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Abstract—We consider the problem of finding the best least
squares realization of an autonomous single-output linear time-
invariant dynamical system, given a sequence of non-model-
compliant output data. We characterize the solution set of the
identification problem and derive novel properties of the optimal
models. We show how the global minima of the problem follow
from the eigentuples of a multiparameter eigenvalue problem
and illustrate this result using several numerical ‘toy examples’
in which we compute the globally optimal solution(s) explicitly.

Index Terms—Discrete-time systems; Modeling; Linear sys-
tems; Parameter estimation; Model/Controller reduction;

I. INTRODUCTION

A data sequence that can be generated by a specific
mathematical model will be called model-compliant. Said in
other words, the data belong to the behavior of that model,
which is the set of all model-compliant data sequences [1].
For a user-specified model, however, given data are almost
never model-compliant: they do not belong to the behavior
of the model. There could be many reasons for this: e.g.,
observational errors, measurement inaccuracies, missing data,
outliers, unobserved disturbances, or model mismatch.

One could try to expand the model class, but there is
an almost infinite set of mathematical models to choose
from. So, unless one has a priori information about the
relevant models, this is not a very practical option. Indeed,
mathematical models typically only allow a ‘thin’ set of
data trajectories, indicating that the model forbids more than
it allows [2], [3]. That is why in engineering applications,
models are a matter of inspiration rather than deduction [1].
This naturally leads to the alternative consideration of trying
to modify the given data as little as possible, so that the
modified data are model-compliant with the pre-specified
model, where the modification of the given data will be called
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Fig. 1. Schematic overview of the autonomous LTI single-output model.
The given output data y ∈ RN are modified using the so-called misfits
ỹ ∈ RN , so that the modified data ŷ ∈ RN are model-compliant. The
coefficients a ∈ Rn+1 of the nth degree polynomial a(z) in the forward-
shift z are the unknown model parameters.

the misfit between the model and the given data1. In order
to quantify its size, the choice for a least squares criterion
seems to be a natural one.

We will confine our attention to single-output, linear
time-invariant (LTI), causal, lumped parameter dynamical
models in discrete time, with a pre-specified model order n
(corresponding to the number of states). For this model class,
model-compliant data ŷ = [ŷ0, . . . , ŷN−1]

T ∈ RN , assuming
N > n, must satisfy a difference equation of the form:

a0ŷk+n + a1ŷk+n−1 + · · ·+ anŷk = a(z)yk = 0,

for all k = 0, . . . , N−n−1, where a(z) = a0z
n + a1z

n−1 +
...+an is a degree n polynomial in the forward-shift operator
z (i.e., zyk = yk+1). This implies that,

an . . . . . . a1 a0 0 . . . 0
0 an . . . . . . a1 a0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 0 . . . an . . . . . . a1 a0

 ŷ = T a
N−nŷ = 0, (1)

indicating that the behavior of the autonomous model to
which the data ŷ belong can be characterized as the n-
dimensional kernel of the banded-Toeplitz matrix T a

N−n ∈

1In the statistical literature, often a priori probabilistic assumptions on the
inaccuracies that perturb the model-compliant data are made, for instance
that they follow a multivariate Gaussian distribution [4]. Via maximum-
likelihood, this then leads to so-called errors-in-variables models [5], but
as these assumptions are unverifiable in practice, we prefer the purely
deterministic approach of this paper.
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R(N−n)×N . The Toeplitz-vector product in the left-hand
side of (1) can be rewritten as ŶN−na, with ŶN−n ∈
R(N−n)×(n+1) the Hankel matrix constructed from the el-
ements of ŷ and a = [an, an−1, . . . , a0]

T ∈ Rn+1. Hence,
one can easily retrieve the model parameters a associated
with the model-compliant data via the kernel of ŶN−n.

Given data y = [y0, . . . , yN−1]
T ∈ RN , however, are

generally not model-compliant, such that YN−n is of full
column rank. In the least squares realization problem, the
given output data y are modified using the so-called misfits
ỹ = [ỹ0, . . . , ỹN−1]

T ∈ RN , the 2-norm of which is to be
minimized, such that the modified data ŷ = y−ỹ are model-
compliant,

min
a,ŷ

1

2
||ỹ||22 =

1

2
||y − ŷ||22 ,

s.t. T a
N−nŷ = 0, eTa = 1,

(2)

where e ∈ Rn+1 is some given, fixed, non-zero vector. The
second constraint is necessary2 to avoid the trivial solution
(a = 0). This modeling setup3 is depicted in Fig. 1.

Even though the model class is linear, (2) is a nonlinear,
nonconvex optimization problem, implying that (many) local
optima can exist. Consequently, applying iterative optimiza-
tion algorithms (see, e.g., [4], [6], [8] and references therein)
to the realization problem brings along several complications:
e.g., the performance depends on the chosen initial point,
reproducibility of the obtained results is not always guaran-
teed and certification of global optimality if a ‘sufficiently
good’ solution is found is generally impossible. By contrast,
we deem the realization problem ‘solved’ if and only if the
globally optimal model(s) have been identified by means of a
deterministic procedure. In accordance with this reasoning, it
was shown in [3] that (2) is essentially a rectangular multipa-
rameter eigenvalue problem (MEP) [9]–[11], the eigentuples
of which lead to the globally optimal model parameters.

Contributions: In Theorem 2, we formalize a finite-
dimensional version of what is called ‘Walsh’s Theorem’
in [12, Theorem 3.14]. This characterization of the optimal
misfits, as the result of filtering an unknown signal twice by
the same finite impulse response (FIR) filter, was initially
observed in [3]. Then, inspired by [3] and encouraged by
our previous work [13], where we exploited [12, Theorem
3.14] to derive a novel methodology for globally optimal
SISO H2-norm model reduction, we use the obtained char-
acterization of the misfits to derive a novel, alternative MEP
that is smaller than the one obtained in [3]. Although we
provide numerical ‘toy examples’ to validate our findings,
our contribution is of theoretical nature.

2We will see that the Lagrange multiplier associated with the non-triviality
constraint is zero, such that the results in this paper remain the same for
other choices of normalization, e.g., the quadratic constraint aTa = 1.

3Besides its use in system identification, the formulation in (2) also arises
in the context of shape-from-moment problems and/or the estimation of
the direction of arrival (DOA) in array processing when inexact data is
considered, see, e.g., [3], [6], [7] and references therein.

II. THE LEAST SQUARES REALIZATION PROBLEM

In this section, we use the first-order necessary conditions
for optimality (FONC) of the realization problem (2) to char-
acterize the optimal misfits. The obtained results constitute
the foundations of the methodology proposed in Section III.

Consider the Lagrangian of (2),

L(a, ŷ, l, λ) = 1

2
||y − ŷ||22 + lTT a

N−nŷ + λ(eTa− 1),

where the variables l ∈ RN−n and λ ∈ R are Lagrange
multipliers. The FONC of (2) can now be obtained as,

∂L/∂ŷ = ŷ − y + (T a
N−n)

Tl = 0,

∂L/∂a = (ŶN−n)
Tl− eλ = 0,

∂L/∂l = T a
N−nŷ = ŶN−na = 0,

∂L/∂λ = 1− eTa = 0.

(3)

Pre-multiplying the second equation with aT, and using the
third and fourth equation indicates that λ = 0, such that the
FONC in (3) are equivalent to,

ỹ = y − ŷ = (T a
N−n)

Tl, (4)

lTŶN−n = 0, (5)
T a
N−nŷ = 0, (6)

eTa = 1.

These relations, the real-valued solutions of which are the
stationary points of (2), lead to the following results.

If the model parameters a were to be known (cf. the pro-
jection onto the behavior problem), the equality T a

N−ny =
T a
N−nỹ would constitute an underdetermined linear system

in the variables ỹ. Since the matrix T a
N−n is of full row rank,

the unique minimal 2-norm solution of this system could be
computed via the pseudo-inverse of T a

N−n. In this regard,
the 2-norm of the optimal misfit ỹ can be interpreted as a
measure of the ‘distance’ between the model determined by
the parameters a, and the given data y.

Theorem 1 (Projection onto the behavior). For given output
data y ∈ RN and a model order n, with N > n, then the
minimal norm misfit ỹ = y − ŷ ∈ RN in the least squares
realization problem (2) can be expressed as the orthogonal
projection of y onto row(T a

N−n),

ỹ = (T a
N−n)

T(Da
N−n)

−1T a
N−ny, (7)

where Da
N−n = T a

N−n(T
a
N−n)

T ∈ R(N−n)×(N−n). Con-
sequently, the optimal model-compliant data corresponds to,

ŷ =
(
I − (T a

N−n)
T(Da

N−n)
−1T a

N−n

)
y. (8)

Proof. Use (6) and (4), respectively, to show that,

T a
N−ny = T a

N−nỹ = T a
N−n(T

a
N−n)

Tl = Da
N−nl, (9)

where Da
N−n is a positive definite matrix, such that,

l = (Da
N−n)

−1T a
N−ny. (10)

Combine this with (4) and ŷ = y − ỹ to obtain (7) and (8).
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Observe that Theorem 1 decomposes the ambient data
space RN into two orthogonal subspaces4: the optimal misfit
ỹ resides in the (N−n)-dimensional row space of T a

N−n,
whereas the model-compliant data sequence ŷ lies in the n-
dimensional kernel of T a

N−n. Obviously, this implies that
the optimal model-compliant data and the optimal misfits are
orthogonal with respect to each other, i.e.,

ŷTỹ = 0.

Additionally, we can deduce from Theorem 1 that the model
parameters a suffice to describe a particular stationary point
of the realization problem (2). Indeed, for given data y, the
model parameters a implicitly define a unique ŷ and ỹ via
the projections in (7) and (8), respectively.

Theorem 2. Given a sequence of output data y ∈ RN and a
model order n, with5 N > 2n, and a stationary point a of (2)
for which the model-compliant data ŷ has rank(ŶN−n) = n
(i.e., ŷ has nth order LTI dynamics), then the misfit ỹ =
y− ŷ ∈ RN in the least squares realization problem (2) can
be expressed as,

ỹ = (T a
N−n)

T(T a
N−2n)

Tg,

for some g ∈ RN−2n, where T a
N−2n ∈ R(N−2n)×(N−n)

is a banded Toeplitz matrix defined similarly to the matrix
T a
N−n ∈ R(N−n)×N from (1).

Proof. Consider a stationary point a for which the matrix
ŶN−n has rank n. Then, we know from the properties of
a model-compliant data Hankel matrix that the (N−2n)-
dimensional left null space of ŶN−n is spanned by the rows
of the banded Toeplitz matrix T a

N−2n ∈ R(N−2n)×(N−n),

T a
N−2nŶN−n = 0.

Combined with (5), from which we know that lT lies in this
left null space of ŶN−n, it is clear that there must exist a
vector g ∈ RN−2n such that,

l = (T a
N−2n)

Tg. (11)

Substituting the above into (4) gives the required result.

The result in Theorem 2, which was initially encountered
in [3, Section 9.3], can be seen to be a finite-dimensional

4The orthogonal subspaces defined by the Toeplitz matrix Ta
N−n are

reminiscent of the operator-theoretic result of Beurling–Lax–Halmos [14]–
[16], which describes how each function in the Hardy space H2 induces
an orthogonal decomposition of that space [12, Chapter 3]. Indeed, for
a square summable sequence y ∈ ℓ2 (take N → ∞), the row space
of the doubly-infinite matrix Ta

N−n ∈ R∞×∞ constitutes an infinite-
dimensional forward shift-invariant subspace. Each row is a forward-shift
of the vector a∞ = [an, . . . , a0, 0, 0, . . . ]T ∈ R∞, corresponding to
the Taylor coefficients of the functions {zn+ka(z−1)}k=0,1,2,.... The
n-dimensional orthogonal complementary subspace, the so-called model
space, is backward shift-invariant and corresponds to the infinite-length
observability matrix Γ ∈ R∞×n of the autonomous model defined by a(z).

5In the case n < N ≤ 2n, (5) can only be satisfied if l = 0, which
implies by (4) that ỹ = 0. Indeed, for these values of N , one can always
find model parameters a such that y lies in the behavior of the model:
Ta
N−ny = 0. For ŶN−n to have a non-trivial left null space, we need

N > 2n. Remark that N > n suffices for Theorem 1 since it does not rely
on the optimality of the parameters a, i.e., it does not use the relation in (5).

version of [12, Theorem 3.14], since it expresses the misfit,
i.e., the approximation error, in the stationary points of the
least squares realization problem as the result of filtering an
unknown signal g twice by the anti-causal FIR filter a(z−1),
where a(z) determines the LTI dynamics of the optimal
model. The original result [12, Theorem 3.14], named after
Walsh in [12] to recognize its origins in rational approx-
imation theory [17], states that for the first-order optimal
solutions of the SISO H2-norm model reduction problem6,
the approximation error function can always be expressed in
the form [znâ(z−1)]2g(z) for some g(z) ∈ H2, where the
nth order monic polynomial â(z) is the denominator of the
transfer function of the optimal, lower-order approximant.
Note that contrary to the result in the context of model
reduction, Theorem 2, where N is assumed to be finite, does
not assume any form of stability of the estimated model.

Technical note: For stationary points a for which
rank(ŶN−n) < n (indicating that the model-compliant data
obtained with (8) has LTI dynamics of an order strictly
lower than n), the vector l from (10) is not guaranteed
to lie exclusively in row(T a

N−2n), since the latter is only
a subspace of the left null space of ŶN−n. As such, the
relation in (11), and by consequence Theorem 2, is not
guaranteed7 to hold for these points. Extreme examples
of this phenomenon are the global maximizers a of the
realization problem: ŷ = 0, for which y ∈ row(T a

N−n).
In these cases, rank(ŶN−n) = 0, such that the optimality
constraint (5) does not put any restriction on the vector l.
We will consider these lower-order solutions in more detail
in future work.

III. A MULTIPARAMETER EIGENVALUE PROBLEM

In this section, we leverage Theorems 1-2 to compose a
multiparameter eigenvalue problem, the eigentuples of which
contain the global minimizer(s) of the realization problem.

Remark: Throughout the rest of this paper, we will
assume that the vector e ∈ Rn+1 in the non-triviality
constraint in (2) is equal to [0, . . . , 0, 1]T, implying that
a0 = 1. This choice simplifies the derivations, as substi-
tuting a0 in the matrices T a

N−n and T a
N−2n suffices to

ensure that the constraint is met, and is favorable from a
computational point of view, as it eliminates one decision
variable from the optimization problem (2). Nevertheless,
the proposed methodology remains similar when other non-
triviality constraints are used, e.g., aTa = 1.

6For y ∈ ℓ2 (N → ∞), the realization problem (2) becomes equivalent
to the SISO H2-norm model reduction problem [18]: take y the impulse
response of a stable mth order SISO model, then, for given n < m,
the realization problem finds the least squares optimal ŷ for which the
Hankel matrix Ŷ ∈ R∞×(n+1) is rank-deficient, which, by Kronecker’s
Theorem [19], implies that ŷ is the impulse response of an nth order SISO
model.

7Remark that even though these lower-order stationary points will gen-
erally not satisfy Theorem 2, nothing forbids them to ‘coincidentally’
do so. One can easily construct such an example: given a set of model
parameters a, construct the data y as y = (Ta

N−n)T(Ta
N−2n)Tf for

some f ∈ R2N−n. Then, for this sequence y, a is a global maximizer
of (2), which nevertheless satisfies Theorem 2.
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Start from (9) and use (11) to derive the following cubic n-
parameter eigenvalue problem in the parameters a1, . . . , an,[

T a
N−ny T a

N−n(T
a
N−n)

T(T a
N−2n)

T
]︸ ︷︷ ︸

M(a)

[
−1
g

]
= 0. (12)

The matrix to the left, M(a) =
∑

{α} Mαa
α, is a matrix

polynomial in the monomials aα = aα1
1 . . . aαn

n , with coeffi-
cient matrices Mα ∈ R(N−n)×(N−2n+1), the size of which
indicates that (12) is overdetermined when n > 1. The values
a ∈ Cn for which M(a) becomes rank-deficient, such that
there exists a vector g ∈ CN−2n for which these equations
are satisfied, are the affine eigentuples of this MEP [9].

Theorem 3. For a given model order n and non-model-
compliant data y ∈ RN , such that rank(YN−n) = n + 1,
with N > 2n, it holds that,

1) each stationary point a ∈ Rn of (2), for which
rank(ŶN−n) = n (i.e., ŷ has nth order LTI dynamics),
is an affine eigentuple of the MEP (12), and,

2) each real-valued affine eigentuple a of the MEP consti-
tutes a stationary point of the realization problem (2),

such that the set of real-valued affine eigentuples a of the
cubic n-parameter eigenvalue problem (12) is guaranteed to
contain the global minimizer(s) of the realization problem (2).

Proof. By the combination of Theorems 1-2, we know that
for a stationary point a of (2) for which rank(ŶN−n) = n,
there must exist a vector g ∈ RN−2n such that,

(T a
N−n)

T(Da
N−n)

−1T a
N−ny = (T a

N−n)
T(T a

N−2n)
Tg. (13)

Since (T a
N−n)

T has full column rank, (13) is equivalent to,

⇐⇒ (Da
N−n)

−1T a
N−ny − (T a

N−2n)
Tg = 0,

⇐⇒ T a
N−ny − T a

N−n(T
a
N−n)

T(T a
N−2n)

Tg = 0, (14)

for which ‘separating’ out the variables in g into the
eigenvector gives (12). This proves the first claim. Sec-
ondly, because there is a one-to-one8 correspondence be-
tween the affine eigentuples a of the MEP (12) and the
affine common roots (a, g) of (14), it suffices to show
that each tuple (a, g) which satisfies (14), also satisfies
the FONC (4)-(6). Substitution of l=(Da

N−n)
−1T a

N−ny,
and ỹ=(T a

N−n)
T(T a

N−2n)
Tg in (13)-(14) gives the required

result. Lastly, one can show that the global minimizer(s)
must have rank(ŶN−n) = n. Combined with the above-
mentioned claims, this concludes the proof.

In the case n=1, the MEP in (12) becomes a polynomial
eigenvalue problem (PEP) in the variable a1 with square
coefficient matrices. As such, all its eigenvalues could be
obtained from its secular equation, det (M(a)) = 0, which
leads to a univariate polynomial of degree 3N − 5 in the
variable a1. For n = 2, the matrix polynomial M(a1, a2) has

8The relation Ta
N−n(Ta

N−n)T(Ta
N−2n)Tg = 0 can only be satisfied

for g = 0, since Ta
N−n(Ta

N−n)T(Ta
N−2n)T is of full column rank. The

first element of the eigenvector corresponding to an eigentuple a of the MEP
in (12) is therefore guaranteed to be non-zero, such that the eigenvector can
always be appropriately normalized to retrieve g.

dimensions (N−2)×(N−3), such that its eigentuples can be
computed as the common roots of the system of polynomial
equations obtained by equating all (N−3)× (N−3) minors9

of that matrix to zero. This reformulation, which eliminates
the N−2n ‘linear’ variables g at the cost of higher polyno-
mial degrees, is possible for arbitrary problem sizes (N,n).
However, the number of minors grows quickly with (N,n).

Numerical algorithms to find all the (real-valued) affine10

eigentuples of the MEP (12) are available, e.g., the (block)
Macaulay framework described in [10] or the methods
from [20]. Alternatively, the system of multivariate polyno-
mial equations obtained in (14) can be solved via off-the-
shelf polynomial root-finding techniques, e.g., [21]. Then,
the globally optimal solution(s) of the realization problem (2)
can be selected by evaluating the objective function for each
obtained stationary point. Note that because (multiparameter)
eigenvalue-solvers and polynomial root-finding techniques
generally work over the field of complex numbers, the
complex-valued eigentuples or common roots have to be
pruned away: they have no meaningful interpretation in the
context of the realization problem (2).

Example 1. Consider the numerical example (N = 4)
described in [3, Section 8.2], where the globally optimal first-
order (n = 1) autonomous LTI realization is computed for the
sequence of given output data y = [4, 3, 2, 1]T. The system
of quartic polynomial equations in the variables {a1, g1, g2}
described in (14) corresponds to,

0 = 4a1 − 2a1g1 − a21g2 − a31g1 + 3,

0 = 3a1 − g1 − 2a1g2 − 2a21g1 − a31g2 + 2,

0 = 2a1 − g2 − a1g1 − 2a21g2 + 1.

(15)

Observe that the variables {g1, g2} appear only linearly. Re-
formulating this system of multivariate polynomial equations
from (15) gives the following PEP in the parameter a1,([

3 0 0
2 −1 0
1 0 −1

]
︸ ︷︷ ︸

M0

+

[
4 −2 0
3 0 −2
2 −1 0

]
︸ ︷︷ ︸

M1

a1

+

[
0 0 −1
0 −2 0
0 0 −2

]
︸ ︷︷ ︸

M2

a21 +

[
0 −1 0
0 0 −1
0 0 0

]
︸ ︷︷ ︸

M3

a31

)[
1
g1
g2

]
= 0.

(16)

The secular equation of this PEP, obtained by equating the
determinant of the matrix polynomial to zero, is given as,

2a71 − 5a61 + 12a51 − a41 + 6a31 + 3a21 + 3 = 0. (17)

The author of [3] exploits Theorem 1 to derive an alter-
native, yet equivalent formulation of the objective function
of (2), which solely relies on the model parameters a,

||ỹ||22 = yT(T a
N−n)

T(Da
N−n)

−1T a
N−ny.

9The minors are the
(N−n
n−1

)
determinants of the submatrices obtained by

omitting n−1 rows of the polynomial matrix of the MEP in (12).
10Only the affine solutions are of interest in the context of (2). When

working with the (block) Macaulay framework, the effects of the solutions
at infinity can be eliminated via a column compression. See, e.g., [9], [10].
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TABLE I
COMPARISON OF THE SIZES OF THE COEFFICIENT MATRICES OF M1 ,

THE MEP OBTAINED FROM [3], AND M2 , THE MEP DESCRIBED IN (12),
FOR SEVERAL COMBINATIONS OF (N,n).

(N,n) size(M1) size(M2)

(4, 1) 7× 7 3× 3
(16, 6) 76× 71 10× 5
(50, 8) 386× 379 42× 35

(200, 15) 2975× 2961 185× 171

TABLE II
THE AFFINE COMMON ROOTS OF THE SQUARE SYSTEM OF

MULTIVARIATE POLYNOMIAL EQUATIONS IN (15).

||ỹ||22 a1 g1 g2

0.1486 −0.6764 −0.2525 −0.2734
/ −0.1589∓ 0.808j 1.3577± 3.8194j 1.8359± 3.3491j
/ 0.4209± 0.6233j 3.0425∓ 2.9959j −0.0785± 1.2013j
/ 1.3261± 2.0058j −0.2739∓ 0.6279j 0.3793∓ 0.3849j

This expression leads to an unconstrained optimization prob-
lem over the model parameters a, the FONC of which can
be used to construct an MEP. However, as this approach
introduces many auxiliary variables to cope with the inverse
of the matrix Da

N−n, the coefficient matrices tend to grow
very large: ((N−n)(n+1)+n) × ((N−n)(n+1)+1), which
is approximately n + 1 times larger than the coefficient
matrices of the proposed n-parameter eigenvalue problem
from (12). This becomes especially noticeable for increasing
problem sizes (N,n), see, e.g., Table I. It is not straightfor-
ward to compare the complexity of different MEPs, because
the computational complexity involved with solving an MEP
depends on the interplay of multiple attributes: e.g., the
highest degree of its parameters, the number of parameters,
and the size of the coefficient matrices. We will investigate
this in more detail in future work. Also notice that since the
MEP from [3] does not exploit Theorem 2, its eigentuples
comprise the entire set of stationary points, and therefore,
contrary to the eigentuples of the MEP in (12), always include
the stationary points for which rank(ŶN−n) < n.

IV. NUMERICAL EXAMPLES

In this section, we consider11 several numerical ‘toy ex-
amples’ to illustrate the results obtained in Theorems 2-3.

Example 1 (continued). The 7 affine common roots of the
system of polynomial equations in (15) are depicted in
Table II. Computing the affine eigenvalues a1 of the PEP
from (16) or computing the roots of the univariate polyno-
mial in (17) gives equivalent results. The set of real-valued
eigenvalues corresponds to a singleton: a1 = −0.6764,
which is the real global minimizer of the realization problem.
Alternatively, when the approach from [3] is used, 10 affine

11We used a MacBook Pro with a 6-core Intel i7 CPU (2019) working at
2.6GHz with access to 32GB RAM. Numerical values are rounded for dis-
playing purposes and timings are averaged over 5 consecutive runs. We used
a MATLAB implementation of the (block) Macaulay method [10, Chapter
6], available online at www.macaulaylab.net, to compute the eigentuples of
the MEPs.

TABLE III
THE OBJECTIVE FUNCTION VALUE AND POLES pi FOR THE STATIONARY
POINTS (a1, a2) OF EXAMPLE 2 OBTAINED USING THE MEP FROM (12).

||ỹ||22 a1 a2 p1 p2

0.1327 −1.6255 0.7167 0.8127 + 0.2369j 0.8127− 0.2369j
0.1514 −0.0752 −0.5850 0.8033 −0.7282
0.1606 −14.076 10.433 13.291 0.7849
0.5386 −0.7127 1.8381 0.3564 + 1.3081j 0.3564− 1.3081j
0.5398 −1.9563 3.3657 0.9782 + 1.5520j 0.9782− 1.5520j
0.5405 29.254 43.807 −27.671 −1.5831
0.5425 1.3477 1.4908 −0.6738 + 1.0182j −0.6738− 1.0182j
0.5484 1.9764 1.4075 −0.9882 + 0.6564j −0.9882− 0.6564j
0.5492 −1.3053 1.0564 0.6527 + 0.7940j 0.6527− 0.7940j
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Fig. 2. The original data y3rd, the data y and the model-compliant data ŷ
corresponding to the globally optimal solution of Example 2.

eigenvalues a1 are retrieved, two of which real-valued:
{−0.6764, 1.6506}. The latter can be shown to be a global
maximizer, i.e., y ∈ row(T a

N−1|a1=1.6506).

Example 2. In this example we fit a second-order model
(n = 2) to given data y (N = 16), where y corresponds to
the output signal of a third-order autonomous LTI model with
poles (0.2, 0.7±0.4j), perturbed using MATLAB’s randn()
function (the considered instance of y has ||y||22 = 0.5509):

y = y3rd + 0.05 ∗ randn(N,1).

The MEP (12) has 739 affine eigentuples, 9 of which are
real-valued (see Table III). The globally optimal solution
a = [0.7167,−1.6255]T has an objective function value ap-
proximately equal to 0.1327. The residuals12 of the obtained
eigentuples are of the order of magnitude O(10−10). The
obtained globally optimal data ŷ are depicted in Fig. 2.

Example 3. We fit models for n ∈ {1, 2, 3, 4, 5} to a
sequence of given data y (N = 10) that is generated by
a fifth-order autonomous LTI model with poles (0.5, 0.25 ±
0.75j,−0.3 ± 0.5j). The objective function value of the
globally optimal model, the required computation time and
the number of affine eigentuples of the MEP are depicted in
Table IV. For n = 5, the MEP has one real-valued eigentuple
which corresponds to the model that was used to generate y.

12We calculate the residual error by substituting the computed eigentuple
and eigenvector in the MEP and determining the norm of the residual vector.
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TABLE IV
THE OBJECTIVE FUNCTION VALUE, THE REQUIRED COMPUTATION TIME
t AND THE NUMBER OF AFFINE EIGENTUPLES na CORRESPONDING TO

THE DIFFERENT VALUES OF n IN EXAMPLE 3.

n ||ỹ||22 t na

1 8.1211 0.0245 s 5
2 3.7429 0.9877 s 10
3 1.6775 9.0798 s 17
4 6.064× 10−4 15.185 s 13
5 O(10−31) 0.0240 s 1

Notice that the computation time increases with n, whereas
the number of affine eigentuples na shrinks after n = 3. The
globally optimal model-compliant data ŷn are depicted in
Fig. 3.

V. CONCLUSIONS AND FUTURE WORK

We showed, based on the first-order necessary conditions
for optimality of the least squares realization problem, that
the optimal misfits can be characterized via a ‘double’
FIR filter, which is reminiscent to ‘Walsh’s Theorem’ [12,
Theorem 3.14]. We exploited this result to compose a novel
multiparameter eigenvalue problem (MEP), the eigentuples
of which contain the parameters of the globally optimal
model(s). We illustrated our findings using several numer-
ical ‘toy examples’, and performed a comparison with the
alternative globally optimal approach in the literature [3].

Since the computational difficulty of solving the obtained
MEP grows exponentially with the problem size (N,n), more
research is needed to make our theoretical findings applicable
in practice. In future work, we will try to exploit the fact
that we are only interested in the real-valued eigentuples
of the MEP. The objective function of the realization prob-
lem can be shown to admit a purely polynomial form in
the variables (a, g). In future research we will investigate
whether incorporating this objective function into the root-
finding/MEP solvers allows to compute the global mini-
mizer(s) only. The Riemannian SVD [22], which can be
derived from the FONC (4)-(6) by eliminating ŷ and ỹ, might
assist us in this challenge. We also want to perform more
numerical experiments to get better insights into the nature
of the local/global minimizer(s) of the realization problem,
and to investigate the implications of the technical note in
Section III. Another challenge involves pushing the problem
size (N and/or n) to be as large as possible, e.g., using a
supercomputer.

REFERENCES

[1] J. C. Willems, “From time series to linear system–Part III. Approximate
modelling,” Automatica, vol. 23, no. 1, pp. 87–115, 1987.

[2] C. Heij, Deterministic Identification of Dynamical Systems, ser. Lecture
Notes in Control and Information Sciences. Berlin, Germany:
Springer, 1989, vol. 127.

[3] B. De Moor, “Least squares optimal realisation of autonomous LTI
systems is an eigenvalue problem,” Communications in Information
and Systems, vol. 20, no. 2, pp. 163–207, 2020.

[4] L. Ljung, System Identification: Theory for the User, 2nd ed., ser.
Prentice-Hall Information and System Sciences Series. Upper Saddle
River, NJ, USA: Prentice-Hall, 1999.

0 2 4 6 8

0

2

4

N

y = ŷ5 ≈ ŷ4
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