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Abstract— This paper introduces a dual input-output pa-
rameterization (dual IOP) for the identification of linear time-
invariant systems from closed-loop data. It draws inspiration
from the recent input-output parameterization developed to
synthesize a stabilizing controller. The controller is parameter-
ized in terms of closed-loop transfer functions, from the external
disturbances to the input and output of the system, constrained
to lie in a given subspace. Analogously, the dual IOP method
parameterizes the unknown plant with analogous closed-loop
transfer functions, also referred to as dual parameters. In this
case, these closed-loop transfer functions are constrained to
lie in an affine subspace guaranteeing that the identified plant
is stabilized by the known controller. Compared with existing
closed-loop identification techniques guaranteeing closed-loop
stability, such as the dual Youla parameterization, the dual IOP
neither requires a doubly-coprime factorization of the controller
nor a nominal plant that is stabilized by the controller. The
dual IOP does not depend on the order and the state-space
realization of the controller either, as in the dual system-
level parameterization. Simulation shows that the dual IOP
outperforms the existing benchmark methods.

I. INTRODUCTION

System identification, a methodology employed to con-
struct dependable system models from measured data, has
widespread applications in the field of engineering [1].
This methodology serves as a fundamental step in enabling
various aspects of model-based control system design [2],
minimum variance control [3], robust control design [4]
and more, as outlined in the relevant literature. Open-loop
identification methods, also known as direct methods, are
often implemented to estimate the system transfer function
directly from the input-output data. However, such methods
require the plant to be operating and stable in open-loop
and may result in an inconsistent estimate if applied to
closed-loop data [2], [5]. Furthermore, if information about
the controller is available, it can be leveraged to guarantee
the closed-loop stabilizability of the identified plant. This
attribute is particularly useful when estimating a plant with
a limited stability margin.

A celebrated indirect method in closed-loop identification
is the Dual Youla Parameterization (dual YP) [6]. This
method requires pre-computing the doubly co-prime factor-
ization of the known controller as well as a nominal plant
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that is stabilized by the given controller. The dual Youla
parameter is estimated as the transfer function from a pair
of filtered input and output data. Subsequently, the unknown
plant, which is parameterized by the dual Youla parameter,
is determined. It is known that if the estimated dual Youla
parameter is stable, then the identified plant is stabilized by
the known controller. Another indirect method studied re-
cently is the Dual System-Level Parameterization (dual SLP)
[7]. In this framework, several closed-loop transfer functions,
also known as dual system-level parameters, are defined to
parameterize the unknown plant. When constrained to lie in
an affine subspace (determined by the state-space realiza-
tion of the controller), these dual system-level parameters
guarantee that the parameterized plant is stabilized by the
known controller. As discussed above, the above frameworks
have the vital advantage that the identified plant is stabilized
by the controller used in the experiment. However, they are
dependent on pre-computations (dual YP) and the order of
the controller (dual SLS), which pose additional challenges
in the identification schemes.

In fact, the above dual Youla method is motivated by the
Youla parameterization (YP) [8] which is extensively applied
in robust control, whereas the dual system-level method gains
inspiration from the system-level synthesis method (SLS)
[9], [10] which provides an alternative for parameterized
controller design. Recently, the input-output parameteriza-
tion (IOP) [11] has been developed for controller design,
treating the closed-loop transfer functions (from the external
disturbances to the input and output of the system) as design
variables and exploiting their affine relationships. Specifi-
cally, the IOP perspective for controller design is free of any
pre-computations such as the doubly-coprime factorization
and initial stabilizing controller required in the YP method
and the state-space realization of the plant as required in
SLS, making it especially effective for large-scale multi-input
multi-output (MIMO) systems compared to the others. In
addition, we show that the dual IOP is more computationally
efficient than the dual SLP since the former needs fewer
optimization variables than the latter. Considering the fact
that controller design and system identification are dual
problems, it is worthwhile to investigate the dual application
of IOP to system identification.

In this paper, we present the theory of Dual Input-Output
Parameterization (dual IOP) to obtain a stabilized estimate
of the plant using closed-loop data. We prove that the
set of all plants stabilized by a given controller can be
characterized by an affine subspace of four dual input-output
parameters. It is shown that identifying these parameters
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is equivalent to an open-loop identification problem. We
compare the performance of dual IOP with dual YP and
dual SLP via the Bode plots of the estimated plants and the
distribution of the estimation errors. Simulation results show
that dual IOP exhibits asymptotic convergence in errors and
an improvement in estimation, with a decrease in both the
median (7% and 18% lower than dual SLP and dual YP
respectively) and variance of errors.

It is important to note that there are other well-known
closed-loop identification frameworks, including the two-
stage method [12] and the projection method [13]. We are
also aware of several recent developments in closed-loop
identification [14]–[16]. These methods can yield consistent
estimates without requiring knowledge of the controller.
However, they lack the guarantee that the identified plant is
stabilized by the controller. In this work, our emphasis is on
obtaining stabilized models, and we compare our proposed
method with dual YP and dual SLP.

This paper is structured as follows. Section II provides
an overview of the preliminary concepts. In Section III, we
delve into the theory and implementation of dual IOP. This
is followed by Section IV, which offers a comprehensive
review of dual SLP and dual YP. Section V is dedicated
to the comparative analysis of our proposed method against
benchmark methods. Finally, we conclude in Section VI.

II. PRELIMINARIES

A. Nomenclatures

We denote vectors and signals by lowercase (x) and bold
lowercase (x) letters. Uppercase (A) and bold uppercase
(A) letters represent real matrices and (matrices of) transfer
functions, respectively. The operator z denotes a forward
shift by one sampling interval as well as the variable in
the z-domain. We define RH∞ as the space of all bounded
stable and causal transfer functions, and Rc as the space
of all causal transfer functions. Moreover, RHp×m

∞ indicates
the space of p × m matrices of the corresponding transfer
functions and similarly for Rp×m

c . Finally, 0 and I stand for
zero matrices and identity matrices with appropriate sizes.

B. Problem Configuration

We consider a closed-loop linear time-invariant (LTI)
system in discrete time given by

y(k) = G(z)u(k) + v(k),

u(k) = K(z)y(k) + r(k),
(1)

which is incorporated with a positive linear feedback con-
troller K. The controller K(z) ∈ Rc is exactly known,
whereas the input-output (IO) transfer function G(z) ∈ Rc is
unknown and to be identified. A block diagram of this system
is given in Figure 1. Note G and K1 are not necessarily
internally stable, but K internally stabilizes G. The output
y(k) ∈ Rp, control input u(k) ∈ Rm, and reference r(k) ∈
Rm are accessible at each time k = 0, · · · , N−1. The output

1For conciseness, we omit the shift index z for all transfer functions in
the following.

G(z)
u(k)

H(z)

K(z)

r(k) y(k)
v(k)

e(k)

Fig. 1. Block diagram of an LTI feedback system.

is corrupted by the unmeasurable signal v(k) = He(k) with
independent, identically distributed noise e(k).

C. Input-Output Parameterization

This subsection reviews the principles of the IOP method
used for output feedback controller design [11], as it is
fundamental to our proposed dual IOP framework. In the
IOP framework, the controller K is to be designed whereas
the plant G is known. Considering the external signal pair
(v, r) and the dependent signal pair (y,u), (1) leads to the
following closed-loop equations,[

y
u

]
=

[
W X
Y Z

] [
v
r

]
, (2)

where W = (I −GK)−1, X = (I −GK)−1G, Y = (I −
KG)−1K, and Z = (I−KG)−1. Under the assumption that
K internally stabilizes G, these closed-loop transfer func-
tions are stable and causal [17], i.e. W,X,Y,Z ∈ RH∞.
In the IOP framework, these transfer functions are treated
as optimization variables, before using their relationship to
indirectly determine K = YW−1. Let the set of internally
stabilizing controllers be given by,

Cstab(G) = {K ∈ Rc | K stablizes G} , (3)

then following theorem summarizes the properties of IOP.
Theorem 1: Consider the LTI system in (1), the following

statements are true [11].
1) For any arbitrary controller K ∈ Cstab(G), there

always exist (W,X,Y,Z) that lie in the following
affine subspace,[

I −G
] [W X

Y Z

]
=

[
I 0

]
, (4a)[

W X
Y Z

] [
−G
I

]
=

[
0
I

]
, (4b)

W,X,Y,Z ∈ RH∞. (4c)

2) For any transfer functions (W,X,Y,Z) that lie in the
affine subspace (4a)-(4c), the parameterized controller
K = YW−1 = Z−1Y ∈ Cstab(G), i.e. the closed-
loop system (1) is stable.

Therefore, the controller K can be determined by finding
the closed-loop transfer functions that minimize a pre-defined
cost function (see [11] and [18]) subject to subspace con-
straints (4a)-(4c). In the next section, we exploit the duality
of controller synthesis and system identification, and propose
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the dual input-output parameterization (dual IOP) which
chooses the optimal estimate Ĝ from the set of all plants
that are stabilized by a given output feedback controller K.

III. THE DUAL INPUT-OUTPUT PARAMETERIZATION

A. Theory of Dual IOP

In the dual IOP framework, we reverse the role of the
plant and the controller, i.e., we look for a plant model that is
stabilized by the given controller. In particular, we consider
the following dual system : (G̃, K̃) = (K,G), (ṽ, r̃) =
(r,v) and (ỹ, ũ) = (u,y). The objective is to synthesize K̃
(i.e., estimate G) such that the closed-loop system (G̃, K̃)
is stable. Substituting the reversed system into (2) results in[

ỹ
ũ

]
=

[
(I − G̃K̃)−1 (I − G̃K̃)−1G̃

(I − K̃G̃)−1K̃ (I − K̃G̃)−1

] [
ṽ
r̃

]
,

⇒
[
ỹ
ũ

]
=

[
Z Y
X W

] [
ṽ
r̃

]
.

(5)

Thus, similar to Theorem 1, the idea behind dual IOP is
summarized in the following theorem.

Theorem 2: Consider the LTI system in (1), the following
statements are true.

1) Suppose a controller K is given and stabilizes the un-
known plant G. Then there always exist (W,X,Y,Z)
that lie in the following affine subspace,[

−K I
] [W X

Y Z

]
=

[
0 I

]
, (6a)[

W X
Y Z

] [
I

−K

]
=

[
I
0

]
, (6b)

W,X,Y,Z ∈ RH∞. (6c)

2) For any transfer functions (W,X,Y,Z) that lie in
the affine subspace (6a)-(6c), the parameterized plant
G = W−1X = XZ−1 ∈ Gstab(K), where Gstab(K)
is the set of all plants stabilized by K.

The proof of Theorem 2 is analogous to that of Theorem
1 in [11]. We now formulate the dual IOP closed-loop
identification framework by posing the following problem,

min
W,X,Y,Z

f(r,y,X)

s.t. (6a)− (6c),
(7)

where f(r,y,X) is a function representing the model fitting
error between r and y. A typical choice of f (in the
absence of the knowledge of the noise filter H) is the
two-norm residuals, i.e., f = ∥y −Xr∥22 = ∥ϵ∥22, where
ϵ is the prediction error, as identical to the convex cost
in [7]. Clearly, the optimization problem (7) translates the
identification of the plant G into an equivalent open-loop
identification problem of W,X,Y,Z with affine constraints,
where the external reference r and the measured output y
are statistically uncorrelated. Hence, the dual input-output
parameters are estimated via the convex program in (7).

Remark 1: It is assumed that r and e (thus v = He)
are uncorrelated in (1). Suppose W,X ,Y,Z represent the
model classes that contain all admissible solutions of (7),

and also contain the true dual input-output parameters. Then,
W,X,Y,Z can be consistently and unbiasedly [5] estimated
by (7), provided r is persistently exciting.

Remark 2: An implicit advantage of the dual IOP frame-
work with respect to its competitors is that the dual IOP di-
rectly parameterizes the closed-loop transfer functions from
noises and references to inputs and outputs. Any knowledge
about the closed-loop behaviors of the original system can
be converted into equivalent constraints and imposed on the
dual input-output parameters. One of the examples is the
identification of systems that are positively stabilized by the
given controller [19], which means the resulting closed-loop
transfer functions (e.g. W,X,Y,Z) are positive. This prior
information can be easily incorporated as constraints on the
dual parameters in the optimization problem (7).

B. Implementation of Dual IOP

A straightforward implementation of the dual IOP iden-
tification framework is introduced as follows. It is worth
noting that the optimization problem (7) is generally infinite-
dimensional. To avoid solving such an infinite-dimensional
problem, we consider a length τ finite impulse response
(FIR) parameterization to approximate the closed-loop trans-
fer functions W,X,Y,Z, namely,

W =

τ−1∑
t=0

W [t]z−t, X =

τ−1∑
t=0

X[t]z−t,

Y =

τ−1∑
t=0

Y [t]z−t, Z =

τ−1∑
t=0

Z[t]z−t,

(8)

where W [t], X[t], Y [t], Z[t] are real matrices serving as
decision variables which represent the t-th element of the
corresponding transfer function ∀ t = 0, · · · , τ − 1.

In the discrete-time case, it has been proved that for
τ → ∞, the FIR parameterization in (8) spans the entire Rc

[20], and the same parameterization as above is exploited
in [11] as well for the case of controller design. The
approximation order τ is then a hyperparameter that is to be
chosen appropriately: an excessively large τ leads to huge
computational complexity and undesired overfitting of noise,
whereas τ being too short makes the truncation error large.

The stability and causality constraint (6c) is inherently
satisfied since a transfer function in FIR parameterization
has poles only at the origin. The affine subspace constraints
(6a)-(6b) can be implemented as a group of linear equality
constraints. An example for Z−KX = I is given as

Z[0]
Z[1]

...
Z[τ − 1]

0
...
0


− Co(K) ·


X[0]
X[1]

...
X[τ − 1]

 =

[
I
0

]
, (9)
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where Co(K) ∈ Rm·(ν+τ−1)×p·τ represents the convolution
matrix of K and is constructed by,

Co(K) =



K[0] 0 · · · 0
K[1] K[0] · · · 0

...
...

. . .
...

K[ν − 1] K[ν − 2] · · · K[0]
0 K[ν − 1] · · · K[1]
...

...
. . .

...
0 0 · · · K[ν − 1]


. (10)

The equation above is valid when K is a deadbeat con-
troller, e.g. K(z) =

∑ν−1
t=0 K[t]z−t for some finite order

ν ≤ τ . In case K has a general fractional structure, i.e.
K = D−1

K NK , we have Z−KX ⇒ DKZ−NKX = DK ,
which also results in a group of linear equality constraints.
The cost function f = ∥y −Xr∥22 is constructed as,

f =

∥∥∥∥∥∥∥∥∥


y(0)⊤

y(1)⊤

...
y(N − 1)⊤

− toep(r⊤) ·


X[0]⊤

X[1]⊤

...
X[τ − 1]⊤


∥∥∥∥∥∥∥∥∥
2

2

, (11)

where toep(r⊤) ∈ RN×m·τ represents the (block) Toeplitz
matrix of the transpose of r with the first column block being
[r(0), r(1), · · · , r(N − 1)]⊤ and the first row block being
[r(0)⊤,0]. The implementation of the dual IOP framework
is summarized by Algorithm 1.

Algorithm 1
Input: y, r, K, τ
Output: Ĝ

1: Determine input (output) number m (p) from K
2: Define matrix variables W [t] ∈ Rp×p, X[t] ∈ Rp×m,

Y [t] ∈ Rm×p, Z[t] ∈ Rm×m ∀t = 0, · · · , τ − 1
3: Construct the cost function f via (11)
4: Construct the affine constraints in (6a), (6b) via (9)
5: Solve the quadratic program with the cost and constraints

defined in Steps 3 and 4 and obtain the estimated FIR
elements Ŵ [t], X̂[t], Ŷ [t], Ẑ[t]

6: Construct Ŵ =
∑τ−1

t=0 Ŵ [t]z−t and similar for X̂
7: Compute Ĝ = Ŵ−1X̂ and return Ĝ

IV. REVIEW OF THE BENCHMARK METHODS

This section provides a brief overview of two existing
closed-loop identification methods which also guarantee the
identified plant is stabilized by the known controller, namely
the dual YP and dual SLP methods.

A. The Dual YP Identification

Given an initial guess of the plant GX stabilized by K,
suppose K and GX admit coprime factorizations K =
D−1

K NK and GX = D−1
X NX , respectively [21]. Subse-

quently, we construct the virtual input α and output β by,

β = DXy −NXu,

α = DKu−NKy = DKr.
(12)

Since α only depends on the reference r, it is statistically
uncorrelated with the noise v. Hence, the transfer function Q
from α to β, also known as the dual Youla parameter, can be
consistently identified by the following open-loop equation,

β = Qα+ Se, (13)

where S represents the noise dynamics of this equivalent
open-loop system. The dual Youla parameter Q can be
identified by least squares via,

Q̂ = argmin
Q∈RH∞

∥β −Qα∥2, (14)

and the estimated plant Ĝ is given by,

Ĝ =
(
DX + Q̂NK

)−1 (
NX + Q̂DK

)
, (15)

which is stabilized by K if and only if Q̂ is stable.

B. The Dual SLP Identification

The dual SLP framework starts by realizing a state-
space representation (AK , BK , CK , DK) of K so that the
dynamics of the controller can be described by,

ξ(k + 1) = AKξ(k) +BKy(k) +BKvv(k),

u(k) = CKξ(k) +DKy(k) +DKvv(k),
(16)

where ξ(k) is the internal state and BKv ,DKv represent
the noise dynamics exerting on ξ(k) and the control input
u(k), respectively. Consequently, the dual SLP identification
framework solves the following optimization problem,

min
RK ,NK ,MK ,LK

f(r,y,LK) (17a)

s.t.
[
zI −AK −BK

] [RK NK

MK LK

]
=

[
I 0

]
, (17b)[

RK NK

MK LK

] [
zI −AK

−CK

]
=

[
I
0

]
, (17c)

RK ,NK ,MK ∈ 1

z
RH∞, LK ∈ RH∞. (17d)

Specifically, the transfer functions RK ∈ 1
zRHn×n

∞ ,
NK ∈ 1

zRHn×m
∞ , MK ∈ 1

zRHp×n
∞ , LK ∈ RHp×m

∞ are
called the closed-loop response functions. Moreover, LK is
proved to be the transfer function from r to y, i.e.,

y = (I −GK)−1Gr = LKr. (18)

Supposing that the optimal solution of problem (17) is
(R̂K , N̂K , M̂K , L̂K), the estimated plant can be constructed
as,

Ĝ = L̂K − M̂KR̂−1
K N̂K . (19)

Remark 3: As proved in [7], L̂K and the optimization
problem (17) remains invariant to the state-space realization
of K. However, if the controller has a large order, i.e., the
dimensions of the transition matrices AK , BK , CK are large,
then the dimensions of the dual parameters will be large
too. Thus, the size of the decision variable space (or, the
computational complexity) in dual SLS depends on the order
of the given controller K. More details are elaborated in
Section V-A.
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Fig. 2. Plots of the mean of err(Ĝ) versus data length using dual IOP.
The error shows asymptotic convergence as the data length increases.
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Fig. 3. Box plots of err(Ĝ) distributions in [%] using dual IOP, dual SLP,
dual YP with Gx = Ga, Gb and Gc separately.

V. NUMERICAL RESULTS

In this section, the performance of the proposed dual
IOP identification framework is illustrated using simulation
results and compared with dual YP and dual SLP.

A. Simulation Configuration

We consider the following single-input single-output
(SISO) system [7], [12] given by

G0 =
1

1− 1.6z−1 + 0.89z−2
, K0 = z−1 − 0.8z−2,

H0 =
1− 1.56z−1 + 1.045z−2 − 0.3338

1− 2.35z−1 + 2.09z−2 − 0.6675
.

(20)

The estimation error to quantify the quality of the estimate
Ĝ of the plant G0 is defined as

err(Ĝ) =

L∑
i=1

∥G0(jωi)− Ĝ(jωi)∥2
∥G0(jωi)∥2

× 100%, (21)

where N is the data length and ωi’s are L equally spaced
positive frequencies within (0, π) with L = (N + 1)/2. We
further choose the pseudorandom binary sequence (PRBS)
[22] with a magnitude of 1 as the reference excitation r(k).
For PRBS signals, N is restricted to 2d − 1, ∀d ∈ N, and d
is chosen from 8 to 14. The noise sequence e(k) is sampled
from the normal distribution N (0, 1), ∀k = 0, · · · , N−1. We
perform the experiments 100 times (i.e., with 100 different
realizations of the noise) to illustrate the robustness of the
dual IOP methods as will illustrated in Figure 3.

The model structures of the dual IOP parameters are
chosen as τ -ordered FIR as mentioned in (8) with τ =
14. Similarly, the dual SLP parameters RK ,NK ,MK ,LK

are also modeled as FIR transfer functions, i.e., RK =∑τ−1
t=1 RK [t]z−t, NK =

∑τ−1
t=1 NK [t]z−t, MK =∑τ−1

t=1 MK [t]z−t, and LK =
∑τ−1

t=0 LK [t]z−t, using the
same τ . Note that, RK , NK , MK do not have the zeroth
element since they belong to 1

zRH∞ as shown in (17d).
Similarly, the dual Youla parameter of dual YP is parame-
terized as Q =

∑τ−1
t=0 Q[t]z−t with τ = 14. The following

transfer functions are chosen as the initial nominal plant GX

in dual YP to test its performance under different scenarios:
• Ga = 0, a zero gain.
• Gb = ĜDY, the estimated plant by dual YP using

additional data and Ga above as the initial plant. This
choice is equivalent to a scenario where certain prior
knowledge of the plant is provided.

• Gc = − 1
z+0.5 , an arbitrarily selected function that is

stabilized by K as used in [7].

B. Results and Discussions

We collect the estimated plants Ĝ from all three methods
using independently generated data, calculate the errors as
defined in (21), and visualize the results in the following
figures. As displayed in Figure 2, the mean of the identifica-
tion errors using dual IOP exhibits asymptotic convergence
as data length N increases. More specifically, the box plots
of error distributions for dual IOP compared with other
benchmark methods are given in Figure 3. A data length
of N = 214 − 1 is selected for illustration. Results indicate
that given the same PRBS order and FIR order, dual IOP
performs the best as it shows an obvious decrease in the
error median compared to others. The medians from dual
IOP, dual SLP and dual YP with Ga are 0.943, 1.01, 1.15
respectively, meaning dual IOP has a reduction in the median
by 7% and 18%. Note the performance of dual YP strongly
depends on the choice of the initial nominal plant. In some
cases, especially when the prior knowledge of the real plant
is limited, dual YP may lead to less convincing estimates
with large uncertainties (for instance, when GX = Gc).

Another important observation is that dual IOP demon-
strates an increased precision than dual SLP, as the dis-
tribution of err(Ĝ) for dual SLP results in a significantly
larger variance. This is because dual SLP implicitly increases
the dimension of the problem compared to dual IOP. In
particular, consider the SISO system in (20), the controller
K0 has n = 2 internal states. This means the dual system-
level parameters RK ,NK ,MK are MIMO transfer func-
tions, while the dual input-output parameters W,X,Y,Z are
still SISO functions. This means dual SLP always optimizes
more variables than dual IOP given the same model order.
Therefore, the region between the error quartiles (and also
extrema) of dual IOP is narrower than those of dual SLP.

We further compare the plants estimated by dual IOP and
dual SLP via Bode plots. The Bode plots of 100 independent
experiments using dual IOP and dual SLP are given in Fig-
ures 4 and 5, respectively. As is evident from the figures, over
100 trials all the estimates by dual IOP are located around
the true plant with smaller offsets. On the other hand, dual
SLP estimates show larger deviations to the original plant,
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Fig. 4. Bode plots of 100 independent dual IOP trials. All the dual IOP
estimates provide better approximations as compared to dual SLP in Fig. 5.

Fig. 5. Bode plots of 100 independent dual SLP identification trials. The
dual SLP estimates (solid curves) deviates from the true plant for some trials.

thus indicating dual SLP is more vulnerable to overfitting
and dual IOP offers superior performance compared to the
above two benchmark methods.

VI. CONCLUSION

In this paper, we propose a novel closed-loop identification
framework, named dual input-output parameterization (dual
IOP), which is the dual problem to the input-output param-
eterization in control synthesis. Given the knowledge of the
controller, the dual IOP identifies the plant by optimizing the
closed-loop transfer functions subject to a group of linear
equality constraints. The estimated plant is guaranteed to
be stabilized by the known controller, and the estimation
error shows asymptotic convergence with respect to the input
data length. The dual IOP improves upon the benchmark
methods since (a) it exhibits decreased empirical mean and
variance of the estimation error, and (b) it does not rely on
any pre-computations, such as doubly-coprime factorization
or state-space realization of the controller. For future work,
a possible direction is to investigate the performance of
the dual IOP framework in the identification of systems
with specific closed-loop behaviors, such as plants that are
positively stabilized by the known controller.
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