
Reinforced Model Predictive Control via
Trust-Region Quasi-Newton Policy Optimization

Dean Brandner and Sergio Lucia

Abstract— Model predictive control can optimally deal with
nonlinear systems under consideration of constraints. The
control performance depends on the model accuracy and the
prediction horizon. Recent advances propose to use reinforce-
ment learning applied to a parameterized model predictive
controller to recover the optimal control performance even
if an imperfect model or short prediction horizons are used.
However, common reinforcement learning algorithms rely on
first order updates, which only have a linear convergence
rate and hence need an excessive amount of dynamic data.
Higher order updates are typically intractable if the policy is
approximated with neural networks due to the large number
of parameters.

In this work, we use a parameterized model predictive
controller as policy, and leverage the small amount of necessary
parameters to propose a trust-region constrained Quasi-Newton
training algorithm for policy optimization with a superlinear
convergence rate. We show that the required second order
derivative information can be calculated by the solution of a
linear system of equations. A simulation study illustrates that
the proposed training algorithm outperforms other algorithms
in terms of data efficiency and accuracy.

I. INTRODUCTION

Optimal control strategies such as model predictive con-
trol (MPC) enable the control of nonlinear systems while
taking constraints into rigorous consideration. MPC repeat-
edly solves the underlying optimal control problem at each
time instance and applies the first control action to the
plant [1]. However, a good performance typically requires an
accurate system model and a large prediction horizon, which
can render the optimization problem intractable for real-time
applications. Real-time capability can be recovered by, e.g.
using simpler system models or a shorter prediction horizon,
both at the expense of accuracy for faster computation.

While MPC relies on the prediction of a state trajectory us-
ing a system model, reinforcement learning provides model-
free methods to solve the dynamic optimization problem,
as for instance policy optimization [2]. To do so, an agent
computes an action according to its policy and applies the
action to an environment. The agent’s policy is then updated
iteratively based on the next state and stage cost to find the
optimal policy. State-of-the-art performance for control tasks
with continuous action spaces using deterministic policies
can be obtained using neural networks (NNs) to approximate

The authors are with the chair of Process Automation Systems at the de-
partment of Biochemical and Chemical Engineering, TU Dortmund Univer-
sity, 44227 Dortmund, Germany (e-mail: dean.brandner@tu-dortmund.de;
sergio.lucia@tu-dortmund.de).
This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 466380688 – within the Priority Program
“SPP 2331: Machine Learning in Chemical Engineering”.

the policy [3]. In these algorithms, the NN parameters
are updated iteratively using a deterministic policy gradient
algorithm [4] until the parameters converge. Due to the
mostly random initialization of the weights and biases of
NNs, their lack of structure, and the linear convergence rate
of gradient descent algorithms [5], the demand for training
data is usually extremely high in reinforcement learning.

Different studies suggest to decrease the demand of data
by taking more elaborate update steps such as natural policy
gradients [6], [7], which scales the gradient by the inverse
of the Fisher information matrix, or Quasi-Newton update
steps [5], [8], [9], which scales the gradient by the inverse of
an approximation of the Hessian. Although showing practical
improvements, natural policy gradient methods still have a
linear convergence rate. Quasi-Newton methods however can
have a superlinear convergence rate, which can significantly
reduce the demand on training data. Standard implementa-
tions of reinforcement learning algorithms rely on heavily
parameterized NNs as policy approximators, which can ren-
der the training process for second order methods intractable
due to the large resulting matrices and linear systems of
equations. For this reason, first order optimization methods
are almost exclusively considered in literature.

In this work, we propose to use a parameterized MPC as
policy approximator instead of large NNs, as it has been
recently proposed [10], [11], [12]. The central advantage
of this strategy is that the parameterized MPC is an opti-
mization problem in which the different parts, such as the
objective or the constraint functions, can be parameterized.
This leads typically to significantly less parameters than if
large NNs are considered as policy approximators. Tools
from reinforcement learning can then be used to recover the
optimal policy by updating the MPC parameters, even if the
system model is inaccurate or a short prediction horizon is
used. In addition, using MPC as a policy approximator profits
from a reasonably good initial policy when expert knowledge
is supplied, e.g. in the form of a rough dynamic model.
However, it appears that still a significant amount of data
is typically required for the MPC policy to converge when
employing first order updates. Alleviating this challenge is
the main motivation of this work.

The main contributions of our work are the following. We
exploit the small number of parameters, which typically arise
when using MPC as a policy approximator in reinforcement
learning, by using Quasi-Newton update steps to reduce the
demand of training data. We propose a method to calculate
the second order sensitivities of the optimal control actions
with respect to the parameters to compute an approximation

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2292

of the deterministic policy Hessian. We integrate the approx-
imation in a trust-region constrained Quasi-Newton policy
optimization algorithm for episodic reinforcement learning
to further improve the data efficiency and accuracy.

The paper is structured as follows. Section II introduces
the background of Markov decision processes and MPC as
a policy approximator. Section III shows how Quasi-Newton
update steps can be computed and introduces the prerequi-
sites. In section IV we show how trust region constrained
Quasi-Newton updates can be embedded in an episodic
reinforcement learning setting. Lastly, we demonstrate the
performance of the proposed algorithm in section V before
we summarize the results in section VI.

II. BACKGROUND

A. Markov Decision Processes

Reinforcement learning can solve Markov decision pro-
cesses via interaction of an agent with an environment. A
transition to the subsequent state s′ ∈ S ⊆ Rns in the
possibly stochastic environment is modelled as a transition
possibility distribution p(s′|s, a) with current state s ∈ S ⊆
Rns and action a ∈ A ⊆ Rna . In addition to the next
state, the environment also responds with a scalar stage
cost ℓ(s, a) ∈ R also known as negative reward, which
indicates how good a defined objective is fulfilled when
being in state s and taking action a. Also, the stage cost
can penalize constraint violations by large costs.

Action a is computed via the agent’s policy π : S → A.
The objective is to find the optimal policy π∗, which min-
imizes the expected closed-loop cost J(π). For an episodic
process of Nep ∈ N steps, the closed-loop cost is defined as

J(π) = Es0∼S0

Nep∑
i=0

γiℓ(si, π(si))

 (1)

with γ ∈ (0, 1] being a discount factor. The opera-
tor Es0∼S0 [·] denotes the expected value taken over the
initial states s0 of an episode when sampled from some
distribution S0. The optimal policy can then be obtained via

π∗ = argmin
π

J(π). (2)

The state-value function V π now gives information on the
closed-loop cost given state s and following policy π, while
the action-value function Qπ(s, a) gives information on the
closed-loop cost given state s, taking action a, and following
policy π afterwards. They are recursively defined using the
Bellman equations as

V π(s) = Qπ(s, π(s)), (3a)
Qπ(s, a) = ℓ(s, a) + γEs′ [V

π(s′)] . (3b)

B. Parameterized MPC as Policy Approximator in Reinforce-
ment Learning

MPC is an advanced control scheme, which repeatedly
computes a sequence of optimal control actions u∗ =
(u∗

0, . . . u
∗
N−1)

⊤ with u∗
i ∈ A by solving (4) at each time

instance tk and applies the first control action u∗
0 to the plant,

so a = u∗
0

u∗
θ(s) = argmin

u
γN

(
Vf,θ(xN) + w⊤

f σN

)
+

N−1∑
k=0

γk
(
ℓθ(xk, uk) + w⊤σk

)
(4a)

s.t. xk+1 = f̂θ(xk, uk), x0 = s (4b)
hθ(xk, uk) ≤ σk, σk ≥ 0, (4c)
hf,θ(xN) ≤ σN , σN ≥ 0. (4d)

The objective function (4a) is composed of the sum of dis-
counted stage costs ℓθ(xk, uk) ≥ 0 over a finite horizon N−
1 ∈ N, and the discounted terminal cost Vf,θ(xN) ≥ 0.
The states xk evolve following the underlying system model
f̂θ : S×A → S starting from a given initial state x0 = s ∈ S
shown in (4b) while satisfying constraints hθ(xk, uk) ∈ Rnh

at each time instance (4c) and hf,θ(xN) ∈ Rnhf at the end
of the horizon (4d). The constraints (4c) and (4d) are relaxed
as soft constraints by σk and σN .

All functions with index θ ∈ Rnθ are freely parame-
terizable. Since it is shown in [10] that the parameterized
MPC (4) can approximate the optimal policy, reinforcement
learning can be used to adapt the parameters θ such that the
closed-loop cost is minimized.

C. Iterative Policy Optimization in Reinforcement Learning

Reinforcement learning considers different options to
compute the agent’s optimal behaviour. One method is called
policy optimization [2], which uses an approximation πθ to
learn the optimal policy π∗. The policy parameters θ are
then updated iteratively using the update vector ∆θ ∈ Rnθ

according to the general update scheme

θ ← θ +∆θ. (5)

A commonly used update rule to minimize the closed-loop
cost is motivated by gradient descent [2]

∆θ = −α∇θJ(θ), (6)

with learning rate α > 0, and the deterministic policy
gradient ∇θJ(θ) ∈ Rnθ , which is derived in [4] as

∇θJ(θ) = Es

[
∇θπ

⊤
θ (s)∇aQ

πθ (s, a)|a=πθ(s)

]
. (7)

Since we propose to use a parameterized MPC (4) as policy
approximators, the Jacobian ∇θπθ requires to differentiate
the solution of (4) with respect to its parameters. Section III-
A shows how these first order sensitivities can be computed.
As we use NNs in this work to approximate the Q-function,
automatic differentiation can be used to obtain ∇aQ.

Second order methods typically have higher convergence
rates and hence require less data. One can derive an update
of the form

∆θ = −α∇2
θJ(θ)

−1∇θJ(θ), (8)

which is also known as a Newton step. An exact expression
for the deterministic policy Hessian ∇2

θJ(θ) ∈ Rnθ×nθ is
derived in [9].

2293

III. QUASI-NEWTON ITERATION FOR POLICY
OPTIMIZATION

Due to computational complexity, the exact deterministic
policy Hessian ∇2

θJ(θ) is typically intractable [9]. However,
under some conditions the convergence rate can still be
superlinear even if the deterministic policy Hessian is not
known exactly but only an approximation H(θ) ≈ ∇2

θJ(θ).
The update then looks similar to (8)

∆θ = −αH(θ)
−1∇θJ(θ). (9)

The deterministic policy Hessian can be approximated as [9]

H(θ) = Es

[
∇2

θπθ(s)⊗∇aQ
πθ (s, a)|a=πθ

+

. . .∇θπ
⊤
θ (s)∇2

aQ
πθ (s, a)|a=πθ

∇θπθ(s)
]
, (10)

which can still give a superlinear convergence rate under
some assumptions [9]. The expression requires the second
order sensitivity tensor ∇2

θπθ(s) ∈ Rnθ×nθ×na , as well as
the first order sensitivity matrix∇θπ. The ⊗ operator denotes
the tensor vector product [9]. Section III-B introduces a
method to compute these second order sensitivities.

A. First Order Sensitivities of Nonlinear Programs

The deterministic policy gradient (7) and approximate
Hessian (10) require ∇θπθ(s) and ∇2

θπθ(s), which are the
first and second order sensitivities of the solution of (4).

As a general case of (4), consider the nonlinear pro-
gram (11) with the objective function Φ : Rnz × Rnp →
[0,∞), decision variables z ∈ Rnz , parameters p ∈ Rnp , and
the equality and inequality constraints h : Rnz×Rnp → Rnh

and g : Rnz × Rnp → Rng

z∗(p) = argmin
z

Φ(z, p) (11a)

s.t. h(z, p) = 0 (11b)
g(z, p) ≤ 0. (11c)

Let z∗(p) denote the solution of (11) in dependency of the
parameter vector p and let L : Rnz ×Rng ×Rnh×Rnp → R
be the Lagrangian associated to (11) with Lagrange multi-
pliers λ ∈ Rng , ν ∈ Rnh

L(z, λ, ν, p) = Φ(z, p) + λ⊤g(z, p) + ν⊤h(z, p), (12)

then the optimal primal-dual solution vector ξ∗⊤ =
[z∗⊤, λ∗⊤, ν∗⊤] ∈ Rnξ with nξ = nz + ng + nh satisfies
the KKT-conditions [13]. When omitting the inequalities
of the KKT-conditions, the reduced KKT-conditions can be
considered as an implicit function F : Rnξ × Rnp → Rnξ

F (ξ∗(p), p) =

∇z∗L(z∗, λ∗, ν∗, p)
h(z∗, p)

λ∗ ⊙ g(z∗, p)

 = 0. (13)

The ⊙ operator denotes the Hadamard product.
Via implicit differentiation of (13) [14], the first order

sensitivity matrix ∇pξ
∗(p) ∈ Rnξ×np of the primal-dual

solution with respect to the parameters can be obtained by
solving the linear system of equations

∇ξ∗F ∇pξ
∗ = −∇pF. (14)

The coefficient matrix ∇ξ∗F ∈ Rnξ×nξ and the right hand
side matrix ∇pF ∈ Rnξ×np are the Jacobians of the reduced
KKT-conditions F with respect to the optimal primal-dual
solution ξ∗ and the parameters p of (11) respectively.

B. Second Order Sensitivities of Nonlinear Programs

The second order sensitivity tensor ∇2
pξ

∗ ∈ Rnp×np×nξ

of (11) can be computed by consideration of the differ-
entiated KKT conditions (14) as an implicit function F̃ :
Rnξ × Rnp → Rnξ×np

F̃ (ξ∗(p), p) = ∇ξ∗F ∇pξ
∗ +∇pF = 0. (15)

We define the matrix formulation S ∈ Rnξ×n2
p of the second

order sensitivity tensor ∇2
pξ

∗ as

S =
[

∂2ξ∗

∂p1∂p
. . . ∂2ξ∗

∂pnp∂p

]
. (16)

In the following we contribute the expression for the matrix
formulation S of the second order sensitivity tensor ∇2

pξ
∗.

Theorem 1 (Second Order Sensitivities):
Given the primal-dual solution ξ∗(p) of (11) and the differ-
entiated KKT conditions (15), the matrix formulation of the
second order sensitivities S of (11) can be obtained by

∇ξ∗F S = −C. (17)

The right hand side block matrix C ∈ Rnξ×n2
p is composed

of submatrices Cj ∈ Rnξ×np , with j = 1, . . . , np given as

C =
[
C1 . . . Cnp

]
, (18a)

Cj = Dj + Ej∇p ξ
∗, (18b)

Dj =
∂2F

∂pj∂p
+

[
∂2F

∂p1∂ξ∗
∂ξ∗

∂pj
. . . ∂2F

∂pnp∂ξ
∗

∂ξ∗

∂pj

]
, (18c)

Ej =
∂2F

∂pj∂ξ∗
+

[
∂2F

∂ξ∗1∂ξ
∗
∂ξ∗

∂pj
. . . ∂2F

∂ξ∗nξ
∂ξ∗

∂ξ∗

∂pj

]
. (18d)

Proof: See appendix.
The second order sensitivities can therefore be obtained

by solving the linear system of equations (17). The matrix
∇ξ∗F is the same as in (14). The block matrix C depends
on the first order sensitivities ∇pξ

∗, which must be obtained
first, and mixed derivatives of F with respect to p and ξ∗.

To compute the approximation of the deterministic policy
Hessian (10), the general optimization problem (11) must
be cast into (4) with z∗ = u∗ and p = θ. The relevant
sensitivities ∇θπ = ∇θu

∗
0 and ∇2

θπ = ∇2
θu

∗
0 can be

extracted from the relevant row of ∇pξ
∗ or from the relevant

blocks of ∇2
θξ

∗, which are computed via (14) and (17).

C. Q-Function Approximation

To compute ∇θJ(θ) and H(θ) as in (7) and (10), the
action-value function Qπ(s, a) must be approximated, e.g.
using a generic function approximator Qv(s, a) ≈ Qπ(s, a)
with parameters v ∈ Rnv . The episodic setting of the
proposed policy optimization algorithm reduces the approx-
imation task to a supervised learning task.

We propose to build an approximation of the Q-function
by first learning the stage cost Q̂π

0 (s, a) and then improving
step by step by taking k-step look-aheads Q̂π

k (s, a) based on

2294

the previous approximation Qvk−1
. The k-step look-ahead

estimation Q̂π
k (s, a) of Qπ(s, a) is recursively defined as

Q̂π
k (s, a) =

{
ℓ(s, a) if k = 0,

ℓ(s, a) + γQvk−1
(s′, a′) else.

(19)

Let R be a so called replay buffer of length nR ∈ N,
gathering the last nR encountered transitions ⟨s, a, ℓ, s′⟩
using an arbitrary exploration policy πexp

R =
{
⟨s, a, ℓ, s′⟩(i)

}nR

i=1
, (20)

then we can define the set M of encountered transi-
tions ⟨s, a, ℓ, s′⟩ and suggested actions a′ = π(s′) as

M = {⟨s, a, ℓ, s′, a′⟩ | ⟨s, a, ℓ, s′⟩ ∈ R} . (21)

The parameter vk can then be obtained by the solution of

min
vk

E⟨s,a,ℓ,s′,a′⟩∼M

[
Ψ
(
Q̂π

k (s, a), Qvk(s, a)
)]

. (22)

The function Ψ : R × R → R can be any suitable function
for regression tasks, e.g. mean squared error. The solution
process then alternates between label generation (19) and
parameter regression (22). The process is repeated until the
desired horizon NQ ∈ N is reached. The choice of NQ is a
trade-off between approximation accuracy and computational
cost. The steps are summarized in Algorithm 1.

Algorithm 1 Q-Function approximation
Require: R, π(s), NQ

M← Ø
for all ⟨s, a, ℓ, s′⟩ ∈ R do

a′ ← π(s′)
M←M∪ {⟨s, a, ℓ, s′, a′⟩}

end for
for k = 0, . . . , NQ do

Compute Q̂π
k (s, a) with (19) on M

Learn Qvk(s, a) by solving (22)
end for

IV. A TRUST-REGION QUASI-NEWTON POLICY
OPTIMIZATION ALGORITHM

A rigorous choice of the learning rate α or a restriction of
the maximum update step length can improve the stability of
iterative optimization algorithms and can reduce the number
of iterations until convergence. Two common approaches are
line search and trust-region methods. It turns out that line
search methods cannot be used properly in reinforcement
learning because the objective function J(θ) is unknown. In
contrast to that, trust-region methods can adapt the maximum
step length based on measurements of the closed-loop cost
of each episode only.

The proposed trust-region Quasi-Newton policy optimiza-
tion algorithm consists three steps below: 1) Sampling of
closed-loop trajectories, 2) Trust region update, 3) MPC
parameter update. These steps are repeated until convergence
to a stationary point ∥∇θJ(θ)∥2 ≤ ϵ with ϵ > 0.

1) Sampling: The objective is to minimize J(θ). For
a Quasi-Newton update step (9), ∇θJ(θ)|θ=θj and H(θj)
must be known for the current policy πθj . All three terms
require to take expected values over a distribution of initial
conditions S0 as shown in (1), (7) and (10). To take the
expected value over the initial conditions, a fixed set of
initial conditions S0 = {s(i)0 |s

(i)
0 ∼ S0}

NS0
i=0 is defined,

which will be used to evaluate the closed-loop cost in
step 2. For each initial condition in S0 a full trajec-
tory of length Nep is conducted with an exploration pol-
icy πθj ,exp(s). All observed tuples ⟨s, a, ℓ, s′⟩ are stored in
a replay buffer R of length nR ∈ N. Also, the measured
cumulative cost V πθj (s0) is added to the set Jj .

2) Trust-Region radius update: The trust-region ra-
dius δj > 0 limits the maximum length of the update
step ∥∆θj∥2. If the observed closed-loop cost J(θj) is close
to the predicted closed-loop cost q(θj), the prediction can
be trusted, hence δj can be increased, and vice versa. The
ratio ρj measures the agreement of the exact closed-loop cost
function J(θ) and the closed-loop cost model q(θ) ≈ J(θ)

ρj =
J(θj−1)− J(θj)

J(θj−1)− q(θj)
. (23)

The better the model fits the observation, the closer the
ratio gets to one. The trust-region radius is then updated
depending on the observed value of ρj as commonly done
in optimization algorithms [13].

3) Update of parameters: To update the parameters θ, the
closed-loop cost is approximated as q(θ). The approximate
second order Taylor expansion of J(θ) around θj reads as

q(θj +∆θj) = J(θj) + ∆θ⊤j ∇θJ(θ)|θ=θj+

. . .
1

2
∆θ⊤j H(θj)∆θj . (24)

The update step ∆θj at iteration j within the iterative
optimization algorithm is then the solution of the trust-region
constrained optimization problem

∆θj = argmin
∆θ̂j

q(θj +∆θ̂j) (25a)

s.t. ∥∆θ̂j∥2 ≤ δj . (25b)

Since ∇θJ(θ)|θ=θj and H(θj) require ∇θπθj (s), ∇2
θπθj (s),

∇aQ
πθj (s, a) and ∇2

aQ
πθj (s, a), all these must be computed

for all items in the replay buffer R. First, Qπθj (s, a) is
approximated by Qv(s, a) based on Algorithm 1 using R.
Then, the policy’s action aπ = πθj (s) together with ∇θπθ(s)
and ∇2

θπθj (s) are computed according to (14) and (17) for
all states s in R. Lastly, ∇aQ

πθj (s, a) and ∇2
aQ

πθj (s, a) are
computed for all s and their related aπ . Once all subterms are
gathered, ∇θJ(θ)|θ=θj and H(θj) can be calculated with (7)
and (10). The update ∆θj is then obtained from (25).

These steps only have to be applied if the proposed
update ∆θj−1 improves the closed-loop cost that is ρj > 0.
Otherwise, if ρj < 0, the update is reverted, so θj−1 ←
θj−1 − ∆θj−1, such that the old values of ∇θJ(θ)|θ=θj−1

and H(θj−1) can be reused in (25) but with a smaller trust-
region radius δj < δj−1. Algorithm 2 summarizes all steps.

2295

Algorithm 2 Trust-Region Quasi-Newton Iteration
Require: Empty replay buffer R of length nR
Require: Trust-Region parameters: δ0, ϵ, ρ0 > 0
Require: Policy parameters: θ0, NN parameters: v0

j ← 0
while j = 0 or

∥∥∇θJ(θ)|θ=θj−1

∥∥
2
> ϵ do

Jj ← Ø ▷ Sampling
for all s0 ∈ S0 do

Sample full trajectory for s0 with πexp

Store all ⟨s, a, ℓ, s′⟩ in R
Jj ← Jj ∪ {V πθj (s0)}

end for
Compute mean J(θj) over Jj ▷ Trust-Region update
if j > 0 then

Compute ρj with (23) using J(θj) and J(θj−1)
Update δj based on ρj

end if
if ρj > 0 then ▷ Update computation

Train Qv(s, a) with Algorithm 1 using R
for all ⟨s, a, ℓ, s′⟩ ∈ R do

aπ ← πθj (s)
Compute ∇θπθj (s) with (14)
Compute ∇2

θπθj (s) with (17)
Get Qv(s, aπ),∇aQv(s, aπ),∇2

aQv(s, aπ)
end for
Get ∇θJ(θ)|θ=θj from (7)
Get H(θj) from (10)

else
θj−1 ← θj−1 −∆θj−1

∇θJ(θ)|θ=θj ← ∇θJ(θ)|θ=θj−1

H(θj)← H(θj−1)
end if
Get ∆θj from (25)
θj ← θj−1 +∆θj
j ← j + 1

end while

V. CASE STUDY

We consider a two dimensional linear system model to
demonstrate the performance of the proposed algorithm

s′ =

(
0.9 0.35
0 1.1

)
s+

(
0.0813
0.2

)
a. (26)

The control goal is to regulate the states and actions to the
origin, while not violating the constraints

h(s, a) =


slb − s
s− sub
alb − a
a− aub

 ≤ 0, (27)

with slb = (0,−1)⊤, sub = (1, 1)⊤, alb = −1 and aub = 1.
The stage cost ℓ(s, a) penalizes the deviation from the

origin and constraint violations

ℓ(s, a) = s⊤s+
1

2
a⊤a+ 100⊤ max {0, h(s, a)}. (28)

The max(·) operator is applied elementwise to each row of
the vectors.

The agent with MPC structure (4) is constructed using

ℓθ(xk, uk) = x⊤
k xk +

1

2
u⊤
k uk, w = wf = 100, (29a)

Vf,θ(xN) = x⊤
N

(
5.7 1.3
1.3 3.3

)
xN , γ = 1, (29b)

f̂θ(xk, uk) =

(
a11 a12
0 a22

)
xk +

(
b1
b2

)
uk +

(
d1
d2

)
, (29c)

hθ(xk, uk) =


s1,lb +∆x1 − x1,k

s2,lb − x2,k

xk − sub
alb − uk

uk − aub

 , (29d)

hf,θ(xN) = hθ,x(xN), N = 10. (29e)

The resulting parameter vector θ is defined as

θ = (a11, a12, a22, b1, b2, d1, d2,∆x1)
⊤
, (30)

with initial values θ0 = (1, 0.25, 1, 0.1, 0.3, 0, 0, 0)
⊤.

The Q-function is approximated using a feed-forward
NN with two hidden layers with 20 neurons each and
tanh-activation function. The inputs (s⊤, a⊤)⊤ and la-
bels Q̂π

k (s, a) are all scaled using custom scalers. Note that
the scaling also affects ∇aQv(s, a) and ∇2

aQv(s, a), which
has to be taken into account. The horizon of the Q-function is
set as NQ = 10, which is a trade-off between computational
complexity and accuracy. The Huber loss function [15] is
used in (22) together with the Adam optimizer [16].

Algorithm 2 is initialized with the values given in Table I.
The trust-region radius update follows the suggestion in [13]
with δmax denoting the maximum allowed stepsize.

TABLE I
HYPERPARAMETERS OF PROPOSED ALGORITHM 2.

Parameter Value Parameter Value

nIC 50 Nep 50
ϵ 10−6 nR 250
δ0 10−2 δmax 10−1

Algorithm 2 is compared to three training algorithms:
1) First order updates without trust region (6)
2) First order updates with trust region
3) Second order updates without trust region (9)

All agents use the same initial conditions, but vary in their
hyperparameter settings. In case 1), the learning rate is set
to α = 10−4, which compromises stability and convergence
speed. In case 2), the agent is initialized with a trust-region
radius of δ0 = 10−3 and a maximum trust-region radius
of δmax = 10−1. In case 3), the learning rate is set to α =
10−2, which is the largest possible investigated learning rate
without losing stability of the training process. All methods
are compared to a benchmark MPC, which uses the exact
model (26) and a prediction horizon of N = 50, and the
untrained MPC using θ = θ0.

2296

Figure 1 shows the decrease of J(θj) over the reinforce-
ment learning iterations j for all training algorithms and
compares them to the benchmark MPC. It can be seen
that the proposed algorithm (right subfigure, solid line)
outperforms all other methods with respect to convergence
speed as it needs less than 20 iterations to converge to the
performance of the benchmark MPC while the others still
keep decreasing. Also, less oscillations are observed during
the training process, which suggests a higher stability during
training.

0 10 20 30 40
RL Iteration j

10

15

20

25

30

C
lo

se
d

lo
op

co
st
J
(θ

j
)

First Order

0 10 20 30 40
RL Iteration j

10

15

20

25

30
Second Order

Benchmark MPC Without trust region With trust region

Fig. 1. Evolution of the closed-loop cost J(θj) over the reinforcement
learning (RL) iterations j. The plots show the results for first order training
(left) and second order training (right) with and without a trust region.

The differently trained MPC agents are evaluated on
closed-loop simulations of a test set. The test set is created by
taking 2,500 randomly distributed initial states in the feasible
state space and performing an episode using the benchmark
MPC. All initial conditions which encounter any infeasible
point in their closed-loop trajectory are discarded. The final
test set consists of nT = 1, 579 initial conditions with a
total of nP = 78, 950 points. The performance measures
are the number of infeasible trajectories nT,if , the closed-
loop cost on all nT trajectories J , the number of infeasible
points nP,if , the maximum constraint violations CVmax, and
the average constraint violation CV on the set of infeasible
points. The number of infeasible points nP,if is the portion of
all points nP for which the MPC agent controls the system
into the infeasible state space. A trajectory is then infeasible
and added to the number of infeasible trajectories nT,if if
any point of the closed-loop trajectory is an infeasible point.

The results are summarized in Table II. The agent trained
with the proposed approach (2nd order (TR)), is feasible on
all initial conditions and outperforms all other trained agents
with respect to the obtained closed-loop cost, which is almost
the closed-loop cost obtained by the benchmark MPC.

We want to emphasize that each update step is performed
offline and does not influence the online solution time of the
applied MPC controller. Also, the offline computation time
of each update step of the proposed trust-region constrained
Quasi-Newton updates is observed to be in the same order
of magnitude as the established first order updates.

All implementations were done in Python, using
CasADi [17], do-mpc [18], Ipopt [19], and Tensorflow [20].

TABLE II
PERFORMANCE WITH RESPECT TO THE CLOSED-LOOP COST J , NUMBER

OF INFEASIBLE TRAJECTORIES nT,if AND POINTS nP,if AS WELL AS

MAXIMUM AND AVERAGE CONSTRAINT VIOLATION CVmax , CV.

J nT,if nP,if CVmax CV

Benchmark 3.61 0 0 0 −
Untrained 10.66 1579 12, 001 18.6 0.86
1st order 4.34 0 0 0 −

1st order (TR) 3.88 0 0 0 −
2nd order 8.89 1539 4, 876 15.6 1.57

2nd order (TR) 3.64 0 0 0 −

The code to reproduce the results is available online1.

VI. CONCLUSION

In this work, we propose a trust-region Quasi-Newton pol-
icy optimization algorithm for episodic reinforcement learn-
ing using a parameterized MPC as a policy approximator.
We show that the computation of the second order sensitivity
tensor for nonlinear programs boils down to the solution of a
linear system of equations. We apply the proposed algorithm
to an example system and show empirically that the proposed
algorithm outperforms other investigated algorithms with
respect to the data efficiency and also with respect to the
achieved control performance of the learned policy.

Future work will investigate how the method scales to
larger and potentially nonlinear systems. Also, different
options to approximate the Q-function such as the MPC
scheme itself as well as a direct comparison of the proposed
method with established state-of-the-art reinforcement learn-
ing algorithms will be investigated.

REFERENCES

[1] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Santa Barbara, California: Nob Hill
Publishing, 2nd ed., 2020.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Adaptive Computation and Machine Learning Series, Cambridge,
Massachusetts: The MIT Press, 2nd ed., 2018.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

[4] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic Policy Gradient Algorithms,” in Proceedings of
the 31st International Conference on Machine Learning (E. P. Xing
and T. Jebara, eds.), vol. 32 of Proceedings of Machine Learning
Research, (Bejing, China), pp. 387–395, PMLR, June 2014.

[5] T. Furmston, G. Lever, and D. Barber, “Approximate Newton Methods
for Policy Search in Markov Decision Processes,” Journal of Machine
Learning Research, vol. 17, no. 226, pp. 1–51, 2016.

[6] S. M. Kakade, “A natural policy gradient,” in Advances in Neu-
ral Information Processing Systems (T. Dietterich, S. Becker, and
Z. Ghahramani, eds.), vol. 14, MIT Press, 2001.

[7] J. Andrew Bagnell and J. Schneider, “Covariant Policy Search,” in
International Joint Conference on Artificial Intelligence, p. 142282
Bytes, Carnegie Mellon University, 2003.

1https://github.com/DeanBrandner/ECC24_TR_
improved_QN_PO_for_MPC_in_RL

2297

[8] D. K. Jha, A. U. Raghunathan, and D. Romeres, “Quasi-newton trust
region policy optimization,” in Proceedings of the Conference on
Robot Learning (L. P. Kaelbling, D. Kragic, and K. Sugiura, eds.),
vol. 100 of Proceedings of Machine Learning Research, pp. 945–954,
PMLR, 2020-10-30/2020-11-01.

[9] A. B. Kordabad, H. Nejatbakhsh Esfahani, W. Cai, and S. Gros,
“Quasi-Newton Iteration in Deterministic Policy Gradient,” in 2022
American Control Conference (ACC), (Atlanta, GA, USA), pp. 2124–
2129, IEEE, June 2022.

[10] S. Gros and M. Zanon, “Data-Driven Economic NMPC Using Re-
inforcement Learning,” IEEE Transactions on Automatic Control,
vol. 65, pp. 636–648, Feb. 2020.

[11] A. B. Kordabad, D. Reinhardt, A. S. Anand, and S. Gros, “Rein-
forcement Learning for MPC: Fundamentals and Current Challenges,”
IFAC-PapersOnLine, vol. 56, no. 2, pp. 5773–5780, 2023.

[12] D. Brandner, T. Talis, E. Esche, J.-U. Repke, and S. Lucia, “Rein-
forcement learning combined with model predictive control to opti-
mally operate a flash separation unit,” in Computer Aided Chemical
Engineering, vol. 52, pp. 595–600, Elsevier, 2023.

[13] J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series
in Operations Research, New York: Springer, 2nd ed., 2006.

[14] A. V. Fiacco and Y. Ishizuka, “Sensitivity and stability analysis for
nonlinear programming,” Annals of Operations Research, vol. 27,
no. 1, pp. 215–235, 1990.

[15] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals
of Mathematical Statistics, vol. 35, pp. 73–101, Mar. 1964.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[17] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[18] F. Fiedler, B. Karg, L. Lüken, D. Brandner, M. Heinlein, F. Brabender,
and S. Lucia, “Do-mpc: Towards FAIR nonlinear and robust model
predictive control,” Control Engineering Practice, vol. 140, p. 105676,
Nov. 2023.

[19] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, pp. 25–57, Mar. 2006.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015.

[21] I. N. Bronštejn, K. A. Semendjaev, G. Musiol, and H. Mühlig,
Taschenbuch der Mathematik. Edition Harri Deutsch, Haan-Gruiten:
Verlag Europa-Lehrmittel - Nourney, Vollmer GmbH & Co. KG,
10th ed., 2016.

APPENDIX
PROOF OF THEOREM 1

Proof: Consider the j-th column vector F̃j(ξ
∗(p), p) ∈

Rnξ of the implicit matrix function F̃ (ξ∗(p), p) defined
in (15), then implicit differentiation results in

∂F̃j

∂ξ∗
∇pξ

∗ +
∂F̃j

∂p
= 0. (31)

Lets define matrix Ej from (18d) as Ej =
∂F̃j

∂ξ∗

Ej =
∂F̃j

∂ξ∗
=

∂

∂ξ∗

(
∂F

∂ξ∗
∂ξ∗

∂pj
+

∂F

∂pj

)
. (32)

Application of the differentiation operator to each summand
and using the interchangeability of partial derivatives [21]

Ej =
∂

∂ξ∗

(
∂F

∂ξ∗
∂ξ∗

∂pj

)
+

∂2F

∂pj∂ξ∗
. (33)

Application of the chain rule [21] gives

Ej =


(

∂2F
∂ξ∗1∂ξ

∗
∂ξ∗

∂pj
+ ∂F

∂ξ∗
∂2ξ∗

∂ξ∗1∂pj

)⊤

...(
∂2F

∂ξ∗nξ
∂ξ∗

∂ξ∗

∂pj
+ ∂F

∂ξ∗
∂2ξ∗

∂ξ∗nξ
∂pj

)⊤


⊤

+
∂2F

∂pj∂ξ∗
,

(34)

which can be simplified by looking at the right summand of
each matrix entry. The Jacobian is derived to be ∂ξ∗

∂ξ∗ = I ,
leading to 0 when the derivative with respect to pj is applied.
The simplified expression then reads as

Ej =
∂2F

∂pj∂p
+

[
∂2F

∂ξ∗1∂ξ
∗

∂ξ∗

∂pj
. . . ∂2F

∂ξ∗nξ
∂ξ∗

∂ξ∗

∂pj

]
. (35)

The procedure is also conducted for ∂F̃j

∂p until (34) giving

∂F̃j

∂p
=


(

∂2F
∂p1∂p

∂ξ∗

∂pj
+ ∂F

∂ξ∗
∂2ξ∗

∂pj∂p1

)⊤

...(
∂2F

∂pnp∂p
∂ξ∗

∂pj
+ ∂F

∂ξ∗
∂2ξ∗

∂pj∂pnp

)⊤


⊤

+
∂2F

∂pj∂p
.

(36)

The right summands of the matrix entries do not vanish

∂F̃j

∂p
=

∂F

∂ξ∗
∂2ξ∗

∂pj∂p
+Dj , (37a)

with Dj =
∂2F

∂pj∂p
+

[
∂2F
∂p1∂p

∂ξ∗

∂pj
. . . ∂2F

∂pnp∂p
∂ξ∗

∂pj

]
.

(37b)

Plugging (35) and (37) into (31) then delivers

Ej∇pξ
∗ +Dj +

∂F

∂ξ∗
∂2ξ∗

∂pj∂p
= 0. (38)

Rearranging the equation as a linear system of equations for
the j-th slice of the second order sensitivity tensor leads to

∇ξ∗F
∂2ξ∗

∂pj∂p
= −Cj , (39a)

with Cj = Dj + Ej∇pξ
∗. (39b)

The matrix ∇ξ∗F is equal for all slices of the second
order sensitivity tensor. Hence, according to (16), the matrix
slices ∂2ξ∗

∂pj∂p
can be stacked into a matrix representation S

of the second order sensitivity tensor. The same is done for
the right-hand-side matrices Cj according to (18b). All this
combined leads to

∇ξ∗F S = −C. (40)

2298

