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Abstract— In this paper, a parameter identification method
for multilinear time-invariant grey-box models which are struc-
tured by Boolean functions is presented. Applying binary index-
ing to network graphs enables an efficient extraction of struc-
tural system information which can be transformed into con-
tinuous Zhegalkin polynomials. Their parameters are identified
with a nonnegative alternating least squares (ALS)-algorithm.
A running example demonstrates the application of this method
and the algorithm is briefly analysed.

I. INTRODUCTION

When modeling and simulating complex real-world sys-
tems, an efficient representation of the model parameter
space is of growing significance. This importance is particu-
larly evident in various practical scenarios, such as the appli-
cation of model-based controllers that require real-time com-
putational capabilities. Parameter spaces with a high number
of signals and parameters often contradict the demand for
efficient computations. For this reason, the development of
efficient modeling strategies, that at the same time preserve
important system properties as, e.g., it’s basic connectivity
structure, is a current area of research.

Certain subgroups of real-world systems, such as, e.g.,
industrial systems [1], manufacturing processes [2], and
power systems [3], can be characterized as discrete event
systems (DES). This paper deals with a new approach to the
representation of DES. Effective approaches for the repre-
sentation of discrete event systems, binary systems, graphs,
and automata can be found by applying methods from the
Boolean differential calculus, which was first introduced
in [4]. A powerful tool to perform calculations of the Boolean
differential calculus is ”XBOOLE”, see [5]. A link between
Boolean and real-valued functions is provided by Zhegalkin
polynomials [6], which have, e.g., been applied for the
modeling of sequential systems in [7] and structural gene
modeling in [8]. The use of Zhegalkin polynomials produces
a subclass of multilinear functions.

Multilinear models, as initially documented in [9], offer
a versatile framework for modeling complex systems with
nonlinear dynamics. Simultaneously, they provide an orga-
nized and structured representation, making them a valuable
tool in multiple domains. This model class finds utility in a
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range of applications, including simulating heating systems
(as observed in [9], [10]) and analyzing energy systems (as
detailed in [11]). Further application fields of multilinear
models include, e.g., black box parameter identification,
see [12], or system identification with tensor-based methods,
see [13]. However, despite the merits of multilinear models,
parameter identification methods for these are still topics of
current research.

In [14] a multilinear modeling approach that derives
state equations preserving the connectivity structure of a
model by applying binary indexes has been introduced. Due
to binary encoding, that approach allows the representa-
tion of a huge number of outputs by a small number of
states. This paper introduces an approach to parameterization
and grey-box parameter identification of the states of such
Boolean-structured multilinear time-invariant (MTI)-models.
In Section II, fundamentals used within this paper from the
field of Boolean differential calculus and MTI-models are
outlined. Section III describes the derivation of a reduced
MTI-model structure using a running example. Based on
that, Section IV defines a parameterization of the model
equation which preserves the structural information, before
an alternating least squares (ALS)-algorithm is introduced to
enable the identification of parameters from a given state
trajectory. Conclusively, the ALS-algorithm is applied for
parameter identification from a given state trajectory and
evaluated concerning accuracy and runtime.

II. FUNDAMENTALS

A. Multilinear and Boolean functions

Definition 1: A multilinear function is defined as the inner
product between a row vector of coefficients fT and a
monomial vector m(x):

f(x) = fTm(x) (1)
where

m(x) =

(
1
xn

)
⊗ · · · ⊗

(
1
x1

)
∈ R2n . (2)

Here, ⊗ represents the Kronecker product, and fT denotes
the vector f transposed.

Boolean functions, a subclass of multilinear functions,
are defined on binary vectors from the set B = {0, 1},
where 0 denotes ”False” and 1 signifies ”True.” This
notation is consistently used throughout the paper. A
Boolean function can be represented by a truth vec-
tor b = (b1, ..., b2n)

T ∈ B2n . Zhegalkin polynomials [6] of-
fer an alternative representation for Boolean functions, em-
ploying conjunctions (i.e. AND connections) of non-negated
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variables connected by XOR operations. As expounded
in [7], the formal structure of Zhegalkin polynomials cor-
responds to multilinear functions by replacing conjunctions
with multiplication and XOR operations with summation
over the integers modulo 2. Using a slight notation adjust-
ment, we express Zhegalkin polynomials as the inner product
of a truth vector bT and a vector l(x), which is built as a
Kronecker product of vectors of negative and positive literals:

f(x) = bTl(x) (3)
where

l(x) =

(
1− xn

xn

)
⊗ · · · ⊗

(
1− x1

x1

)
∈ R2n . (4)

The term “literal”, in mathematical logic, refers to the
separate occurrences of a variable xi. The evaluation of
a Zhegalkin polynomial for values x ∈ {0, 1}2n yields the
same result as the Boolean function represented by the truth
vector b, while at the same time allowing calculations with
continuous values, as further detailed in [15].

B. Autonomous multilinear time-invariant systems

Discrete-time autonomous MTI models characterize sys-
tems where the states vector x, and outputs vector y,
can be effectively described by multilinear functions fi(x)
and gj(x). For a model with n states and p outputs this
representation takes the form:

x(k + 1) = (f1(x(k)), f2(x(k)), . . . , fn(x(k)))
T, (5)

y(k) = (g1(x(k)), g2(x(k)), . . . , gp(x(k)))
T. (6)

Combining the row vectors of coefficients of the multilinear
functions (see (1)) in a transition matrix F ∈ Rn×2n and an
output matrix G ∈ Rp×2n yields a matrix representation

x(k + 1) = Fm(x(k)) (7)
y(k) = Gm(x(k)). (8)

In (7) and (8) it is evident that, due to the monomial
vector m(x(k)), see (2), the used equation structure permits
all multilinear combinations of the occurring variables which
can be adjusted afterward by the factor matrices. For a
comprehensive understanding of these models, a detailed
exposition can be found in [10]. The modeling approach
presented in this paper uses a subclass of MTI-models, as
detailed in Section III.

C. Boolean differentials

For systems whose structure is representable by graphs,
there exist various methods of representing the structural
information. A promising approach to storing the structural
information of a system which can be described by η nodes
and ϵ edges is based on the field of Boolean algebra.
The nodes represent distinct objects of the system, e.g.
subsystems, while the edges indicate, whether there exists
any type of interaction between the objects. The method uses
binary indexing of the graph nodes of a model. A Boolean
vector z = (z1, . . . , zw) is used to reindex the graph nodes yi
with the number w of Boolean variables zi depending on
the number of nodes η by w = ⌈log2 η⌉. Now the edges of
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Fig. 1: Binary indexing of graph nodes with z = (z1, z2, z3)
and dz = (dz1, dz2, dz3)

the graph can be described by a vector of Boolean differen-
tials dz = (dz1, . . . ,dzw). According to [5], this vector of
Boolean differentials indicates the change in a Boolean space
between the subsequent nodes z and z′. A value of 1 denotes
a change in the Boolean value of zi, whereas a 0 represents
no change in the value. Note, that the Boolean differential dz
itself does not contain information on the direction of the
edge between two nodes. This information is obtained by
representing the binary-valued nodes and edges of a graph
in a table, as detailed in Subsection II-D.

Example 1: Binary reindexing for a directed deterministic
graph with eight nodes is shown in Fig. 1. The nodes of
the graph are represented by w = 3 Boolean variables. The
edges can now be described by a vector of Boolean differ-
entials (dz1, dz2, dz3). The change of a Boolean variable zi
can be expressed using the logical XOR-Operator ⊕, which
can also be represented by the identities of Boolean Algebra,
as stated in [5]. Therefore, the relation between the Boolean
indices of two consecutive nodes zi and z′i can be given by

z′i = zi ⊕ dzi = (zi ∧ dzi) ∨ (zi ∧ dzi), (9)

for all i = 1, 2, ..., w with ∧ denoting the logical
AND-operator, ∨ the OR-operator, and zi expressing logical
negation of the variable zi.

D. Ternary vector lists

A table consisting of the information on the binary-
valued nodes and edges of a graph is called a binary
vector list (BVL), see [5]. Each row of a BVL contains a
concatenation of a vector z ∈ B1×η and a vector dz ∈ B1×η .
Therefore, the dimensions of a BVL containing the structural
information of a graph with η nodes and ϵ edges are 2η× ϵ.
According to [5], the solution set of a graph, referring to
occurring nodes and edges, can be described by a BVL. The
rows of a BVL are hereafter referred to as vectors. This
type of representation is applicable to directed, undirected,
deterministic, and non-deterministic graphs. This paper is
limited to investigations for directed, deterministic graphs.
A BVL can serve as a starting point for an efficient repre-
sentation of the structural information of a model graph. By
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TABLE I: Representation of the nodes and edges of a graph
as a binary and ternary vector list

(a) Boolean vector list

z1 z2 z3 dz1 dz2 dz3
0 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 1 1
0 1 1 0 1 1
1 0 0 1 1 0
1 1 0 1 1 0
1 0 1 1 1 0
1 1 1 1 1 0

(b) Ternary vector list

z1 z2 z3 dz1 dz2 dz3

0 — 0 0 0 1

0 — 1 0 1 1

1 — — 1 1 0

replacing ”0/1-combinations” of BVL-vectors with a ”Don’t
Care Operator” (—) also used in [5], a reduction can be
achieved. The resulting ternary vector list (TVL) consists of a
reduced number of rows, which will be referred to as vectors.
Those vectors contain the three Boolean elements 0, 1, and
—. A TVL still contains all information on the nodes and
edges of the model graph but in fewer vectors.

Example 2: The BVL of the graph in Fig. 1b is given
in Table Ia. Combining ”0/1-combinations” in the Boolean
vectors results in the TVL of the graph given in Table Ib.
See for example the vectors 1 and 2 in Table Ia, which only
differ in z2 being 0 or 1. Because the value of z2 has no
influence on the resulting dz1 and dz2 for vectors z1 and
z2, it can be substituted by —. For the running example, the
number of vectors has been reduced from 8 vectors in the
BVL to only 3 vectors in the TVL.
An important property of a subclass of TVLs, that has been
defined, e.g., in [5], is orthogonality. It is the foundation of
many algorithms in the field of Boolean Algebra as well as
the modeling approach presented in this paper.

Definition 2: In an orthogonal TVL (OTVL), no identical
Boolean vectors exist, meaning each pair of vectors of the
corresponding BVL differs in at least one position.

E. Zhegalkin Polynomials of Ternary Vector Lists

By using algebraic relaxations (see [7]), orthogonal TVLs
can be written as Zhegalkin polynomials. For this, they
are interpreted as a Boolean function in disjunctive form,
where the elements in the individual OTVL-vectors are
linked by AND-operations and the vectors by OR-operations.
In mathematical terms, this is defined as the sum of all
OTVL vectors for which the respective vector literals lji are
multiplied, see [15]. The polynomial corresponding to the
OTVL with elements vji is then given by

f(X) =

q∑
j=1

(
w∏
i=1

lji

)
with lji =


xi if vji = 1

1− xi if vji = 0

1 if vji = —
(10)

with q denoting the number of OTVL vectors, w the number
of Boolean variables, and state variables xi. The label of the
variable is derived from the heading of the TVL and refers to
node indices as well as to Boolean differentials. Throughout
this paper, variables xi will represent the real-valued domain,
while variables zi denote the Boolean domain.

Example 3: The significance of orthogonality in TVLs
will be demonstrated by this example. We have a

TVL T1 =

(
0 —

— 1

)
which is equivalent to the logic

equation z1∨z2 = 1 (see Subsection II-F). Since both vectors
of T1 contain the element (0, 1), they are not orthogonal.
The polynomial of the TVL is given by (1−x1)+x2, which
yields a value of 2 for x1 = 0;x2 = 1. Consequently, the
non-orthogonal TVL does not fulfill the requirement of a
Zhegalkin polynomial to stay in the set {0, 1} when given
values from that set as input. By fixing one ”Don’t care
operator” to a value of 0, we orthogonalize the TVL. Hereby
we obtain two possible orthogonal TVLs given by

T2 =

(
0 —
1 1

)
; T3 =

(
0 0

— 1

)
.

The Zhegalkin polynomials corresponding to these OTVLs
yield two different representations

(1− x1) + x1x2 = (1− x1)(1− x2) + x2. (11)

of the same equation. For all combinations of values from
the set {0, 1}, (11) is equivalent to the result of the given
logic equation.

F. Solution of ternary vector lists for particular variables

An OTVL containing the structural information of a model
represents a logic equation in disjunctive form, that reads as

Fs(z) =

q∨
j=1

(
2w∧
i=1

lji

)
= 1 with lji =


zi if vji = 1

zi if vji = 0

1 if vji = —
(12)

with the value of lji being assigned for z = (z1, . . . , zw)
and dz = (dz1, . . . , dzw), accordingly. This logic equation
can be solved for individual variables zi or dzi. A detailed
description of how to solve a logic equation with respect to
certain variables can be found in [5].

Example 4: Following Definition 2, the TVL in Table Ib
is orthogonal. The logic equation describing this OTVL is
given by

Fs(z1, z2, z3,dz1,dz2,dz3) = z1 z3 dz1 dz2 dz3

∨ z1z3dz1 dz2 dz3 ∨ z1 dz1 dz2dz3.
(13)

Equation (13) is uniquely solvable with regard
to the variables dz1, dz2, dz3. The concept of
unique solvability of logic functions is detailed
in [5]. The solution functions of the running
example dz1 = f1(z1, z2, z3), dz2 = f2(z1, z2, z3),
and dz3 = f3(z1, z2, z3) can be determined as

dz1 = z1; dz2 = z1 ∨ z3; dz3 = z1. (14)

III. CONSTRUCTION OF A REDUCED MTI-MODEL
STRUCTURE

Applying binary indexing and OTVLs can help to reduce
the storage required for a model’s structural information. The
number of vectors in the OTVL is defined as the rank q
of the reduced model. In order to construct an MTI-model
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TABLE II: OTVLs containing structural information for z′

(a) z′1

z1 z2 z3

(b) z′2

z1 z2 z3
0 0 1
1 0 —
0 1 0

(c) z′3

z1 z2 z3
0 — 0
1 — 1

equation containing the structural information of a model,
a representation for the state equation has to be found.
From (9), for an edge z → z′, the logical equivalent to a
discrete-time state equation can be derived as

z′ = z⊕ dz (15)
with the XOR-operator being applied element-wise to the
corresponding bits in the vectors and z′, z denoting two
consecutive nodes of the graph. By this, a static, non time-
varying structure is represented. The elements dzi in the
vector of Boolean differentials dz result from the model
structure. They can be obtained by solving the logic equa-
tion derived from the OTVL, which contains the structural
information of the graph, for the variables dzi, as shown in
Subsection II-F.

Example 5: Applying (15) to the running example and
inserting the solutions in (14) for dzi yieldsz′1z′2

z′3

=

z1z2
z3

⊕
dz1dz2
dz3

=

 0
z1 z2z3 ∨ z1z2∨z1z2z3

z1 z3 ∨ z1z3

 . (16)

The OTVL-representation of (16) is given in Table II.
By using the algebraic relaxations zi = xi and zi = 1 − xi

from [7], the logic equations defining z′ can be written as
Zhegalkin polynomials, which are valid for real numbers xi.
The result of this relaxation are state equations of a discrete-
time MTI-model with w states, which contain the structural
information of the model. In contrast to general MTI-models,
see Subsection II-B, the multilinear equations derived from
the model structure do not permit all combinations of occur-
ring variables, but only a restricted subspace of those.

Example 6: Applying algebraic relaxations to (16) yieldsx1(k + 1)
x2(k + 1)
x3(k + 1)

 =

 0
(1−x1(k))(1−x2(k))x3(k)+

(1−x1(k))(1−x3(k))+

+0
+x1(k)(1−x2(k)) + (1−x1(k))x2(k)(1−x3(k))

+x1x3

 (17)

for discrete time steps k ≥ 0. Utilizing (10) on the OTVLs
in Table II results in (17) as well due to the convertibility of
logic functions, OTVLs, and Zhegalkin polynomials.
Calculating the state trajectory of (17) for an initial condition
of (1, 1, 1) produces the behavior represented in Fig. 2. The
behavior of x1, x2, x3 coincides with the sequence of binary
node indices of the graph of the running example in Fig. 1b.
From this, it can be seen that (17) contains the structural
information of the running example.
Assuming the states xi are observed, an output equation y(k)
is obtained by applying the Boolean literal vector (4). The
construction of all possible combinations of negative and

Fig. 2: State trajectory for initial states of (1, 1, 1)

Fig. 3: Output trajectory for initial states of (1, 1, 1)

positive literals yields the output equation for the reduced
MTI-model structure as

y(k) =

(
1− x1(k)
x1(k)

)
⊗ · · · ⊗

(
1− xw(k)
xw(k)

)
∈ R2w . (18)

It can be seen from (18), that a reduced MTI-model structure
with w states xi can represent 2w model outputs in y. The
outputs y are always linearly independent due to the structure
of the output function. Since the ratio 2w

w between outputs
and states increases with the number of model outputs, the
proposed approach shows an enormous reduction potential.

Example 7: Inserting the state trajectories from Fig. 2
into (18) results in the output trajectories shown in Fig. 3.
The behavior of the outputs yi matches the sequence of
integer-indexed graph nodes in Fig. 1a when starting at the
node y8 = 7. This indicates, that the output equation as well
preserves the structural information of the model.

IV. PARAMETER IDENTIFICATION FOR A REDUCED
MTI-MODEL STRUCTURE

In the previous section the equation structure of a non-
parameterized reduced MTI-model containing structural in-
formation of a system has been developed by applying (10).
A representation of continuous-valued systems will, however,
require the representation of continuous values. In [14] it has
been investigated, that the use of parameterized Zhegalkin
polynomials enables relaxation of the Boolean states and
outputs to continuous-valued trajectories while preserving
linear independence. This leads to the assumption, that
parameter identification from given data is possible. By this,
nonlinear system behavior can be approximated by a reduced
MTI-model structure. This section will give an overview
of a possible parameterization of the reduced MTI-model
structure, followed by introducing an ALS-algorithm that
enables parameter identification from given data.
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A. Parameterization of the reduced MTI-model structure

To approximate nonlinear system behavior with the re-
duced MTI-model structure derived in Section III, the state
equations of the model need to be parameterized. The
parameterization is performed by introducing real-valued
factors Φ ∈ Rw×rmax

≥0 and Λ ∈ Rrmax×w×w
>0 to (10), with rmax

denoting the maximum number of rows over all OTVLs. This
yields

xs(k + 1) =

rs∑
j=1

ϕsj

w∏
i=1

ljis(k)

with ljis(k) =


xi(k) if vjis = 1

1− λjisxi(k) if vjis = 0

1 if vjis = —
,

and Λ(j, i, s) =


0 if vjis = 1

λjis if vjis = 0

0 if vjis = —

(19)

where rs ≤ rmax refers to the number of rows in the OTVL
corresponding to state equation xs with s ∈ {1, . . . , w}.
The applied factorization relaxes the equations of state.
The performed parameterization is the basis for a grey-box
parameter identification with the structural model informa-
tion contained in the state equations of the model. When
setting all parameters ϕsj and λjis for vjis = 0 in (19) to
values of 1, the structural information given also by (10) is
obtained. In order to preserve the structural information in
the parameterized equation, the real-valued factors are bound
to the non-negative domain. In contrast to the general MTI-
model structure described in Subsection II-B, the developed
reduced MTI-model structure does not allow all possible
multilinear combinations of occurring variables. The allowed
variables are limited by the structural constraints imposed
by the derivation of the model equation from the system
structure. This eventuates in smaller dimensions of the model
parameter space for all cases that do not depend on all
combinations of occurring variables.

B. Non-negative ALS algorithm

A grey-box parameter identification for the structured
MTI-model equation derived in the previous chapters can
be performed assuming a trajectory of measured states X̃ is
known. The goal of the parameter identification is to find a
minimum of the Frobenius norm

min
Φ,Λ
||X̃ −X(Φ,Λ)||F (20)

with

X̃=

 x̃1(1) · · · x̃w(1)
...

. . .
...

x̃1(kend)· · ·x̃w(kend)

;X=

 x1(1) · · · xw(1)
...

. . .
...

x1(kend)· · · xw(kend)


(21)

for the difference between measured states x̃s and simulated
states xs. The trajectory X of simulated states is obtained
by (19). For the nonlinear identification problem in (20) we
assume, that identifiability is given, if (20) is solvable. In
order to find parameters in Φ and Λ to achieve the minimum

in (20), a non-negative ALS approach is developed. The
used approach is depicted in Algorithm 1. As a first step, Φ
and Λ are initialized randomly. The sparsity pattern for Λ is
defined by the positions of elements vjis = 0 in the OTVLs
containing the structural model information. While the cost
of the identification is greater than a set limit, the actual ALS
algorithm is performed. The algorithm iteratively updates Φ
and Λ. By fixing all parameters except one, the minimization
problem (20) is transformed into an easily solvable over-
determined linear system of equations. This solution can be
given as a fraction B

A , as shown in lines 6 and 12. The
matrices A and B are then reshaped to column vectors a
and b which are used to find the non-negative solution for
a least squares problem min

x
||ax− b||22. The solution space

for that problem is constrained because Φ and Λ are only
defined for the positive orthant. To map this dependence, in
lines 9 and 15 a non-negative solution for the least-squares-
problem is calculated. After each sequence of iterations, a
simulation of the model with updated parameter matrices is
performed, to examine the cost of the identification. The cost
is defined as ||X̃ −X(Φ,Λ)||F .

Algorithm 1 ALS algorithm for non-negative structured
multilinear parameter identification

Input: model equations XEq based on (19), data X̃
Output: Φ,Λ

1: random initialization Φ ∈ Rw×rmax

≥0 , Λ ∈ Rrmax×w×w
>0

2: cost← inf ▷ initialize cost
3: kmax ← rows(X̃) ▷ number of discrete steps k
4: while cost > costLimit do
5: for ϕs,j in Φ do
6:

Bϕ

Aϕ
← solution of (20) with X = XEq for ϕs,j

7: aϕ ← reshape(Aϕ, [wkmax, 1])
8: bϕ ← reshape(Bϕ, [wkmax, 1])
9: ϕs,j ← non-negative Lsq solution

for min
ϕs,j

||aϕϕs,j − bϕ||22
10: end for
11: for λj,i,s in Λ do
12: Bλ

Aλ
← solution of (20) with X = XEq for λj,i,s

13: aλ ← reshape(Aλ, [wkmax, 1])
14: bλ ← reshape(Bλ, [wkmax, 1])
15: λj,i,s ← non-negative Lsq solution

for min
λj,i,s

||aλλj,i,s − bλ||22
16: end for
17: X ← simulate(XEq,Φ,Λ)
18: cost← norm(X̃ −X(Φ,Λ),F)
19: end while

C. Evaluation of the non-negative ALS algorithm

In this section, the ALS algorithm developed in Sub-
section IV-B is utilized to identify parameters for a
model with a structure equivalent to the running exam-
ple. A non-parameterized model with a structure given by
(17) and a noisy state trajectory with an SNR of 13 dB
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Fig. 4: Comparison of given and identified state trajectory

0 20 40 60 80 100
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

C
o
st

Overall cost

Fig. 5: Convergence behavior

for kend = 15 steps are given as input to Algorithm 1.
Afterward, a simulation of the identified model with the
initial states of the given state trajectory is performed.
The comparison between given and simulated trajectories is
shown in Fig. 4 and the convergence behavior of the ALS-
algorithm in Fig. 5. It is evident that the trajectories of the
identified model are a good approximation of the given data.
To evaluate the effectiveness of the ALS algorithm, the cost

and runtime for identifying parameters to match the noisy
state trajectory are compared between the ALS-algorithm
and a nonlinear grey-box model identification performed by
MATLABs “nlgreyest” toolbox with the “lsqnonlin”-solver.
Termination conditions for the ALS algorithm are set to a
cost limit of 5 · 10−3 or a maximum of 100 iterations. For
the identification with the “nlgreyest” toolbox the default
settings with a function tolerance of 1·10−5, a step tolerance
of 1 · 10−6, and a maximum of 20 iterations are used. Both
algorithms are evaluated using an average of 500 executions,
with the initial parameters varied randomly for each iteration.
The results of the comparison can be taken from Table III.
For the investigated example with the framework described
in the previous paragraph, the nonnegative ALS algorithm
achieves costs of a similar order of magnitude while at the
same time achieving a much lower runtime.

V. CONCLUSION

An approach for grey-box parameter identification for the
states of Boolean-structured multilinear models has been
presented. For this, the modeling approach introduced in [14]
has been extended by parameterizing the structural model
equation in a way that allows parameter identification while
preserving structural model information. Due to deriving
the model equation from a binary indexed model structure
by applying Zhegalkin polynomials, the model class is a
restricted subspace in the class of multilinear models. This
results in only a subclass of all possible multilinear vari-
able combinations being permitted, which also reduces the

TABLE III: Cost and computation time for nonlinear
least-square and non-negative ALS

Algorithm
nlgreyest (lsqnonlin) nonnegative ALS

Cost 0.1792 0.1868
Time[s] 0.4770 0.0757

number of model parameters to be determined.
A possible use of grey-box system identification for

Boolean-structured multilinear models is, for example, the
modeling of energy network models for efficient controller
design. In order to extend the proposed approach towards
grey-box system identification, the states must be estimated
from the measured inputs and outputs of a system. For
this reason, further research will investigate methods of
state identification as a preceding step before the parameter
identification. Also, an extension of the proposed modeling
approach towards models with a non-deterministic structure
is necessary to enable the modeling of real-world systems as
well.
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