
Simultaneous State Estimation and Contact Detection for Legged
Robots by Multiple-Model Kalman Filtering

Marcel Menner and Karl Berntorp

Abstract— This paper proposes an algorithm for combined
contact detection and state estimation for legged robots. The
algorithm models the robot’s movement as a switched system,
where different modes relate to different feet being in contact
with the ground. The key element of our algorithm is an
interacting multiple-model Kalman filter, which identifies the
currently-active mode defining contacts, while estimating the
state. The rationale for the proposed estimation framework is
that contacts (and contact forces) impact the robot’s state, and
vice versa. We present validation studies with a quadruped
using (i) the high-fidelity simulator Gazebo for a comparison
with ground truth values and a baseline estimator, and (ii)
hardware experiments with the Unitree A1 robot. The simula-
tion study shows that the proposed algorithm outperforms the
baseline estimator, which does not simultaneous detect contacts.
The hardware experiments showcase the applicability of the
proposed algorithm and highlights the ability to detect contacts.

I. INTRODUCTION

Mobile robots are useful for a variety of tasks to increase
automation or provide assistance, e.g., robots have been
employed for warehouse logistics, search and rescue, load
carrying, etc. Wheeled robots have proven to be effective
in more structured environments such as warehouses, but
mobile robots that move by using legs provide a higher
level of versatility and the potential to maneuver in more
unstructured environments. However, this higher level of
versatility comes at the expense of greater difficulty to
achieve accurate and safe movements, i.e., the legs have to
be moved to simultaneously traverse an area, stabilize the
robot, and avoid unwanted contacts with the environment.
To fully reap the benefits of a legged robot’s versatility
in unstructured environments, fast control and estimation
algorithms are needed that target such environments.

This paper focuses on state estimation and contact detec-
tion. One possible path to achieving accurate state estimation
for control is to introduce additional sensors in the robot’s
design, but this is costly and more sensitive to failures in
the additional sensors. Instead, we present a software-based
solution with an algorithm for state estimation that only uses
inertial measurement unit (IMU) sensor measurements (Euler
angles, rotations, linear accelerations) and motor measure-
ments (joint angles, joint accelerations, motor torques). Such
sensor measurements are commonly available on robotic
platforms such as legged robots.

We propose a method for simultaneous contact detection
and state estimation for legged robots based on a physics-
based motion model to reason about the contact forces’
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impact on the robot. The proposed method uses an interacting
multiple-model Kalman filter (IMM-KF), where the robot’s
movement is modeled as a switched system. The system
relates the multiple models to different feet being in contact
with the ground. The IMM-KF identifies the currently-active
mode defining contacts, while estimating the state.

In [1], [2], a stochastic filtering approach with outlier re-
jection is presented, which fuses leg kinematics with inertial
measurements, and [3] develops a probabilistic framework
for detecting contacts. In [4], a disturbance observer-based
approach is proposed for contact detection with an event-
based finite state machine. A factor graph optimization
method is presented in [5] for state estimation fusing inertial
navigation, leg odometry, and visual odometry, and [6] fuses
IMU and leg odometry sensing for pose and velocity estima-
tion by relying on force/torque sensors at the feet using the
Schmitt trigger mechanism for contact classification. In [7],
IMU measurements are fused with leg odometry and studies
the impact of soft terrain on state estimation, and [8]proposes
a state estimator for slippery environments, which fuses
inertial and velocity measurements from a tracking camera
and leg kinematics; [9] proposes a contact-aided invariant
extended Kalman filter; [10] uses body speed measurements
obtained from a stereo camera without the need for a non-slip
assumption; and [11] proposes a state estimator for legged
robots based on learned displacement measurement using
convolutional neural networks. While current solutions often
rely on a camera, which is susceptible to external conditions
such as environmental/lighting, or the availability of contact
sensors, our proposed method only uses IMU measurements
for simultaneous state estimation and contact detection.

Notation: This paper uses boldface x and boldface X to
indicate a vector and matrix, respectively. This paper uses
parenthesis, x(t), and sub-scripts, xt, to distinguish the state
in continuous time and discrete time t, respectively. Let
Pr(X ) be the probability of an event X , e.g., Pr(δ = 1)
is the probability that δ = 1. P skew(p) ∈ R3×3 is the skew
matrix of a vector p ∈ R3 such that P skew(p)f = p × f
with the cross product ×. The notation x ∼ N (µ,Σ)
means x sampled from a normal distribution, N (µ,Σ) with
mean µ and covariance Σ. Throughout, super-scripts (·)bf

and (·)wf indicate body-frame and world-frame, respectively.
Further, x̄ defines a measurement and x̂ defines an estimate
or computed value of a quantity x. The rotation matrix from
world-frame to body-frame is denoted as Rwf→bf(Θ) ∈
R3×3 as a function of the Euler angles Θ ∈ R3. Let 0
denote a zero matrix of zero vector of appropriate dimension.
Let I denote an identity matrix of appropriate dimension.
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II. INTERACTING MULTIPLE-MODEL KALMAN FILTER

An IMM-KF is a state estimator for a switched system

xt+1 = A
(k)
t xt + b

(k)
t +w

(k)
t (1a)

yt = C
(k)
t xt + v

(k)
t , (1b)

where k ∈ {1, ...,M} denotes the kth of the M modes. The
switched system’s modes are modeled as a Markov chain
with with transition probabilities

Pr
(
mt+1 = m(j)

∣∣∣mt = m(i)
)
= πij , (1c)

where mt ∈ M is the mode at time t, and the transition
from mode m(i) to mode m(j) being πij . The IMM-KF
involves an interaction, a filtering, a probability update, and
a combination step [12].

1) Interaction step: In the interaction step, the estimates
of M KFs are mixed and used to initialize each filter:

c(k) =

M∑
j=1

πjkµ
(j)
t−1 (2a)

µ
(j|k)
t−1|t−1 =

πjkµ
(j)
t−1

c(k)
(2b)

x̄
(k)
t−1|t−1 =

M∑
j=1

µ
(j|k)
t−1|t−1x̂

(j)
t−1|t−1 (2c)

P̄
(k)
t−1|t−1 =

M∑
j=1

µ
(j|k)
t−1|t−1

(
P

(j)
t−1|t−1 +X

(k,j)
t−1|t−1

)
(2d)

with X
(k,j)
t|t =

(
x̄
(k)
t|t −x̂

(j)
t|t

)(
x̄
(k)
t|t −x̂

(j)
t|t

)T
, where x̂

(k)
t|t is the

state estimate of filter k at time t, and µ
(k)
t is the probability

of filter k being active.
2) Filtering step: Each KF is executed separately using

x̄
(k)
t−1|t−1 and P̄

(k)
t−1|t−1 to initialize filter k.

3) Probability update step: The filters’ innovation resid-
uals are used to update the filters’ model probabilities:

L
(k)
t =

exp
(
− 1

2

(
ỹ
(k)
t

)T (
S

(k)
t

)−1
ỹ
(k)
t

)
∣∣∣2πS(k)

t

∣∣∣0.5 (2e)

µ
(k)
t =

c(k)L
(k)
t∑M

i=1 c
(i)L

(i)
t

(2f)

with the likelihood L
(k)
t and the model probability µ

(k)
t .

4) Combination step: Lastly, the filters’ state estimates are
combined as a weighted sum using the model probabilities:

x̂t|t =

M∑
k=1

µ
(k)
t x̂

(k)
t|t (2g)

P t|t =

M∑
k=1

µ
(k)
t

(
P

(k)
t|t +

(
x̂t|t − x̂

(k)
t|t

)(
x̂t|t − x̂

(k)
t|t

)T)
.

(2h)

III. MODE-DEPENDENT MOTION MODEL

The motion of the robot’s trunk can be modeled as

ẋ(t) = A(Θ(t))x(t) + g + b(t) (3a)

with the state x(t) ∈ R12 at time t, the gravity vector g,
and b(t) resulting from external forces. The state consists of
the orientation Θ, the center of mass (CoM) position dwf

CoM,
the rotation ωwf , and the linear velocity vwf

CoM:

x(t) =
[
Θ(t)⊤ dwf

CoM(t)⊤ ωwf(t)⊤ vwf
CoM(t)⊤

]⊤
.

(3b)

Hence,

A(Θ(t)) =


0 0 Rwf→bf(Θ(t)) 0
0 0 0 I
0 0 0 0
0 0 0 0

 . (3c)

The external forces result from contacts of the robot’s feet
with the ground/environment, i.e.,

b(t) = B(t)fbf(t) (4a)

with the force vector fbf(t). For a four-legged robot,

fbf(t) =
[
fbf
FL(t) fbf

FR(t) fbf
RL(t) fbf

RR(t)
]⊤

, (4b)

where fbf
i = [fbf

x,i fbf
y,i fbf

z,i]
T ∈ R3 is the foot-contact

force of leg i. The reason for representing the contact forces
in body-frame will become apparent in Section IV. Hence,

B(t) = B1(t)B2(t)

B1(t) =


0 0
0 0

Rbf→wf(Θ(t))
(
Ibf

)−1

0

0 Rbf→wf(Θ(t)) 1
m


B2(t) =

[
P bf

FL(t) P bf
FR(t) P bf

RL(t) P bf
RR(t)

I I I I

]
,

where B1(t) includes rotations and inertia values of the
robot’s trunk, and B2(t) computes linear and angular ac-
celerations from the contact forces with

P bf
i (t) = P skew(p

bf
i (t)) ∈ R3×3, (4c)

where pbf
i ∈ R3 is the relative position of leg i from

the trunk’s CoM, which can be calculated using forward
kinematics and the joint angles qi, i.e., pbf

i (t) = FKi(qi).
Hence, B2(t)f

bf(t) computes the resulting moments and
forces at the CoM (in body-frame) as a combination of the
forces at the feet, which are transformed to angular and linear
accelerations (in world-frame) via B1(t).

A. Model as Switched System

As the contact forces fbf
i are often difficult to measure,

this paper proposes to use estimated “hypothetical” forces
in combination with binary contact-detection variables, δki ,
with mode index k:

fbf
i (t) = δki f̂

bf

i (t).
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The estimated “hypothetical” forces, f̂
bf

i , indicate a contact
force acting on the robot if the robot’s leg would be in contact
with the ground. Hence, if the leg i is actually in contact with
ground, the binary variable has to be one, δki = 1, for the
dynamics to be accurate. In turn, this observation can be
leveraged to detect feet that are in contact with the ground.
Hence, simultaneous contact detection and state estimation
is achieved by jointly estimating x(t) and δki . Thus, the
dynamics in (3a) are represented by a switched system with

ẋ(t) = A(Θ(t))x(t) + g +Bk(t)f̂
bf
(t), (5)

Bk(t) = B1(t)B
k
2(t), (6)

Bk
2 =

[
δkFLP

bf
FL δkFRP

bf
FR δkRLP

bf
RL δkRRP

bf
RR

δkFLI δkFRI δkRLI δkRRI

]
.

(7)

B. Contact Modes and Contact Probabilities
An enumeration of the modes is

k = 1,m(1) → δ1FL = 0, δ1FR = 0, δ1RL = 0, δ1RR = 0

k = 2,m(2) → δ2FL = 0, δ2FR = 0, δ2RL = 0, δ2RR = 1

...

k = 15,m(15) → δ15FL = 1, δ15FR = 1, δ15RL = 1, δ15RR = 0

k = 16,m(16) → δ16FL = 1, δ16FR = 1, δ16RL = 1, δ16RR = 1

with the total number of modes M . For example, m(1) and
m(16) indicates none and all four legs are in contact with
the ground, respectively. Note that for computational reasons,
some less likely modes can be neglected, e.g., k ∈ {2, 3, 5, 9}
relate to only one leg being in contact with the ground, which
is less likely during standard operation.

Using a probabilistic state estimator with the switched
system in (5), it is further possible to indicate probabilities
of leg i being in contact with the ground. Let µk be the
likelihood that mode m(k) is active. Then, the likelihood of
leg i being in contact with the ground can be calculated as

pi = Pr(δi = 1) =

M∑
k=1

µkδki . (8)

Our method leverages these probabilities in combination with
joint angles and joint velocities to estimate the trunk’s CoM
position and velocity, discussed in the following section.

IV. ESTIMATION AND FILTER DESIGN

For state estimation, this paper assumes the availability of
the following sensor measurements

• Euler angles Θ̄, e.g., provided by the IMU
• Acceleration at CoM ābf , e.g., provided by the IMU
• Rotations at CoM ω̄bf , e.g., provided by the IMU
• Joint angles q̄, e.g., provided by motors
• Joint angle velocities ¯̇q, e.g., provided by motors
• Joint torques τ , e.g., provided by motors

Further, this paper uses first-order Euler discretization with
sampling rate Ts of the switched system in (5),

xt+1 = xt + Ts

(
A(Θt)xt + g +Bk

t f̂
bf

t

)
+wt (9)

with the process noise wt ∼ N (0,Qt), where sub-script t
is used to indicate discrete time.

Remark 1: The joint angle velocities can also be estimated
if they are not directly measured.

A. Pseudo Measurements

Without a positioning system, the robot does not provide a
measurement of the trunk’s position or the velocity. However,
if the feet being in contact with the ground are known,
then kinematic relationships can be leveraged to provide a
“pseudo measurement” for the trunk’s position and velocity.
Hence, detecting contacts while estimating the state enables
the use of such pseudo measurements.

In order to obtain pseudo measurements for the robot’s
trunk velocities, the mode-probabilities in (8) can be lever-
aged. Let vbf

i = J i(qi)q̇i be the foot-velocity of leg i in
reference to the robot’s CoM (in body-frame). Then, if leg i
is in contact with the ground (and not slipping), vwf

i =
0, which implies vwf

CoM = −Rbf→wfv
bf
i . Hence, pseudo

measurements can be obtained by considering contacts and
footstep velocities. In this paper, the probabilities in (8) are
used to obtain such pseudo measurements as

v̂wf
CoM = − 1∑4

i=1 h(pi)

4∑
i=1

h(pi)Rbf→wf(Θ̂)v̂bf
i (10a)

with v̂bf
i = J i(q̂i)ˆ̇qi, where h is a function that computes

a weight based on the contact probability pi. This paper
uses h(pi) = max(pi − p̄, 0) with the threshold value
p̄ = 60%. The reason for choosing such a threshold value is
the exclusion of legs that are likely not in contact with the
ground for computing the pseudo measurements.

Similarly, for obtaining a position measurement,

p̂wf
CoM = − 1∑4

i=1 h(pi)

4∑
i=1

h(pi)Rbf→wf(Θ̂)p̂bf
i (10b)

with p̂bf
i = FKi(q̂i).

Remark 2: The advantage of using (10b) is that the robot’s
vertical position, pwf

z,CoM, is estimated in reference to the
ground rather than in global coordinates, which is useful
for control algorithms. The horizontal position defined by
pwf
x,CoM and pwf

y,CoM is estimated in reference to the footstep
positions, i.e., if pwf

x,CoM = pwf
y,CoM = 0, then the robot’s

CoM is perfectly in the geometric center of the feet, which
is also useful for control.

B. Hypothetical Forces

For the four-legged robot configuration considered in this
paper, the hypothetical forces f̂

bf

i can be approximated using
using the foot Jacobian J i with the joint angles qi and the
motor torques τ i of leg i:

f̂
bf

i,t = (J i(qi,t))
−1τ i,t, (11)

which is a common practice for legged robots, see, e.g., [13],
[14] where this relationship is used for a stance controller.
Note that during standard operation, J i is invertible for a leg
with three joints/motors.
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C. Measurement Equation

The estimation algorithm in this paper uses the measure-
ments yt ∈ R15 with

yt = C(Θt)xt +Dkf̂
bf

t + vt (12)

with the sensor noise vt ∼ N (0,Rt),

yt =
[
Θ̄t p̂wf

t ω̄bf
t v̂wf

t ābf
t

]⊤
,

C(Θt) =

[
blkdiag(I, I,Rwf→bf(Θt), I)

0 · · ·

]
and

Dk =

 0 · · ·
...

. . .
δkFL

1
mI δkFR

1
mI δkRL

1
mI δkRR

1
mI


The reason for Dk being mode dependent is that measured
accelerations at the CoM are the sum of the contact forces
with δki = 1, i.e., of feet in contact with the ground.
While the acceleration measurements in this setting do not
directly impact the state estimate, they help in determining
the “correct” mode of operation. Hence, an advantage of
the proposed algorithm is that it can leverage acceleration
measurements, ābf

t , for state estimation by means of altering
the modes’ probabilities.

D. Overall Filter Design

Overall, the process model and measurement model for
each Kalman filter related to mode m(k) are given by

x̂t+1 =
(
I12 + TsA(Θ̂t)

)
x̂t + g +Bk

t f̂
bf

t +wt (13a)

yt = C(Θ̂t)x̂t +Dkf̂
bf

t + vt. (13b)

Remark 3 (Confidence in Pseudo Measurements): The
algorithm leverages time-varying covariance matrices
Qt,Rt in order to adjust the confidence in the pseudo-
measurements. This paper scales the elements in Rt that
relate to the pseudo measurements with

rscale =
1

1 + 100
∑4

i=1 h(pi)
, (14)

i.e., for higher confidence in a foot being in contact with the
ground, the algorithm decreases the uncertainty associated
with the measurement. Hence, the contact probabilities in (8)
are useful not only to compute a pseudo measurement but
also to reason about its confidence.

E. Exploiting Physical Limits of Contact Forces for Biasing
Mode Probabilities

There are two physical limits that can be exploited easily
for more accurate contact detection and state estimation.
First, contact forces need to be positive, because feet can
push the robot up but cannot pull the robot down. Hence,
if f̂wf

z,i < 0, then all modes k with δki = 1 are less
likely. Second, horizontal forces are constrained by friction
to be smaller (in absolute value) than νf̂wf

z,i with the friction
coefficient 0 ≤ ν ≤ 1, i.e., ((f̂wf

x,i)
2 + (f̂wf

y,i)
2)0.5 < νf̂wf

z,i .

Motion Planner and 
Swing Control – 100Hz

MPC Stance Control –
100Hz

State Estimation/Contact 
Detection – 200Hz

GLOBAL 
MEMORY

Send Commands/Receive 
Measurements – 400Hz

Fig. 1. Controller architecture. For the Gazebo validations, the controller
publishes ROS topics that the robot uses. For the hardware experiments, the
controller communicates with the robot via Ethernet.

An IMM-KF allows to incorporate such prior knowl-
edge/physical limits by means of biasing the modes’ proba-
bilities. Instead of (2e), this paper uses

L
(k)
t =

exp
(
− 1

2

(
ỹ
(k)
t

)T (
S

(k)
t

)−1
ỹ
(k)
t

)
∣∣∣2πS(k)

t

∣∣∣0.5 exp
(
−hf

(
f̂
wf

t

))

hf (f̂
bf

t ) = cforce

4∑
i=1

δki

(
min

(
0, f̂wf

z,i

))2

with some weight cforce.
Remark 4 (Alternative Formulation): An alternative to

using forces as inputs to the dynamical system in (13a) is
to augment the state by contact forces. This may lead to
more accurate estimation of contact forces, but comes at the
expense of higher computation cost. Such a formulation with
“forces as pseudo states” may be useful in cases, where (11)
does not provide a good estimate for the forces.

V. RESULTS

Fig. 1 summarizes the controller architecture and commu-
nication with the robot. The controller executes four modules
in parallel. The four modules share a global memory, which
they use to communicate their respective results. First, one
module links the controller with the robot. This module
sends motor commands from the global memory to the robot
and receives measurements from the robot, which are subse-
quently written into the memory. The second module is used
for motion planning and the coordination of the robot’s legs.
The third module uses the state estimate stored in the global
memory to compute motor commands that stabilize the robot.
The state estimation and contact detection module pulls the
robot’s measurements from the global memory, processes
the measurements, and pushes the updated state estimate to
the global memory. Note that the proposed algorithm can
be utilized for (almost) any controller structure. For both
simulation and hardware experiments, torque commands are
sent using the robotic operating system (ROS).

For validation, we implement eight different modes. The
modes k = 2, 4 relate to a trot gait. The modes k = 3, 5, 6, 7
relate to three feet being in contact with the ground, which
are important for walking gait and for early contact detection
during trot gait. The transition probabilities of the IMM-KF
are chosen for trot gait being the standard mode operation.
Walking gait, e.g., can be considered by changing the last
row of the transition probability matrix.
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Fig. 2. Gazebo simulation results. Top: Vertical position tracking, with
ground truth (green), the estimate provided by the IMM-KF (light blue),
and the baseline (dark red). Bottom: Contact likelihoods of the four feet.

A. Gazebo Simulation Results

The IMM-KF was implemented for the Unitree A1
robot [15] using Gazebo with the bullet physics engine. The
Unitree A1 simulator is a realistic high-fidelity environment.
The Gazebo simulation environment is executed in a parallel
thread, and hence the software needs to be executed during
run-time of the simulation. The proposed IMM-KF estimate
is compared with a baseline Kalman filter, which uses the
switched dynamics in (13a) with the modes given by the
controller instead of being estimated.

Fig. 2 shows Gazebo simulation results for a 3s window.
The robot is traversing with a constant forward velocity of
1m/s in trot gait. The contact likelihoods of the four feet
calculated as in (8) indicate correctly that the front-left and
the rear-right leg are swinging together, switching off with
the front-right and rear-left. Further, the algorithm is able
to quickly identify switching contact, which is highlighted
in more detail in Section V-B. Fig. 2 also shows that
the proposed IMM-KF solution tracks the robot’s vertical
position closely, whereas the baseline spikes in between gait
transitions. These spikes are due to the baseline filter not
actively identifying modes, but using the controller modes
in open loop. Table I quantifies the tracking error for 1min
of operation for the full state, the vertical position of the
robot’s CoM, and the robot’s velocities. As displayed in
Fig. 2, the robot’s vertical position above ground is crucial to
stabilize the robot, especially for controllers that use torque
commands. Table I shows that the state tracking error is
reduced by a factor of 2.5. For the vertical position, the
tracking error is reduced by 7.5, and the velocity tracking
error is reduced by 3.75. This highlights the benefit of
simultaneously estimating the state and detecting contacts.

TABLE I
STATE TRACKING: ROOT MEAN SQUARE ERROR

IMM-KF Baseline

Full State RMSE 0.0952 0.2438

Vertical Position RMSE 0.17cm 1.25cm
Maximum 0.88cm 6.36cm

Velocities RMSE 0.1195m/s 0.4395m/s

Fig. 3. Hardware experiments with the Unitree A1.

B. Hardware Experiments

Fig. 3 shows the Unitree A1 robot. Fig. 4 shows the contact
likelihoods, Pr(δi = 1) computed as in (8) for the four legs.
It shows the robot taking four steps, which can be identified
by the vertical foot positions in the bottom plot, which were
computed using forward kinematics. First, the front-right and
rear-left legs swing together around 0.2s. Second, the front-
left and rear-right legs swing together around 1.2s. At 2.5s,
two trotting motions are executed back-to-back. During a
swing, the contact likelihoods of the swinging legs are below
40%, whereas the likelihoods of the stance legs are around
95%. When all four legs are in contact with the ground,
all contact likelihoods are around 75%. The reasons for
higher likelihoods of the stance legs during a swing execution
are (i) higher contact forces associated with the two stance
legs compared to a situation with all four legs being in
contact with the ground and (ii) the physics-based biasing
of probabilities of swinging legs (see Sec. IV-E).

Fig. 5 highlights a moment in time with an early contact.
Here, the front-right foot is touching down earlier than the
rear-left foot by around 2cm or around 20ms, which can
best be seen by the vertical position plot. Consequently, the
contact likelihood associated with the front-right leg increase
faster than that of the rear-left leg. Fig. 6 illustrates the mode
likelihoods, µ(k), which are used within the IMM-KF. It
shows that mode m(6) peaks briefly at around 2.7–2.75s
identifying correctly that the front-right foot has touched
down early. It can be seen that contacts are detected using
the proposed IMM-KF in less than 20ms, i.e., four filter
recursions at an execution rate of 200Hz.

1) Computation Times: Computation times average 2.1ms
(mean), 2.0ms (median), and showed a maximum computa-
tion time of 3.5ms, which is below the sampling frequency of
5ms (200Hz). Such high frequencies are required for contact
detection in order to quickly identify feet that have touched
down. The algorithm was executed on a desktop computer
using ROS in Python 2.7 with AMD 5950X, DDR4 2933
32GB RAM, and NVIDIA GeForce GTX TITAN X.
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Fig. 4. Hardware experiment results. Top: Contact likelihoods of the four
feet. Bottom: Feet positions calculated using forward kinematics.
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Fig. 5. Early contact detection in hardware experiment. Top: Contact
likelihoods. Bottom: Feet positions calculated using forward kinematics.

VI. CONCLUSION

We proposed a model-based algorithm for simultaneous
contact detection and state estimation. The algorithm used
an interacting multiple-model KF, where each filter model
relates to a configuration of feet being in contact with
the ground. Simulation results using the high-fidelity en-
vironment Gazebo showed an improved accuracy of state
estimation by a factor of 2.5 compared to a KF without
simultaneous contact detection. Further, hardware experi-
ments showed that the algorithm is able to estimate the
state accurately and in real time. In particular, it showed
that contacts can correctly be identified with only a few KF
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Fig. 6. Likelihoods of modes. Top: Mode m(1) (no feet in contact), mode
m(8) (four feet in contact), and trot modes m(2), m(4) (two feet in contact).
Bottom: Modes m(3), m(5), m(6), m(7) (three feet in contact).

recursions in less than 20ms.
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