre-trained on a larger set of
a priori collected data.

Lastly, multiple challenges must be addressed before the
proposed system can be tested in field tests. As discussed
in more detail in [3], structural and mechanical limitations
of a full-scale robotic arm must be considered, as well
as the requirements of the sensor system, e.g., based on
motion reference units (MRUs) and fiducial marker tracking.
Furthermore, handling of the hose itself is not considered. A
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Fig. 10. Translational tracking error ∆r and rotational tracking error
∆θ, between desired and measured end effector pose. Dark blue lines
represent the 50-sample (0.5 s) moving average, the raw data is seen in
the background.
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Fig. 11. Mean and standard deviation of norm of velocity of hook object in
xy-plane of the inertial frame, shown independently for the successful pick
and place trails (blue) and the failures (red). The data is centered around
the time of contact tcontact.

mechanical solution, e.g., with a bracket or wheel must be
developed to guide the hose safely as it is handled by the arm.
Vessel design is another factor, as the service vessel used in
this case study is designed for mooring, not station-keeping
next to the net pen. Further work should therefore investigate
optimal vessel design for the proposed automated operation,
in terms of minimizing relative motions and possibly also
the effect of the thrusters on the fish.

VII. CONCLUSION

In this paper, we have investigated the feasibility of
performing aquaculture manipulation tasks with a vessel-
mounted robot manipulator, thus avoiding mooring to the
pen. A scaled experiment of an automated dead fish removal
operation was presented, where a robot arm mounted on a
hexapod platform grasps a hose on the net pen, emulated
by a second robot arm. The hexapod platform and other
robot arm moved according to simulated motions of an
aquaculture service vessel station-keeping next to a net pen.
Two series of tests were presented, where the robot on
the vessel compensates for the relative motion guided by
a heave prediction model, with success rates of 95.46% for
HS = 1.0m and 69.57% for HS = 1.5m. All failures could
be traced to a single failure mode: poor robustness of the
magnetic grasping. The results support the idea that doing
manipulation tasks from the vessel-side with a robotic arm is
feasible from a control perspective. At the same time, we see
that as the sea state increases, the inaccuracies in calibration,

motion estimation, and delay make high-precision grasping
even more challenging. The findings emphasize the impor-
tance of a robust mechanical design of the attachment point
of the dead fish removal system. Furthermore, limitations
of a full-scale arm and the design of a sensor system were
not treated in the study. These are, therefore, important next
steps for realizing automated aquaculture manipulation tasks
in full scale.
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