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Abstract— This paper addresses the joint vehicle-state and
road-map estimation based on global navigation satellite system
(GNSS), camera, steering-wheel sensing, wheel-speed sensors,
and a prior map. Because prior maps, e.g., generated from
mobile mapping systems, are updated infrequently and do
not capture high-frequency events such as road construction,
we include the map parameters in the estimation problem.
Both GNSS and camera measurements, such as lane-mark
measurements, have noise characteristics that vary in time.
To adapt to the changing noise levels and hence improve
positioning performance, we combine the sensor information
in a noise-adaptive variational Bayes Kalman filter to jointly
estimate the vehicle state, the parameter vector of the map,
and the measurement noise. Simulation results indicate that
the method can accurately adjust the measurement noise to
the environmental conditions and thereby correct for errors in
the prior map while providing accurate vehicle positioning.

I. INTRODUCTION

Road-vehicle positioning is usually approached by fusion
of multiple sensor modalities [1]. Also, by leveraging prior
road maps, for example, generated by a mobile mapping
system (MMS), reliability and accuracy can be improved
as it enables positioning relative to a global map. However,
relying blindly on prior maps comes with drawbacks because
maps from MMSs are updated infrequently, while higher-
frequency changes to the map (e.g., road construction, lane
repainting, temporary road rerouting) are not captured by an
MMS-generated prior map. To this end, many approaches for
vehicle positioning include map updating in the estimation
problem. Recent works use a combination of global naviga-
tion satellite system (GNSS), camera, inertial measurement
units (IMUs), and radar to accurately and jointly estimate
the vehicle state and road map. For instance, [2] fuses
information from several (local) sensors to perform joint road
geometry estimation and vehicle tracking. This work was
extended in [3], where a forward-looking camera and radar,
together with an IMU, a steering wheel sensor, wheel speed
sensors, and a new road-geometry model are leveraged in
an extended Kalman filter (EKF). An issue with most sensor
setups is that the reliability of camera and GNSS measure-
ments is time-varying—for example, because of erroneous
detection in the computer-vision algorithm or because of
environmental effects, such as rain or lighting conditions
that degrade the camera reliability. GNSS measurements
provide global position information by estimating a receiver’s
(e.g., located in the vehicle) states from a set of code and
carrier-phase measurements, acquired from one or several
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constellations of satellites and transmitted over one or more
frequency bands [4]. While being reliable most of the time,
GNSS measurements are prone to occasional errors, which
means that both camera and GNSS generate measurements
with time-varying reliability.

In [5], we developed a GNSS-based sensor-fusion method
for joint vehicle positioning and road-map estimation, with
the map represented by at least one spline. The sensor-fusion
method estimates the vehicle state and the spline coefficients
in an interacting multiple model (IMM) linear-regression
Kalman filter (LRKF), outputting the mean estimate and
associated covariance of said quantities. The IMM-LRKF
in [5] can deliver accurate vehicle positioning and map
updates, down to centimeter-level accuracy, provided that the
true underlying measurement noise is captured in the set of
LRKFs. However, it can be difficult to know a priori what
is a suitable set of noise models to include in the IMM. One
option is to include a set large enough to surely include any
combination of noise values, but this can lead to the IMM
being computationally prohibitive. To solve this problem, this
paper adopts a variational-Bayes (VB) methodology [6] for
joint vehicle state and road-map estimation. We adapt the VB
method in [7] to the LRKF setting and estimate explicitly
the measurement covariance within a single LRKF, using
our previously developed spline-based road representation.
We show that the method can accurately estimate the time-
varying noise and thereby provide a more flexible solution
than previously presented in [5].

A. Notation:

Throughout, x ∼ N (µ,Σ) indicates that the vector x ∈
Rnx is Gaussian distributed with mean µ and covariance
Σ and IW(ν,Σ) is the inverse-Wishart distribution with
degree of freedom ν and scale matrix Σ. Matrices are written
in capital bold font as X , and the element on row i and
column j of X is denoted with Xij . We let x̂j|m denote the
estimate of x at time step j given the measurement sequence
y0:m = {y0, . . .ym}. With p(xk|y0:k), we mean the poste-
rior density function of the state xk from time step 0 to time
step k given y0:k. The concatenation of two vectors x ∈ Rnx

and y ∈ Rny is [x;y] = [x⊤,y⊤]⊤ ∈ Rn+m. Furthermore,
1n×n denotes the n × n identity matrix, 1n is a column
vector of n elements equal to one, (a)(⋆)⊤ = (a)(a)⊤ for
an expression a, vec(·) is the vectorization operator, and
blkdiag(A,B) denotes a block-diagonal matrix composed
of A and B. The notation R(ϕ) denotes the 2D rotation
matrix of angle ϕ.
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Fig. 1. The relation between the vehicle frame OE , the camera frame OC ,
the road frame of the left lane, OR,l, and the world frame OW . The distance
between the vehicle’s longitudinal X-axis and the left lane boundary is lL,
and the shaded circle depicts the road curvature (here exaggerated) at the
origin of OL. The lines in red dashed indicate measurements that can be
obtained by the camera, which is located in OC , for a given lookahead.
The definition of OR,r is analogous to that of OR,l.

II. VEHICLE AND SENSOR MODELING

Fig. 1 shows the different coordinate frames used in this
paper. The vehicle’s coordinate frame OE is located at the
vehicle center of gravity. The vehicle yaw angle ψ describes
the rotation of the vehicle frame OE relative to the world
frame OW by the standard planar rotation matrix. The road-
aligned frame OL is located on the left lane boundary,
separated with a distance lL from the camera frame OC ,
which is rigidly connected to OE with distance lC . The road-
aligned frame OR,r is located on the right lane boundary,
separated with a distance lR from the camera frame OC .

In a previous paper, we showed that for estimation pur-
poses under normal driving conditions (i.e., not at-the-limit
maneuvers), a kinematic single-track model performs similar
to a dynamic equivalent [8]. Hence, in the following we
consider a kinematic model, but our method straightfor-
wardly extends to more complicated vehicle models. The
kinematic single-track model is based on a bicycle model,
with its three states being the global (planar position) and the
heading angle, z = [pX , pY , ψ] ∈ Rnz , nz = 3. The wheel-
speed measurements directly provide the vehicle velocity. In
continuous time, the model is

ż =



vX cos (ψ + β)/ cos(β)
vX sin (ψ + β)/ cos(β)

vX tan (δf )/L


 , (1)

where L = lf+lr, β = arctan(lr tan(δ)/L) is the kinematic
body-slip angle, and the velocity is related to the wheel
speeds by vX = Rw

2 (ωf + ωr). After time discretization,
we write (1) concisely as

zk+1 = g(zk,uk) +wz
k , (2)

with Gaussian zero-mean process noise, wz
k ∼ N (0,Qz), to

account for generic model errors, and uk denotes the control
input at time step k.

A. Road Model

There are multiple ways a road map can be represented.
Several previous works have employed a clothoidal represen-
tation [3], [9]. However, as highlighted in [5], it is appealing
to consider lower-dimensional Bézier curves forming a spline

and implicitly enforce continuity at the endpoints of the
curves [5, Proposition 1], as Bézier curves are more expres-
sive than clothoids. Consequently, we consider Bézier curves
for the construction of probabilistic road-map distributions.

Definition 1 (Bézier curve) A Bézier curve of degree n
denoted by b : [0, 1] 7→ Rd is defined by n+1 control points
Pm = {cm,i ∈ Rd : d > 1, i ∈ [0, ..., n]} as an interpolation

b(λ,Pm) =

n∑

i=0

(
n
i

)
(1− λ)(n−i)λicm,i (3)

where λ ∈ [0, 1]. We build the maps using two such curves:
• One of degree n = 3, dimension d = 2, with points

Pm = {cm,0, cm,1, cm,2, cm,3}. This curve is denoted
by cm(λ) = b(λ,Pm) and represents the center lane;

• The other curve represents the half-width of the lane.
This curve is denoted by wm(λ) = b(λ,Wm), is of
degree n = 1, d = 1, and Wm = {wm,0, wm,1}. If there
are multiple lanes, the dimension d can be increased.

In the following, rm = [cm;wm] : [0, 1] 7→ R2 × R>0 is
a three-dimensional curve, and r = [c;w] : [0,M − 1] 7→
R2 × R>0 denotes M − 1 consecutive such curves,

r(s) =

{
rm(s−m+ 1) if s ∈ (0,M − 1]

r1(0) if s = 0
, (4)

where m = ⌈s⌉. We can express a normal direction as
n(s) = R(π/2)c′(s)∥c′(s)∥−1

2 . The left and right lane
boundaries are defined as c(s) ± n(s)w(s). The map pa-
rameters are

γ̄=[vec(P1);...; vec(PM−1); vec(W1);...; vec(WM−1)]. (5)

The problem with this representation is that the lane bound-
aries need not be continuous for an integer s unless we
impose constraints on γ̄. To achieve continuity of the lane
boundaries, which is necessary for the algorithms proposed
in this paper, we require c ∈ C1([0,M − 1],R2) and w ∈
C0([0,M − 1],R>0).

To this end, we consider a representation with M general-
ized endpoints (GEPs), denoted by {γm}Mm=1, which relate
to the set of control points {(Pm,Wm)}M−1

m=1 as

[γm]1 = xm = [cm,0]1 = [cm−1,n]1, (6a)
[γm]2 = ym = [cm,0]2 = [cm−1,n]2, (6b)

[γm]3 = ϕm = arctan(
[cm,0−cm−1,2]2
[cm,0−cm−1,2]1

), (6c)

[γm]4 = rm = ∥cm,1 − cm−1,n−1∥2/2, (6d)
[γm]5 = wm = wm,0 = wm−1,1, (6e)

for all m = 2, ..,M−1, with γ1 and γM defined analogously.
Expressing the segment rm in (γm,γm+1) ensures that c ∈
C1([0,M − 1],R2) and w ∈ C0([0,M − 1],R>0), see [5].

Remark 1 As the center lane c(s) is linear in the map
parameters (5), it is possible to formulate constrained linear-
regression problems that fit a road-map representation to
a collection of data points D = {(cj , sj)}Jj=1 assuming a
measurement model cj ∼ N (c(sj), σ

2I2). Such points can
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be sampled from high-definition maps, or simulators. Hence,
we map a solution of the regression problem to the GEP-
representation by (6) and use it as a filtering prior.

In the following, we denote the map parameters in a GEP
representation by γ = [γ1; ...;γM ] and introduce uncertainty
in the map by assigning a Gaussian prior on each γm, γm,0 ∼
N (mγ

m,0,Σ
γ
m,0) as per Remark 1. The time evolution of γ

is hard to model from physical reasoning, as road maps are
mostly constant over long time spans but change abruptly
during road maintenance. Assuming slow changes in the
map, we use a nearly-constant position model,

γk+1 = γk +wγ
k , wγ

k ∼ N (0,Qγ). (7)

As an example, if the process noise in the map is small,
Qγ ≈ 0, there are negligible changes to the map state γ in
the time update and most changes are due to the measure-
ment update. In summary, the prediction model consisting of
(1) and (7) is

xk+1 = [g(zk,uk);γk]︸ ︷︷ ︸
≜f(xk,uk)

+wk, wk ∼ N (0,Q), (8)

with x = [z;γ], w = [wz;wγ ] and Q = blkdiag(Qz,Qγ).

B. Measurement Model

We consider the GNSS position measurements yp
k gener-

ated by an estimator using code and carrier-phase measure-
ments, for example, by the methods in [10]–[12]. We assume
the position measurements to be unbiased and Gaussian
distributed. Because the estimation quality will continuously
change with environmental conditions and receiver move-
ments, both the mean µp

k and covariance Rp
k are time

varying, resulting in yp
k ∼ N (µp

k,R
p
k). For simplicity but

without loss of generality, yp ∈ R2.
The camera in combination with a computer-vision (CV)

algorithm (e.g., [13]) provides measurements of the road
geometry and the relative vehicle position. We assume inter-
mediary processing such that we obtain the distance from OC

and the left/right lane boundaries, lL, lR, and a polynomial
approximation of the lane markings, fL, fR, in front of the
vehicle for a look-ahead defined by the CV algorithm.

To use the polynomial approximation for inference, the
measurement equation needs particular values at each time
step and not functional expressions. Hence, we sample the
polynomials from the CV algorithm uniformly at ns points
over their domain defined in s, {siL, siR}

ns
i=1. This gives

hc = [lL, lR, fL(s
1
l ), · · · , fL(s

ns

L ), fR(s
1
R), · · · , fR(s

ns

R )]⊤.
(9)

The camera measurements yc
k are assumed Gaussian dis-

tributed according to yc
k ∼ N (µc

k,R
c
k), where, similarly to

the GNSS measurements, both the mean and covariance are
time varying. The complete measurement model is

yk = h(xk,uk) + ek ∈ Rny , (10)

where yk = [yp
k;y

c
k] ∈ R4+2ns and ek is zero-mean Gaus-

sian distributed with a block-diagonal covariance matrix.

As noted in [5], because the GNSS provides global posi-
tion measurements of the vehicle and the camera provides
map measurements relative to the vehicle, the model (8) in
combination with (10) renders xk locally weakly observable.
Note that the Jacobians of the measurement equation are
not known in closed form, but have to be numerically
approximated if used.1

III. BAYESIAN SENSOR FUSION OF GNSS AND CAMERA

The estimation problem involving estimating the vehicle
state, the map, and the noise covariance is nonlinear and the
Jacobian of the measurement equation is not known in closed
form, we consider derivative-free nonlinear KFs.

A. Linear-Regression Kalman Filter

LRKFs approximate the posterior density by its first two
moments in a Gaussian approximation,

p(xk|y0:k) ≈ N
(
x̂k|k,Pk|k

)
. (11)

Given the assumed Gaussian filtering posterior (11) at time
step k, the distribution of the state prediction at time step
k + 1 is approximated by another Gaussian,

p(xk+1|xk,y0:k) ≈ N
(
xk+1|x̂k+1|k,Pk+1|k

)
, (12)

by direct evaluation of the associated moment integrals

x̂k+1|k =

∫
f(xk)p(xk|y0:k) dxk, (13a)

Pk+1|k =

∫ (
f(xk)− x̂k+1|k

)
(⋆)

⊤
p(xk|y0:k) dxk +Qk,

(13b)

simplified by the assumption of additive noise wk. Using
the approximation (11), (13) reduces to two Gaussian inte-
grals. For a general f , no closed-form solutions exist, so
we leverage numerical integration methods also known as
cubature rules [14]. To this end, we transform the coordinates
using the Cholesky factors of the covariance matrix Pk|k =
Lk|kL

⊤
k|k, such that in the transformed coordinates, the

integration is over a unit Gaussian. The LRKFs approximate
the transformed integrals by evaluating the nonlinearity f

in a set of integration points defined by I = {ϖi,ηi}|I|i=1,
where |I| is the total number of points. Hence, for ηi,

x̂i
k+1|k = f

(
x̂k|k +Lk|k η

i
)
, (14)

and subsequently approximate the moment integrals in (13),

x̂k+1|k ≈
|I|∑

i=1

ϖix̂i
k+1|k, (15a)

Pk+1|k ≈
|I|∑

i=1

ϖi(x̂i
k+1|k − x̂k+1|k)(⋆)

⊤. (15b)

1For instance, given (pX , pY , ψ) and γ, the distance lL in (9) is found
by applying a univariate Newton method to compute a path length s⋆L
corresponding to the origin of OL in the global frame, before evaluating
lL. Thus, lL is a function of x, but this function is not differentiable.
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We can use any cubature rule I. In the implementations, we
use the spherical Cubature rule [15] because it is simple and
scale favorably when compared to Gauss-Hermite methods.

For the measurement update, the joint density is approxi-
mated using the same integration techniques, resulting in

p
(
[xk+1;yk+1]|xk,y0:k

)

≈ N

([
x̂k+1|k
ŷk+1|k

]
,

[
Pk+1|k P xy

k+1|k
P yx

k+1|k P yy
k+1|k

])
(16)

with moment integrals (dropping time indexing for brevity),

ŷ =

∫
h(x)N (x|x̂,P )dx, (17a)

P xy =

∫
(x̂− x)(ŷ − h(x))⊤N (x|x̂,P )dx, (17b)

P yy =

∫
(ŷ − h(x))(⋆)⊤N (x|x̂,P )dx+R. (17c)

Eq. (17) implies integrating over all of the GEPs γ, which
is computationally prohibitive for realistic implementations.
To circumvent this problem, we introduce Assumption 1.

Assumption 1 γi and γj , are independent for i ̸= j.

Given Assumption 1, the integration can be done with respect
to each individual curve in the spline. When performing the
moment evaluations, it is possible that the parameters of
two adjacent curves are needed. At any rate, this leads to
a significantly smaller estimation problem than considering
the whole spline simultaneously. Conditioning of the joint
density in (16) on the new measurement yk+1 amounts to

Kk+1 = P xy
k+1|k(P

yy
k+1|k)

−1, (18a)

x̂k+1|k+1 = x̂k+1|k +Kk+1|k(yk+1 − ŷk+1|k), (18b)

Pk+1|k+1 = Pk+1|k −Kk+1|kP
yx̄
k+1|k, (18c)

which is done with respect to the vehicle state and the
currently relevant map parameters. Specifically, any GEP re-
quired in the process of evaluating (10) is included explicitly
in the domain over which the integral is computed.

B. Variational-Bayes LRKF
To account for the time-variability in the measurement-

noise characteristics, we implement the LRKF in a VB set-
ting [7], [16]. VB methods rely on a free-form approximation
of the joint posterior of xk and Rk,

p(xk,Rk|y0:k) ≈ p(xk, |y0:k)︸ ︷︷ ︸
Qx(xk)

p(Rk|y0:k)︸ ︷︷ ︸
QR(Rk)

, (19)

where the objective is to determine Qx(xk) and QR(Rk).
The VB approximation is formed by minimizing the
Kullback-Leibler (KL) divergence between an approximate
distribution in the form Qx(xk)QR(Rk) and the true distri-
bution p(xk,Rk|y0:k). This amounts to

min
Qx,QR

KL(Qx(xk)QR(Rk)||p(xk,Rk|y0:k)) =

∫
Qx(xk)QR(Rk) log

(
Qx(xk)QR(Rk)

p(xk,Rk|y0:k)

)
dxkdRk,

(20)

where the minimizers are

Qx(xk)∝exp

(∫
log p(yk,xk,Rk|y0:k−1)QR(Rk)dRk

)
,

(21a)

QR(Rk)∝exp

(∫
log p(yk,xk,Rk|y0:k−1)Qx(xk)dxk

)
.

(21b)

Eq. (21) cannot be solved directly as there is coupling
between Qx and QR. However, when the state posterior
is Gaussian assumed, Qx(xk) = N (xk|x̂k|k,Pk|k) and the
noise distribution is inverse-Wishart assumed,

QR(Rk) = IW(Rk|νk,Vk), (22)

the integrals in (21) can be made explicitly. Hence [7],

ŷk =

∫
h(xk)N (xk|x̂−

k ,P
−
k )dxk,

P xy
k =

∫
(x̂−

k − xk)(ŷk − h(xk))
⊤N (xk|x̂−

k ,P
−
k )dxk,

Sk =

∫
(ŷk − h(xk))(⋆)

⊤N (xk|x̂−
k ,P

−
k )dxk

+ (νk − ny − 1)−1Vk = T + (νk − ny − 1)−1Vk,

Kk = P xy
k S−1

k , (23)

x̂k = x̂−
k +Kk(yk − ŷk),

Pk = P−
k −KkSkK

⊤
k ,

νk = ν−k + 1,

Vk = V −
k +

∫
(yk − h(xk))(⋆)

⊤N (xk|x̂k,Pk)dxk,

where (⋆)−k = (⋆)k|k−1 and Rk = (νk − ny − 1)−1Vk. The
first six equations in (23) are the usual KF equations and
the integrals involved can be approximated as in Sec. III-A.
The solution to (23) is found by fixed-point iterations akin
to expectation-maximization (EM) methods and (locally)
converge asymptotically under some assumptions [17], [18].

The prediction step of the sufficient statistics is in this
paper chosen consistent with [7]:

ν−k = ρ(νk−1 − ny − 1) + ny + 1, (24)

V −
k = ρVk−1, (25)

where ρ ∈ (0, 1] provides exponential forgetting.
Algorithm 1 summarizes the proposed VB-LRKF.

IV. SIMULATION STUDY

We validate the proposed method in a Monte-Carlo sim-
ulation study. For generating synthetic data, the vehicle is
modeled by a dynamic single-track model in closed loop with
a reference tracking controller driving on a one-lane road [5].
The route is extracted using the open-source routing machine
(OSRM) tool [19], and the map is represented by a sequence
of points. To generate our spline-based map, we select the
sequence of points as control and end points, respectively.

The GNSS position measurements nominally provide
Gaussian zero-mean measurements with standard deviation
0.2m in both X and Y direction, Rp

nom = diag(0.22, 0.22).
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Algorithm 1 Pseudo-code of the proposed VB-LRKF

Initialize:{ηi, ϖi}|I|i=1, x̂−1,P−1, ν−1,V −1
1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . , |I|} do
3: Determine x̂i

k|k−1 according to (14).
4: end for
5: Determine x̂k|k−1, Pk|k−1 according to (15).
6: Set ν−k = ρ(νk−1−ny−1)+ny+1, V −

k = ρVk−1.
7: for i ∈ {1, . . . , |I|} do
8: Determine ŷi

k|k−1 akin to (14)
9: end for

10: Determine ŷk|k−1, T , P xy
k|k−1 akin to (15).

11: Set x̂(0)
k = x̂k|k−1, P (0)

k = Pk|k−1, νk = 1+ν−k ,
V

(0)
k = V −

k , j = 0.
12: while not_converged do

S
(j+1)
k = T + (νk − ny − 1)−1V

(j)
k ),

K
(j+1)
k = P xy

k (S
(j+1)
k )−1,

x̂
(j+1)
k = x̂k|k−1 +K

(j+1)
k (yk − ŷk|k−1),

P
(j+1)
k = Pk|k−1 −K

(j+1)
k S

(j+1)
k (K

(j+1)
k )⊤,

V
(j+1)
k = V −

k +

∫
(yk − h(xk))(⋆)

⊤

· N (xk|x̂(j+1)
k ,P

(j+1)
k )dxk

13: j = j + 1
14: end while
15: Set x̂k|k = x̂

(j)
k , Pk|k = P

(j)
k , Vk = V

(j)
k .

16: end for

Furthermore, the camera measurements provide lane mea-
surements that nominally are Gaussian distributed according
to yc

k ∼ N (hc(xk),Rc), where Rc
nom = diag(0.02110).

Note, however, that because the lane measurements are
sampled from a polynomial that is fitted to the lane markings,
in general the measurements, even without adding noise, will
not fit perfectly to the road. Hence, we can expect the noise
estimates to be larger than the added random noise. We run
Algorithm 1 for 100 Monte-Carlo runs for different forgetting
factors., with each simulation 20s long. We generate the ini-
tial state by sampling it from a Gaussian distribution with 5m
initial standard deviation on the position. All measurements
arrive with sampling rate 10Hz but the prediction step is
performed at 100Hz, that is, when executing Algorithm 1
at 100Hz, the measurement update step and weight update
are executed every tenth time step. The reason for the mixed
rates between the prediction and measurement step is that
GNSS and camera measurements usually arrive at a rate that
is lower than the internal vehicle data from the CAN bus.
To generate the measurements, we consider three different
models:

1) Rp = Rp
nom,R

c = Rc
nom;

2) Rp = 102Rp
nom,R

c = Rc
nom;

3) Rp = Rp
nom,Rc = 52Rc,nom.

GNSS outliers occur every tenth second starting at 5s and last
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Fig. 2. Position RMSE (in the vehicle frame) for different forgetting factors
over 100 Monte-Carlo runs with 0.1m initial map standard deviation.
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Fig. 3. Noise estimates for the GNSS position measurements and measured
distances to each road boundary, averaged over the 100 Monte-Carlo runs.

three seconds. Similarly, we have camera outliers occurring
every tenth second that last three seconds, starting at 10s.

Fig. 2 shows the corresponding position RMSEs, and
Fig. 3 shows the corresponding noise estimates averaged
over the 100 Monte-Carlo runs. The choice of forgetting
factor is a trade-off between how fast to adjust to changing
measurement quality and estimate smoothness. For instance,
ρ = 0.9 gives quick adaptation of the estimates in case
of outliers, but in steady-state, the estimation accuracy is
generally decreased. At the same time, a high forgetting
factor (ρ = 0.99) gives smooth estimates, but in case of
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Fig. 4. Position RMSE in the vehicle frame with map update and without
map update for an initial map standard deviation of 0.1m.
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Fig. 5. Average noise estimates for the GNSS position measurements and
measured distances to each road boundary with map update and without
map update (Algorithm 1 without map states) for an initial map standard
deviation of 0.1m. Same notation as in Fig. 4.

outliers the adjustment is slower (c.f. at around 15s).
To conclude the evaluation, we compare the RMSE of

the lateral position in the vehicle frame, as the accuracy of
the lateral positioning is largely determined by the camera
measurements and the accuracy of the map estimates. In
contrast, the longitudinal positioning is largely determined
by the GNSS measurements, which are not dependent on the
map accuracy. Fig. 4 shows the results of Algorithm 1 with
and without map updates for two different forgetting factors.
Irrespective of the forgetting factor, there is roughly a 0.1m
improvement, which corresponds to the uncertainty in the
map. Hence, when updating the map, most of the errors are
corrected and the algorithm exhibits improved positioning.

Fig. 5 displays the corresponding noise estimates. To
account for the unmodeled errors in the map, when executing
Algorithm 1 without map updates, the camera noise estimates
are inflated. While this is intuitive since the unmodeled map
uncertainty is injected into the noise estiamtes, it leads to
degraded performance compared to including map updates.

V. CONCLUSION

The proposed spline-based method for map modeling is
flexible since it can handle a more diverse set of roads than
traditional curvature-based road modeling. This combined
with the VB framework allows us to adapt to the time-
varying measurement reliability for both the GNSS and
camera measurements, as well as uncertianties in the map.
The proposed method is a viable alternative to other noise-
adaptive filters such as particle filters or filters based on
IMM. In future work, we plan to perform hardware-in-the-
loop simulations for assessing real-time feasibility, experi-
mentally verify the proposed method, and compare to our
previously developed method [5].
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