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Abstract— The use of communication technologies in ad-
vanced driver-assistance systems enables improving safety and
control performance at the same time. Lane merging scenarios
are typical traffic hubs which benefit from cooperative behavior
but require guarantees on collision avoidance. To achieve these
goals, we use a distributed model predictive control design with
computationally efficient convex formulation of the optimal
control problem. Safety guarantees are established through
recursive feasibility using invariant terminal sets. Further, the
framework of cooperative cost functions increases the global
performance, such as the total time to merge, and maintains the
formal guarantees. The performance of the proposed methods
is illustrated by a numerical example, where the cooperative
controller improves the overall cost by nearly 20%.

I. INTRODUCTION

Advanced driver-assistance systems (ADAS) offer the op-
portunity to improve the traffic flow and reduce accidents [1].
Especially cooperative networked ADAS involving vehicle-
to-everything (V2X) communication are a key technology to-
wards autonomous driving [2]. Further, an increasing amount
of computing capacities is enabled for real-time and safety-
critical systems within the vision of reliable distributed
systems [3]. This allows utilizing advanced algorithms such
as distributed model predictive control (DMPC) to improve
the system performance and safety at the same time. As an
exemplary scenario, lane merging situations are considered
throughout this article. These occur in various situations such
as at highway on-ramps, at intersections or, if lanes are
blocked due to road work. The mentioned traffic hubs can po-
tentially benefit from connected and cooperative automated
driving, as they represent bottlenecks and places of increased
risk, where non-anticipatory and unsafe driving contributes
to traffic congestion and accidents.

Due to the safety-critical nature of the control system,
safety guarantees for the real system are essential and model
predictive control (MPC) stands to reason. The control law is
based on the solution of an optimal control problem which
is solved at each time step in a receding horizon manner.
This setting allows to address safety aspects such as collision
avoidance by means of constraints in an explicit way.
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In this article, we illustrate how the use of V2X com-
munication makes it possible to apply the framework in a
distributed fashion, which is beneficial due to enhanced fail-
safe and scaling properties. This makes it possible to plan
efficient anticipatory trajectories and to avoid the necessity of
a central control unit. Consequently, no special infrastructural
computing units are required.

State of the Art. Decentralized and distributed MPC has
been successfully applied and investigated for lane merge
scenarios, e.g., in [4], [5], [6], [7], [8], [9], [10], [11]. The
approaches, however, do not ensure important theoretical
properties such as recursive feasibility and constraint sat-
isfaction and thus lack safety guarantees. In [12] recursive
feasibility is ensured through the exchange of so-called
contracts between the vehicles, i.e., sets which bound pos-
sible future trajectories. The approach requires exchanging
multiple trajectories and solving the optimization problems
several times which can be challenging in real-time appli-
cations. Another approach guaranteeing collision avoidance
is presented in [13], where recursive feasibility is provided
through the computation of forward reachable sets and an
invariant terminal set. The local optimal control problems
(OCPs) are posed as mixed-integer optimization problems,
which are computationally expensive to solve.

Contributions. In this paper, a lane merge controller based on
DMPC is proposed, combining both safety and performance.
The OCPs in the distributed control algorithm are formu-
lated as convex quadratically constrained quadratic programs,
which are known to be solved efficiently. This allows the
transfer to the application in a real-time context. Further,
formal safety guarantees result from the proposed approach,
which means that collisions are prevented at all times.
For this purpose, a recursively feasible DMPC algorithm
with suitable constraints and an invariant terminal set are
designed. Finally, an extension to a cooperative DMPC
is presented, where the global performance is improved
regarding the total time until all vehicles have merged.

Structure of the Paper. This paper is structured as follows.
In Section II, the lane merging scenario is introduced, the
system model is shown in vehicle coordinates and in error
coordinates as used in the context of terminal sets, and the
objectives of this work are described. In Section III, the
distributed MPC design is presented, starting at the sequential
algorithm and the local OCP with the linear and terminal
set constraints providing safety guarantees. Without violating
results prior to this, an extension to include cooperative
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behavior is then presented. Section IV evaluates the proposed
approach using simulation of both the non-cooperative and
the cooperative lane merge controller. Finally, conclusions
and an outlook are given in Section V.

II. PROBLEM DESCRIPTION AND OBJECTIVES

A. Scenario Description

Figure 1 shows the lane merging scenario considered in
this paper. The autonomous vehicles Vi with i ∈ {0, . . . ,M−
1}, where M is the number of vehicles, are distributed over
the two lanes, the main lane L0 and the merging lane L1.
Each vehicle is individually controlled by the distributed
control algorithm designed in this work. It is assumed that
vehicles on lane L1 merge to lane L0 at a fixed merging
point sm inside the control zone between the entry point
sin and the end point sout, and no lane change maneuvers
occur before this point. Moreover, the order in which the
vehicles merge is fixed, e.g. by the first-in-first-out principle,
and given before the first vehicle enters the control zone by
a supervisory scheduling algorithm which is not considered
in this paper. The vehicles Vi are numbered according to
the merging order, V0 being the first vehicle to pass sm and
VM−1 the last, as illustrated in Figure 1.

A vehicle can have up to four neighboring vehicles,
consisting of the neighbors in the merging order and the
neighbors in the same lane. The latter are the vehicles
entering the control zone directly adjacent in the same lane,
but not necessarily leaving the control zone directly adjacent.
A vehicle has fewer than four neighbors if lane and merging
order neighbors coincide, or if it is the first or last vehicle
leaving the control zone. As the vehicles are numbered
according to the merging order, in relation to any vehicle
Vi, vehicle Vi−1 is the front neighbor in the merging order
and vehicle Vi+1 is the rear neighbor in the merging order.
The neighboring vehicles which enter the control zone in
the same lane as Vi, which can be either L0 or L1, are
the neighbors in the same lane. They are denoted as Vi−

for the front neighbor in the same lane and Vi+ for the rear
neighbor in the same lane. If no vehicle merges between two
neighbors in the same lane, these vehicles are also neighbors
in the merging order. In addition to the global vehicle
identifiers, Figure 1 shows an example of the notations used
for neighboring vehicles in the same lane in gray from the
point of view of V2.

B. System Modeling

Vehicle Model. In this work, only longitudinal motion is con-
sidered. It is assumed there is an underlying low-level control
loop regulating the acceleration and the lateral dynamics to
match the path on the road and during the merging process.
As frequently used in the literature, e.g. in [8], [11], [13], the
vehicles Vi, i ∈ {0, . . . ,M−1} are modeled as point mass

ṡi(t) = vi(t), v̇i(t) = ui(t), (1)

where si(t) ∈ R is the longitudinal position, vi(t) ∈ R the
longitudinal velocity and ui(t) ∈ R the desired longitudinal
acceleration of Vi, at time t ∈ R≥0.

V2−V2+ V2

sin sm

V1

V0

V3

V2V4

sout

L1

L0

Fig. 1: Lane merging scenario with five vehicles V0, . . . , V4

and an example notation of neighboring vehicles in the same
lane in relation to V2 (gray).

The discrete-time system equation

xi(k + 1) = Aixi(k) +Biui(k), (2)

with the state vector xi(k) =
(
si(k) vi(k)

)⊤ ∈ R2 at time
step k = t/ts ∈ Z≥0 with sample time ts ∈ R>0 is obtained
using Euler’s explicit method. The discrete-time local system
and input matrices are

Ai =

(
1 ts
0 1

)
, Bi =

(
0
ts

)
. (3)

The global system of M vehicles with system equation

x(k + 1) = Ax(k) +Bu(k) (4)

consists of the stacked local state vectors x(k) =
col({xi(k)}0≤i<M ) ∈ R2M , the stacked local inputs u(k) =
col({ui(k)}0≤i<M ) ∈ RM , the block diagonal system matrix
A = diag({Ai}0≤i<M ) ∈ R2M×2M and the block diagonal
input matrix B = diag({Bi}0≤i<M ) ∈ R2M×M .

Error Model. In the sequel of the paper it is advantageous
in some cases to recast the system in error coordinates
zi ∈ R2, i ∈ {0, . . . ,M−1}, where the subsystems consist
of the states

z0(k) =

(
s0(k)− sr(k)
v0(k)− vr

)
, (5a)

zi(k) =

(
si−1(k)− si(k)− dr

vi(k)− vr

)
, i = 1, . . . ,M−1, (5b)

with the reference position sr(k) = ktsvr ∈ R>0, the
constant reference distance dr ∈ R>0 and the constant
reference velocity vr ∈ R>0. The states of the error model
correspond to the velocity error and the distance error with
respect to the front neighboring vehicle in the merging order.

The subsystems in error coordinates are dynamically cou-
pled. The system equation of a subsystem is

z0(k + 1) = A0z0(k) +B0u0(k), (6a)

zi(k + 1) = Ãi,i−1zi−1(k) + Ãi,izi(k) +Biui(k),

i = 1, . . . ,M−1,
(6b)

or in general terms zi(k + 1) = ÃNi
zNi

(k) + Biui(k),
with the distributed system matrices ÃN0 = A0 and ÃNi =(
Ãi,i−1 Ãi,i

)
for i = 1, . . . ,M − 1. The state vectors

zN0 = z0 and zNi =
(
z⊤
i−1 z⊤

i

)⊤ ∈ R4 for i =
1, . . . ,M−1, are the stacked state vectors of error subsystems
dynamically coupled to zi. The blocks of the distributed
system matrices are defined as

Ãi,i−1 =

(
0 ts
0 0

)
, Ãi,i =

(
1 −ts
0 1

)
, (7)
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and combined into the global system matrix

Ã =


A0

Ã1,0 Ã1,1

Ã2,1 Ã2,2

. . .

. (8)

Using the stacked local state vector z(k) =
col({zi(k)}0≤i<M ) ∈ R2M , the global system equation of
M error subsystems is

z(k + 1) = Ãz(k) +Bu(k). (9)

Vehicle coordinates are obtained from error coordinates
through the affine global transformation

z(k) = Tx(k)− zr(k). (10)

using a suitable transformation matrix T ∈ R2M×2M and
the reference vector zr(k) = (sr(k), vr, dr, . . . , vr)

⊤.

Constraints. The local accelerations ui(k) are constrained by
the lower limit umin ∈ R<0 and the upper limit umax ∈ R>0,
which is described by the local input constraint set

Ui = {ui ∈ R | umin ≤ ui ≤ umax}, (11)

and the global input constraint set

U = {u ∈ RM | ui ∈ Ui ∀i ∈ {0, . . . ,M−1}}. (12)

The local sets of state constraints consist of the constant
limitation of the velocities by the limit values vmin ∈ R≥0

and vmax ∈ R>0 and of the restriction of a vehicle’s position
based on its neighbors’ positions. To prevent collisions, a
minimum distance dmin ∈ R>0 is introduced, which must be
maintained at all times between vehicles in the same lane,
thus between Vi and Vi− and between Vi and Vi+ . If the
merging order neighbors Vi−1 or Vi+1 enter the control zone
in another lane than Vi, the minimum distance is required
only from the moment when the vehicle in front reaches sm,
with no distance constraint beforehand. In summary, the state
constraint set is formulated as

Xi = {xi ∈ R2 | vmin ≤ vi ≤ vmax,

si− − si ≥ dmin, si − si+ ≥ dmin,

si−1 − si ≥
{
dmin, if si−1 ≥ sm
−∞, otherwise

,

si − si+1 ≥
{
dmin, if si ≥ sm
−∞, otherwise

},

(13)

and the global set of state constraints as

X = {x ∈ R2M | xi ∈ Xi ∀i ∈ {0, . . . ,M−1}}. (14)

In addition, the constraint set Z is formulated in error
coordinates, where all distances are required to comply with
the minimum distance regardless of the vehicles’ positions
with respect to sm. Fulfillment of Z guarantees compliance
with the global state constraints X . This set of constraints,
formulated as

Z = {z ∈ R2M | vmin ≤ vi ≤ vmax ∀i ∈ {0, . . . ,M−1},
si−1 − si ≥ dmin ∀i ∈ {1, . . . ,M−1}},

(15)

is crucial for the design of the terminal set applied to the last
predicted values in the OCP formulated in Section III-B. The
constant set of constraints Z does not unduly increase the
conservatism of the controller, assuming a sufficiently large
prediction horizon.

C. Objectives

The goal of this work is the design of a distributed
controller guaranteeing collision prevention and compliance
with the constraints at all times. The approach should be
scalable and use only sparse communication as described in
Section II without necessitating a central roadside control
unit. On top of a distributed controller architecture, limited
computational effort is a significant component of a scalable
real-time control system.

The objectives of the control system are individual, as well
as collective in nature. Regarding the former, minimization of
acceleration efforts and deviations from a constant reference
velocity and a safety distance to the vehicle in the front are
desired. On the other hand, the negative impact on traffic of
the lane merge bottleneck should be reduced by incorporating
cooperation between vehicles for a decrease in the total time
needed until each vehicle has merged and achieving a more
even distribution of the merge’s impact in terms of costs on
all participating vehicles.

III. DISTRIBUTED MPC DESIGN

A. Distributed Control Algorithm

A non-iterative sequential control algorithm is used, where
the vehicles measure their states and apply their accel-
eration inputs simultaneously using a synchronized clock.
To compute their optimal input signals, the vehicles solve
their local OCPs sequentially according to the merging
order. Algorithm 1 describes the lane merge control from
the perspective of each vehicle and Figure 2 shows the
necessary data from neighboring vehicles at time step k. In
the following, the qualifier (l|k) denotes the prediction of

Algorithm 1: Lane merge control for each i ∈
{0, . . . ,M−1}.

1: k = 0
2: while lane merge control is active do
3: measure xi(k)
4: wait until OCPs of front neighbors are solved
5: receive trajectories x⋆

i−(·|k) and x⋆
i−1(·|k)

6: receive z⋆
i−1(k+N−1|k)

7: update terminal set Zf,i(k) according to (23)
8: solve local OCP (16)
9: send trajectory x⋆

i (·|k) to all neighbors
10: send z⋆

i (k+N−1|k) to Vi+1

11: send updated terminal set Zf,i(k) to Vi−1

12: wait until OCPs of rear neighbors are solved
13: receive trajectories x⋆

i+(·|k), x
⋆
i+1(·|k)

14: receive updated terminal set Zf,i+1(k)
15: apply u⋆

i (k|k)
16: k = k + 1
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Vi+1

x∗
i+1(·|k−1)

Vi−1

x∗
i+(·|k−1)

Vi
x∗

i−1(·|k)

Vi−x∗
i−(·|k)Vi+

z∗
i−1(k+N−1|k)Zf,i+1(k−1)

Fig. 2: Data received from neighboring vehicles used during
the local control at time step k of vehicle Vi.

the respective quantity at future time step l, based on time
step k. The optimal solution of an OCP is marked as (·)⋆.

In the controller, a terminal set is used which is composed
of local terminal sets that are updated at each time step
according to Section III-D. Due to the sequential optimiza-
tion, the front neighbors transmit their newly optimized
trajectories x⋆

i−(·|k) and x⋆
i−1(·|k) at time step k, while

the rear neighbors’ optimized trajectories x⋆
i+(·|k−1) and

x⋆
i+1(·|k−1) from the last optimization are used in the local

OCP. Additionally, the local terminal set Zf,i+1(k−1) from
the rear error subsystem received at the previous time step
is used, which is described in Section III-D. The update of
the local terminal set depends on z⋆

i−1(k+N−1|k), which
is transmitted from the front neighbor in the merging order.

B. Optimal Control Problem

The local OCP, solved on each vehicle’s computing unit
sequentially according to the merging order, is given by

min
ui(·|k),xi(·|k),

ρi,i− (·|k),
ρi,i−1(·|k)

Ji(xi(k), ui(k :k+N−1|k)) (16a)

s.t. xi(k|k) = xi(k), (16b)
zi(k+N |k) ∈ Zf,i(k), (16c)
zi(k+N−1|k) ∈ Zf,i(k−1), (16d)
zi+1(k+N−1|k) ∈ Zf,i+1(k−1), (16e)
for all l = k, . . . , k+N−1 :

xi(l+1|k) = Aixi(l|k) +Biui(l|k), (16f)
ui(l|k) ∈ Ui, (16g)
xi(l|k), ρi,i−(l|k), ρi,i−1(l|k) ∈ X ′

i , (16h)

zi+1(l|k) =
(
si(l|k)− s⋆i+1(l|k−1)− dr

v⋆i+1(l|k−1)− vr

)
, (16i)

for all l = k, . . . , k+N :

zi(l|k) =
(
s⋆i−1(l|k)− si(l|k)− dr

vi(l|k)− vr

)
, (16j)

where the prediction horizon is given by N . The predicted
state sequence xi(·|k) is initiated by the measurement ac-
cording to (16b) and follows the local system dynamics (16f).
Constraints (16c), (16d) and (16e) with error subsystem
variables specified in constraints (16j) and (16i) are the
terminal constraints for recursive feasibility, as described
in Section III-D. For the predicted values at time steps
l = k, . . . , k+N−1, the constraint sets (16g) and (16h) are
imposed, the former from Section II-B and the latter being
described in Section III-C. The slack variables ρi,i− ∈ R and
ρi,i−1 ∈ R are additional optimization variables mapping

the lower deviation from the safety distance introduced in
Section III-C.

The solution of the OCP is the optimal input trajectory
u⋆
i (k : k+N − 1|k) producing the optimal nominal state

trajectory x⋆
i (k : k+N |k) and u⋆

i (k|k) is the acceleration
applied to the vehicle after completion of the control iteration
over all vehicles.

C. Linear State Constraints

The state constraints (13) form a non-convex constraint set
with respect to the ego vehicle’s position due to the switching
distance constraints between neighbors in the merging order.
Through the sequential update and the modifications in this
section, they become linear in the optimization variables.

Additionally, the slack variables ρi,i− and ρi,i−1 are
added to the distance constraints to the front neighbors, to
incentivize in (16) an increase of the distance up to the
safety distance dmin + tdvi(k) with the safety time gap
td ∈ R≥0. The distance dmin is maintained as the lower
distance constraint where applicable, in order to operate the
controller away from the constraints, increasing the degrees
of freedom during the lane merge.

The resulting constraint set coupled to the optimized
position trajectories of neighboring vehicles is

X ′
i = {xi ∈ R2M | (18)} (17)

composed of the individual constraints

vmin ≤ vi(l|k) ≤ vmax, (18a)
s⋆i−(l|k)− si(l|k) ≥ dmin + tdvi(l|k)− ρi,i−(l|k), (18b)
ρi,i−(l|k) ≤ tdvi(l|k), (18c)
si(l|k)− s⋆i+(l|k−1) ≥ dmin, (18d)
s⋆i−1(l|k)− si(l|k) ≥{

dmin + tdvi(l|k)− ρi,i−1(l|k), if s⋆i−1(l|k) ≥ sm
−∞, otherwise,

(18e)
ρi,i−1(l|k) ≤ tdvi(l|k), (18f)

si(l|k) ≤
{
sm − dmin, if s⋆i−1(l|k) ≤ sm
∞, otherwise,

(18g)

si(l|k)− s⋆i+1(l|k−1) ≥{
dmin, if s⋆i+1(l|k−1) > sm − dmin

−∞, otherwise.
(18h)

D. Terminal Sets

In order to design a recursively feasible MPC algorithm,
a structured positive invariant set and terminal feedback
K̃f ∈ RM×2M are used, designed in a distributed manner
according to [14]. The local terminal set is defined as

Zf,i(k) =
{
zi ∈ R2 | z⊤

i Pizi ≤ αi(k)
}
, (19)

where Pi ∈ R2×2 and the time-varying local set sizes
αi(k) ∈ R≥0 with

∑M−1
i=0 αi(k) ≤ 1 define the el-

lipsoidal set. The corresponding global set is Zf =
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{
z ∈ R2M | z⊤Pz ≤ 1

}
with block diagonal matrix P =

diag({Pi}0≤i<M ) ∈ R2M×2M .
Local terminal controllers of the form ui = K̃f,NizNi

with K̃f,N0
= K̃f,0,0 and K̃f,Ni

=
(
K̃f,i,i−1 K̃f,i,i

)
for

i ∈ {1, . . . ,M−1} are considered, yielding the structured
global terminal feedback matrix

K̃f =


K̃f,0,0

K̃f,1,0 K̃f,1,1

K̃f,2,1 K̃f,2,2

. . .

. (20)

The local terminal sets (19) and the feedback matrix (20)
are to be designed such that the set Zf is positive invariant
for the global closed-loop system

z(k+1) = ÃKf
z(k) (21)

with the closed-loop system matrix ÃKf
= Ã + BK̃f ∈

R2M×2M according to the following definition.

Definition 3.1: A set Zf is positive invariant for system
(21) with constraints z ∈ Z , K̃fz ∈ U , if it holds that Zf ⊆
Z, K̃fZf ⊆ U and z(k + 1) = ÃKf

z(k) ∈ Zf ∀z(k) ∈ Zf .

Remark 3.1: From z(k) ∈ Z follows for the transformed
vehicle states xi(k) ∈ X ′

i , ∀i ∈ {0, . . . ,M−1}, since Z ⊆
X ′ = {x ∈ R2M | xi ∈ X ′

i , ∀i ∈ {0, . . . ,M−1}}.
The terminal sets are used under the following assumption.

Assumption 3.1: Given the local sets (19) and the struc-
tured global set Zf , it holds that Zf,0(k)×· · ·×Zf,M−1(k) ⊆
Zf , ∀k ≥ 0. Furthermore, there exists a suitable update
function of the local terminal sets (19) for system (21),
such that if zi(k) ∈ Zf,i(k) ∀i ∈ {0, . . . ,M − 1}, then
zi(k+1) ∈ Zf,i(k+1) ∀i ∈ {0, . . . ,M − 1}. Using the
sets of dynamic coupled subsystems N0 = {0} and Ni =
{i−1, i} and the corresponding update function, it holds that
if zj(k) ∈ Zf,j(k) ∀j ∈ Ni, then zi(k+1) ∈ Zf,i(k+1).

The above assumption holds true if the structured ellipsoidal
set Zf , the terminal feedback K̃f and the update matrices
ΓN0 ∈ R2×2 and ΓNi ∈ R4×4 for i ∈ {1, . . . ,M−1} of the
terminal set update function

αi(k+1) = αi(k) + z⊤
Ni

(k)ΓNi
zNi

(k) (22)

are designed according to the approach from [14]. Addi-
tionally, the approach leads to a positive invariant set Zf

according to Definition 3.1.

Application in Sequential Control Algorithm. The local ter-
minal sets designed in [14] are applied to a distributed
MPC problem with parallel optimization. In this work, the
distributed OCPs are optimized sequentially, therefore the
approach is modified here.

Terminal constraint (16c) guarantees feasibility at the next
time step, while (16d) and (16e) ensure that subsequently
optimized vehicles maintain feasibility of their propagated
terminal values throughout the sequential control loop. The
latter constraint requires knowledge of the local terminal set
Zf,i+1(k−1) of the rear neighbor in the merging order. The
local terminal set Zf,i(k) is updated before solving the OCP

at time step k based on new information from vehicles in
front consisting of z⋆

i−1(k+N−1|k) and x⋆
i−1(k+N−1|k),

with the update function

αi(k) = αi(k−1) (23)

+ z⋆⊤
Ni

(k+N−1|k−1+)ΓNi
z⋆
Ni

(k+N−1|k−1+),

and initial value αi(0) =
1
M ∀i ∈ {0, . . . ,M−1}. The state

vector used in the update function with l = k+N −1 is
composed as z⋆

N0
(l|k−1+) = z⋆

0(l|k−1) and

z⋆
Ni

(l|k−1+) =

(
z⋆
i−1(l|k)

z⋆
i (l|k−1+)

)
, (24)

with

z⋆
i (l|k−1+) =

(
s⋆i−1(l|k)− s⋆i (l|k−1)− dr

v⋆i (l|k−1)− vr

)
, (25)

for i ∈ {1, . . . ,M−1}. The superscript (·)+ in the context
of an optimized state vector of an error subsystem indicates
that front vehicles Vj with j ∈ {0, . . . , i−1} have already
solved their OCPs and their newly optimized trajectories are
considered. The ego vehicle and rear vehicles Vj with j ∈
{i, . . . ,M−1} have not yet solved their OCPs and optimized
trajectories from the previous sampling time step are used.

The application of the terminal sets in the sequential
distributed control algorithm is based on the following result,
which can be inferred from the described approach of the
update function. If z⋆

0(k+N−1|k−1+) ∈ Zf,0(k−1) or

z⋆
i−1(k+N−1|k) ∈ Zf,i−1(k−1), (26a)

z⋆
i (k+N−1|k−1+) ∈ Zf,i(k−1), (26b)

for i ∈ {1, . . . ,M−1}, then it holds that

zi(k+N |k) = ÃKf ,Ni
z⋆
Ni

(k+N−1|k−1+) ∈ Zf,i(k), (27)

using update function (23) and local closed-loop system
matrix ÃKf ,N0 = ÃN0 +B0K̃f,N0 ∈ R2×2 and ÃKf ,Ni =
ÃNi

+BiK̃f,Ni
∈ R2×4 for i ∈ {1, . . . ,M−1}.

E. Cost Function

The local trajectories are optimized with respect to the
local actuation effort, the deviation from the reference ve-
locity and the lower deviation from the safety distance to
front vehicles. The components are each weighted with the
factors p, q, r ∈ R≥0, yielding the cost function

Ji(xi(k), ui(·|k)) =
k+N−1∑

l=k

[
p
(
ρi,i−(l|k)2 + ρi,i−1(l|k)2

)
+ q (vi(l|k)− vr)

2
+ rui(l|k)2

]
. (28)

F. Main Results

The main results of the proposed control approach are the
computational efficiency due to the formulation of the OCP
and the safety guarantees.

As outlined in Sections III-C, III-D and the following
Section III-E, the local OCP is composed of a quadratic cost
function (16a), ellipsoidal terminal constraints (16c), (16d)
and (16e) and the linear input and state constraints (16g),
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(16h) and thus forms a convex quadratically constrained
quadratic program which can be solved efficiently, e.g., using
an interior-point solver [15].

Furthermore, safety with respect to collision prevention
is guaranteed at all times, starting from an initial feasible
solution of OCP (16) for all vehicles, which exists under the
following assumption.

Assumption 3.2: It is assumed that the prediction horizon
N of the OCPs is sufficiently large for an initial feasible
solution of (16) u⋆

i (k :k+N−1|k), x⋆
i (k :k+N |k), ρ⋆i,i−(k :

k+N−1|k), ρ⋆i,i−1(k :k+N−1|k) to exist at time k = 0 for
all i ∈ {0, . . . ,M−1}.

Remark 3.2: This assumption is necessary due to z(k+
N |k) ∈ Zf ⊆ Z , where all vehicles are required to keep the
minimum distance dmin regardless of their positions with
respect to the merging point sm. The prediction horizon
required to fulfill Assumption 3.2 is dependent on factors
such as the number of vehicles M , the reference values dr
as well as vr and should be increased if no feasible solution
is found at time k=0, for any i ∈ {0, . . . ,M−1}.

In the following, a theorem on the recursive feasibility of
the developed control algorithm is stated. The corresponding
proof can be found in Appendix A.

Theorem 3.1 (Recursive Feasibility): Consider system (4)
with the control law defined in Algorithm 1. Let Assumption
3.1 and 3.2 hold, then there exist feasible sequences ûi(k :
k+N−1|k), x̂i(k :k+N |k), ρ̂i,i−(k :k+N−1|k), ρ̂i,i−1(k :
k+N−1|k) for all k > 0. Moreover, the input and state
comply with the constraints (16g) and (16h).

G. Cooperative Lane Merging

Cooperative behavior is used to achieve a more balanced
and globally improved control. Due to cooperative cost
functions, vehicles accept an increase in their individual costs
if this results in an overall reduction when taking into account
the rear neighboring vehicles’ costs. This is implemented
with additional slack variables ρi+,i ∈ R and ρi+1,i ∈ R
mapping the lower deviation from the rear neighbor’s safety
distances to the currently optimizing vehicle, which enables
the retention of the sequential control loop. For this purpose,
OCP constraint (18d) from X ′

i is extended to

si(l|k)− s⋆i+(l|k−1) ≥
dmin + tdv

⋆
i+(l|k−1)− ρi+,i(l|k),

(29a)

ρi+,i(l|k) ≤ tdv
⋆
i+(l|k−1). (29b)

Similarly, the constraint (18h) is extended to

si(l|k)− s⋆i+1(l|k−1) ≥
dmin + tdv

⋆
i+1(l|k−1)

− ρi+1,i(l|k),
if s⋆i+1(l|k−1) >

sm − dmin

−∞, otherwise,

(30a)

ρi+1,i(l|k) ≤ tdv
⋆
i+1(l|k−1). (30b)

The cooperative cost function is a weighted sum of the
individual costs (28) and the variable parts of the rear

neighbors’ costs, defined as

JNi
(xi(k), ui(·|k)) = ωiJi(xi(k), ui(·|k))

+

k+N−1∑
l=k

(
ωnρi+,i(l|k)2 + ωoρi+1,i(l|k)2

)
. (31)

The weights ωi, ωn, ωo ∈ R≥0 adjust the cooperative behav-
ior, where ωn = ωo = 0 reduces the cooperative controller
to the individual one. As the minimum required distances
remain the same, the local OCPs are only changed with
respect to the costs and the main results presented in Section
III-F hold.

IV. NUMERICAL EXAMPLE

A. Setup

The proposed DMPC algorithm for autonomous lane
merging is simulated in MATLAB. The ellipsoidal terminal
sets Zf,i computed at the beginning of the simulation and the
distributed local OCPs are solved using the toolbox YALMIP
[16] with the solver MOSEK [17].

The constant parameter values used to define the scenario,
the vehicles and the MPC framework are shown in Table I.
For the given simulation parameters, the computation time
of OCP (16) for a vehicle at each time step averages 36ms
(Recorded on a device with Intel Core i7-1270P, 32GB
RAM).

The initial longitudinal positions are random parameters,
where the initial distances between neighboring vehicles in
the same lane are distributed uniformly between 30m and
60m, thus on average slightly below the reference distance.
In order to ensure sufficient distance after merging the two
lanes, significant control action is required.

B. Results and Discussion

Simulation is used to verify the safety guarantees of the
control algorithm and to demonstrate the improvement with
cooperative cost functions in comparison to the same con-
troller without cooperative behavior. The former is shown by
the fact that in the course of the simulations no infeasibilities
occurred during the control.

The line plots in Figure 3 show the state and input
trajectories of each vehicle in the respective vehicle color,
where the line is drawn dashed for vehicles in the merging
lane L1 until merging to the main lane L0 and vehicles in
L0 are drawn as solid lines.

Cooperative Control. For the simulation of cooperative con-
trol as described in Section III-G, the cost function weights

TABLE I: Parameter values.

name value

sm 200m
sout 230m
vmin 0m/s
vmax 35m/s
vr 20m/s
vi(0) 20m/s

name value

umin −10m/s2

umax 10m/s2

dmin 10m
dr 50m
td 2 s
ts 0.25 s

name value

M 5
N 60
p 7 · 10−4

q 8.2 · 10−4

r 10−2
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Fig. 3: Comparison of velocity/acceleration trajectories with
cooperative (c) vs. non-cooperative (nc) control approach.

ωi = 1, ωn = p and ωo = 5p are defined. A simulation
with cooperative cost functions and a simulation with non-
cooperative cost functions (ωn = ωo = 0) and besides
that identical parameterizations are compared in Figure 3
to show the effect of cooperative behavior. In the top row,
the first vehicle’s constant velocity v0(t) = vr necessitating
a significant reduction in velocity of the following vehicles
is illustrated. The cooperative cost functions used in the
simulation shown in the bottom row lead to an increase in
velocity above the reference velocity of the front vehicles,
thus leading to a more moderate decrease in velocity of the
following vehicles. In order to revert to the reference velocity
a deceleration is required for vehicle V0, which is shown in
the bottom right plot.

The bar chart in Figure 4 shows the averaged values of
the individual vehicle costs over 10 simulations, where the
actual trajectories of the vehicles over the entire simulation
period are inserted into (28). The impact of the lane merge
lies disproportionately on the rearmost vehicles in the non-
cooperative case. The application of cooperative cost func-
tions leads to a more even distribution of the individual
costs among the vehicles, with a reduction of the cumulated
individual costs by 19.9%. Additionally, the average length
of time from the first vehicle entering the control zone until
the rearmost vehicle passes sout is reduced by 6.1%, from
21.3 s to 20.0 s.

V. SUMMARY AND OUTLOOK

Lane merging situations are ubiquitous in urban traffic
and contribute to congestion and potential accidents. In this
article, a distributed model predictive control framework is
proposed to induce an anticipatory and cooperative behavior.
Formal safety guarantees, such as collision avoidance, are
achieved by means of recursive feasibility. In our approach,
the communication between the involved vehicles is limited
to the direct neighbors, which implies scalability even for
large convoys. In a numerical example, we illustrate how
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4
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0.67
1.67

1.362.18
1.46

2.5 1.79

co
st

J0
J1
J2
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Fig. 4: Comparison of individual vehicle costs with cooper-
ative (c) vs. non-cooperative (nc) control approach.

the overall cost can be reduced by nearly 20 % using
cooperative cost functions. Future research directions are
distributed stochastic or robust model predictive control in
order to extend the control design to disturbances and model
uncertainties, see, e.g., [18].

APPENDIX

A. Proof of Theorem 3.1

In the following, the proof of Theorem 3.1 is shown.
Proof: Given a feasible optimal control sequence u⋆

i (k :
k+N−1|k) and feasible state and slack trajectories x⋆

i (k :
k+N |k), ρ⋆i,i−(k : k+N − 1|k), ρ⋆i,i−1(k : k+N − 1|k)
at time step k for all i ∈ {0, . . . ,M − 1} for OCP (16),
a candidate solution can be recursively constructed that is
a feasible solution for OCP (16) at time step k+1 for all
i ∈ {0, . . . ,M−1}.

The candidate input sequence for the optimization at time
step k+1 is defined as

ûi(l|k+1) =

{
u⋆
i (l|k), k < l < k+N,

Kf,Ni ẑNi(l|k+1), l = k+N.
(32)

The appended candidate value for l = k+N is generated
using the terminal feedback. The candidate state sequence in
vehicle coordinates is

x̂i(l|k+1) = x⋆
i (l|k), k < l ≤ k+N. (33)

The slack variables’ candidate solutions are

ρ̂i,i−(l|k+1) = ρ̂i,i−1(l|k+1) = tdv
⋆
i (l|k) (34)

for k < l ≤ k+N . In error coordinates, a subsystem’s state
vector comprises two vehicles’ states. The candidate solution
of subsystem i is defined as

ẑi(l|k+1) = z⋆
i (l|k+), k < l ≤ k+N, (35)

where the optimized trajectory from vehicle Vi−1 at time
k+1 and optimal data from vehicle Vi at time k are used,
see (25). The candidate solution of the rear error subsystem
used in constraint (16e) does not include newly optimized
values with

ẑi+1(l|k+1) = z⋆
i+1(l|k), k < l ≤ k+N. (36)

The new appended terminal value of the state candidate
solution is computed in error coordinates as

ẑi(k+N+1|k+1) = ÃKf ,Ni ẑNi(k+N |k+1) (37)

= ÃKf ,Ni
z⋆
Ni

(k+N |k+). (38)
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The candidate solutions are verified regarding constraints
(16g), (16h), (16c), (16d) and (16e).

First, constraint (16g) is examined for all k < l ≤ k+N .
The constraint holds for k < l < k+N with ûi(l|k+1) =
u⋆
i (l|k) ∈ Ui. If constraint (16d) is fulfilled for Vi and Vi−1,

then it holds that ẑi(k+N |k+1) ∈ Zf,i(k) and z⋆
i−1(k+

N |k+1) ∈ Zf,i−1(k). Then ûi(k+N |k+1) = K̃f,Ni
ẑNi

(k+
N |k+1) ∈ Ui holds, due to (25) and constraint satisfaction
in the invariant set according to Definition 3.1.

Constraint set (16h) comprises individual constraints (18a)
to (18h). (18a) is fulfilled with v̂i(l|k+1) = v⋆i (l|k), k <
l ≤ k+N , since v⋆i (l|k) ∈ X ′

i for k < l ≤ k+N−1 and
v⋆i (k+N |k) ∈ Zf,i(k), where the constraint on velocity holds
according to Definition 3.1 and constraint set (15).

Switching constraint (18e) states s⋆i−1(l|k+1) − ŝi(l|k+
1) ≥ dmin + tdv̂i(l|k+1) − ρ̂i,i−1(l|k+1), if s⋆i−1(l|k+
1) ≥ sm. The other case does not restrict the position. The
candidate solution is inserted to yield s⋆i−1(l|k+1)−s⋆i (l|k) ≥
dmin + tdv

⋆
i (l|k) − tdv

⋆
i (l|k) = dmin. From feasibility of

the OCP of vehicle Vi−1 at time step k+1, it follows that
s⋆i−1(l|k+1)−s⋆i (l|k) ≥ dmin, if s⋆i (l|k) > sm−dmin as it is
required in (18h). A violation of (18e) would mean s⋆i−1(l|k+
1) − s⋆i (l|k) < dmin and s⋆i−1(l|k+1) ≥ sm are fulfilled
at the same time. Rearranged for s⋆i , this yields s⋆i (l|k) >
s⋆i−1(l|k+1) − dmin > sm − dmin. This activates constraint
(18h) of vehicle Vi−1, requiring s⋆i−1(l|k+1)−s⋆i (l|k) ≥ dmin

and thus preventing a constraint violation.
Constraint (18f) is fulfilled with ρ̂i,i−1(l|k + 1) =

tdv
⋆
i (l|k) ≤ tdv̂i(l|k+1) = tdv

⋆
i (l|k), k < l ≤ k+N .

Constraint (18g) with the candidate solution inserted states
ŝi(l|k+1) = s⋆i (l|k) ≤ sm − dmin, if s⋆i−1(l|k) ≤ sm. As
above, constraint (18h) in the OCP of vehicle Vi−1 is formu-
lated as s⋆i−1(l|k+1)−s⋆i (l|k) ≥ dmin, if s⋆i (l|k) > sm−dmin.
Therefore, if s⋆i (l|k) > sm−dmin, then rearranged constraint
(18h) of Vi−1 yields s⋆i−1(l|k+ 1) ≥ s⋆i (l|k) + dmin >
sm − dmin + dmin = sm. Thus, s⋆i (l|k) > sm − dmin implies
s⋆i−1(l|k+1) > sm and (18g) is satisfied for k < l ≤ k+N .

Constraint (18h) requires ŝi(l|k+1)−s⋆i+1(l|k) = s⋆i (l|k)−
s⋆i+1(l|k) ≥ dmin, if s⋆i+1(l|k) > sm−dmin. For verification,
constraint (18e) in the OCP of vehicle Vi+1 at time step
k, using constraint (18f) to reduce the slack variables, is
formulated as s⋆i (l|k) − s⋆i+1(l|k) ≥ dmin + tdv

⋆
i+1(l|k) −

ρ⋆i+1,i(l|k) ≥ dmin, if s⋆i (l|k) ≥ sm. Additionally, constraint
(18g) of vehicle Vi+1 is formulated as s⋆i+1(l|k) ≤ sm−dmin,
if s⋆i (l|k) ≤ sm. Therefore, s⋆i+1(l|k) > sm − dmin is only
possible if s⋆i (l|k) > sm, which leads to constraint s⋆i (l|k)−
s⋆i+1(l|k) ≥ dmin of vehicle Vi+1, which verifies constraint
(18h) of vehicle Vi for k < l ≤ k+N−1. The constraint is
fulfilled at l = k+N , due to z⋆

j (k+N |k) ∈ Zf,j(k) ∀j ∈
{0, . . . ,M−1}, where the minimum distance constraint holds
between all vehicles. The compliance of constraints (18b),
(18c) and (18d) can be proven similarly.

Constraint (16c) requires ẑi(k+N+1|k+1) ∈ Zf,i(k+1).
Using definition (37) and (27) in combination with (26), this
holds true if z⋆

i−1(k+N |k+1) ∈ Zf,i−1(k) and z⋆
i (k+

N |k+) ∈ Zf,i(k) are fulfilled. From feasibility of the OCP
of vehicle Vi−1 at time k+1 follows z⋆

i−1(k+N |k+1) ∈

Zf,i−1(k) from constraint (16d). The second condition is
fulfilled through constraint (16e) in the OCP of vehicle Vi−1,
which states zi(k+N |k+1) ∈ Zf,i(k). After optimization of
Vi−1, this yields z⋆

i (k+N |k+) ∈ Zf,i(k), see (25).
Constraint (16d) requires ẑi(k+N |k+1) = z⋆

i (k+N |k+) ∈
Zf,i(k). This follows from feasibility of (16e) in the OCP of
vehicle Vi−1 for k+1 as shown in the paragraph above.

Constraint (16e) requires ẑi+1(k+N |k+1) = z⋆
i+1(k+

N |k) ∈ Zf,i+1(k). This holds due to feasibility of OCP
of vehicle Vi+1 at time step k w.r.t. constraint (16c) which
yields z⋆

i+1(k+N |k) ∈ Zf,i+1(k). This completes the proof.
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