
Closing the Gap to Quadratic Invariance: a Regret Minimization
Approach to Optimal Distributed Control

Daniele Martinelli, Andrea Martin, Giancarlo Ferrari-Trecate, and Luca Furieri

Abstract— In this work, we focus on the design of optimal
controllers that must comply with an information structure.
State-of-the-art approaches do so based on the H2 or H∞ norm
to minimize the expected or worst-case cost in the presence
of stochastic or adversarial disturbances. Large-scale systems
often experience a combination of stochastic and deterministic
disruptions (e.g., sensor failures, environmental fluctuations)
that spread across the system and are difficult to model
precisely, leading to sub-optimal closed-loop behaviors. Hence,
we propose improving performance for these scenarios by
minimizing the regret with respect to an ideal policy that
complies with less stringent sensor-information constraints.
This endows our controller with the ability to approach the
improved behavior of a more informed policy, which would
detect and counteract heterogeneous and localized disturbances
more promptly. Specifically, we derive convex relaxations of the
resulting regret minimization problem that are compatible with
any desired controller sparsity, while we reveal a renewed role
of the Quadratic Invariance (QI) condition in designing in-
formative benchmarks to measure regret. Last, we validate our
proposed method through numerical simulations on controlling
a multi-agent distributed system, comparing its performance
with traditional H2 and H∞ policies.

I. INTRODUCTION

Control of large-scale systems, such as smart grids [1] or
traffic systems [2], requires communication among multiple
interacting agents to ensure efficient and safe operation. A
significant challenge arises from the incomplete information
available to each agent regarding the overall system state.
This partial communication can be due to various factors,
including privacy concerns, geographic dispersion, and the
inherent difficulties of establishing a reliable communication
network. Designing optimal control policies complying with
specific information structures is a well-known challenge,
even in seemingly straightforward scenarios, as highlighted
by the classic work [3].

The design phase concerning large-scale systems primarily
revolves around addressing two fundamental challenges: first,
how to parameterize controllers to comply with a given infor-
mation sparsity, and second, how to formulate a metric that
accounts for disturbances and the effect of their propagation
throughout the dynamics of the distributed system.

Regarding the first challenge, for linear dynamical sys-
tems, a landmark contribution was given in [4], where the
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authors proposed the notion of Quadratic Invariance (QI),
a sufficient [4] and necessary [5] condition for enabling an
exact convex reformulation of sparse linear controller syn-
thesis. However, the QI condition can be overly restrictive,
i.e., not fulfilled by several systems with highly intertwined
dynamics. To address this issue, [6] introduced communica-
tion channels between controllers to effectively restore the QI
condition. The works [7]–[9] presented convex optimization
methods for designing sparse closed-loop dynamics and
sparse controllers, even when the QI condition does not hold.
Within optimal distributed control, [10] addressed how to
promote sparsity in closed-loop controllers while minimizing
performance degradation compared to a centralized policy.
Building on this, works [11] and [12] proposed methods for
the explicit parameterization of sparse H2 controllers. [11]
focused on physically decoupled systems, while [12] derived
control policies that closely resemble an optimal centralized
one under specific conditions.

Concerning the second challenge of choosing an appropri-
ate performance metric, traditional control techniques, such
as H2 and H∞, often rely on certain assumptions about
the nature of disturbances to achieve optimal control poli-
cies [13]. H2 treats disturbances as stochastic noise, while
H∞ considers them as adversarial attacks. However, these
assumptions can be unrealistic and conservative in large-
scale scenarios, where disturbances are 1) difficult to model
due to the complex dynamics of small local mismatches
propagating at large, and 2) difficult to localize, as they
may affect agents at unpredictable locations and times. This
requires the development of novel control strategies capable
of accommodating such non-standard disturbances.

Contributions. To improve the ability of the optimal policy
to respond quickly to disturbances with unknown locations
and nature, our idea is to close the gap to the performance
of an oracle, that is, a benchmark policy that possesses
more sensor measurements. By minimizing the worst-case
difference in cost with this oracle, our controller design
encourages emulation of its behavior, potentially leading
to improved performance. This new metric is inspired by
the recent works on regret technique [14]–[16], which are
however limited to centralized control scenarios and focus
on a temporal notion of regret.

In this work, we first analyze the conditions for the oracle
to express an improved performance to be emulated. We
term a spatial regret metric satisfying these capabilities as
well-posed. This analysis is achieved by revealing a renewed
role of the QI condition within the well-posedness of the
proposed metric. Finally, we provide a convex reformulation
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for designing regret-optimal controllers with arbitrary spar-
sity structures, optimizing them to close the performance gap
to an ideal QI subspace that encodes richer information for
the control policy. To illustrate the real-world relevance of
our approach, we provide numerical examples involving a
multi-agent scenario of a multi-mass spring-damper system
that requires to be controlled in the presence of non-standard
disturbances.

Structure. The paper is organized as follows. In Section II,
we define the problem and introduce the novel spatial regret
metric. In Section III, we prove the well-posedness of the
spatial regret. Moreover, we formulate the spatial regret
optimization problem in a convex form. Lastly, in Section IV
we report numerical examples to show the performance of
spatial regret in the control of a distributed system.

Notation. Ra×b represents the set of real matrices with
dimension a × b. N+ denotes the set of non-zero natural
numbers. For a matrix Y ∈ Ra×b, Yi,j indicates its element
in row i and column j. Given the vector x ∈ Ra, xi is used
to indicate the ith component of x, with i ∈ {1, . . . , a}.
We denote the set of a × b binary matrices by Ba×b. For
X ∈ Ba×b, we define the set of matrices with the same
sparsity pattern of X as

Sparse(X) := {Y ∈ Ra×b | Yi,j = 0 ∀i, j s. t. Xi,j = 0} .

With card(X), we represent the number of nonzero elements
in the binary matrix X . For a matrix Z ∈ Ra×b, X :=
Struct(Z) ∈ Ba×b if

Xi,j =

{
0 if Zi,j = 0,

1 otherwise.
.

For X,Y ∈ Ba×b, we say X ≤ Y if Xi,j ≤ Yi,j , ∀i, j.
The operators ∥·∥F and ∥·∥2→2 represent the Frobenius and
induced 2-norm of a matrix, respectively. Given a symmetric
matrix H ∈ Ra×a, we denote the largest eigenvalue of H
as λmax(H). For a square matrix X , we use the notation
X ≻ 0 (X ⪰ 0) to denote positive (semi-) definiteness.
The operator ⊗ represents the Kronecker product. Finally,
blkdiag(A,B,C, . . . ) represents the block-diagonal matrix
with matrices A,B,C, . . . on the diagonal.

Remark: For the sake of conciseness, the proofs of the
results in this work are deferred to the Appendix of the
extended manuscript [17].

II. PROBLEM FORMULATION

We consider discrete-time linear time-varying dynamical
systems described by the state-space equations:

xt+1 = Atxt +Btut + Etwt , (1)

where xt ∈ Rn, ut ∈ Rm, and wt ∈ Rn represent the
system state, the control input, and an exogenous disturbance,
respectively. Motivated by the observation that it is often
difficult to characterize the class of disturbances, we make
no assumptions regarding the distribution or the nature of
wt over time. For simplicity, we assume Et = I . The more

general case where Et ̸= I can be addressed using the
methods described in [18].

We consider the scenario where the system described by
(1) is controlled over a finite horizon T ∈ N+, starting from
an initial condition x0 ∈ Rn. For compactness, we define

x :=


x0

x1

...
xT−1

 , u :=


u0

u1

...
uT−1

 , δ :=


x0

w0

...
wT−2

 =

[
x0

w

]
.

At each time instant t, we denote the input ut produced by
a controller πt as ut = πt(x0, . . . , xt). For a policy π :=
[π⊤

0 (x0) . . . π
⊤
T−1(x0, . . . , xT−1)]

⊤ and a disturbance δ, the
incurred cost is defined as

J(δ,π) :=
[
x⊤ u⊤]C [

x
u

]
. (2)

where the matrix C ⪰ 0 assigns different weights to the
states and input signals at different time instants. Notice that
it is intractable to cast an optimization program over the
class of all general policies π. Motivated by their optimality
for centralized linear quadratic control and their tractability
properties, we focus on linear feedback policies of the form
u = Kx , where K ∈ RmT×nT is a lower block-triangular
matrix due to causality1. To highlight the dependency of K
in (2), we will use the notation J(δ,K).

This paper focuses on large-scale systems, where each
controller has only access to partial sensor information. We
represent this condition using the constraint

K ∈ S , S = Sparse(S) ,

where S ∈ BmT×nT describes the spatio-temporal informa-
tion of the system, in the sense that S describes which scalar
control input depends on which scalar state, and at which
time instant. We will refer to S as “sparsity matrix”. We
always assume S to be lower block-diagonal to ensure the
causality of the control policy.

A. Spatial regret

The cost function (2) depends on the realization of the
unknown disturbances δ. Hence, finding a sparse controller
K minimizing (2) for any δ is an ill-posed problem. To
remove the explicit dependency of the cost on δ, the H2

paradigm optimizes the expected performance under the
assumption of stochastic disturbances with zero average
and finite second moment, while the H∞ setup focuses
on optimizing with respect to the worst-case disturbance
realization. However, both setups are unlikely to hold in
large-scale systems. The presence of unmodeled dynamics
often leads to non-stochastic uncertainties, and disturbances
are frequently localized to specific subsystems rather than
representing a worst-case scenario. In this work, we propose
an alternative controller performance metric that is tailored
to large-scale scenarios.

1An affine policy u = Kx + g can be also considered augmenting the
state as x̃t :=

[
x⊤
t 1

]⊤. Thus, we will focus on linear feedback policies,
without loss of generality.
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Suppose, to have an ideal sparsity matrix Ŝ that is denser
than the real control sparsity structure S, i.e., S ⊂ Ŝ, with
S = Sparse(S), and Ŝ = Sparse(Ŝ). Then, a controller
K̂ ∈ Ŝ would have more sensor information to use, and it
would be able to detect and counteract localized disturbances
more promptly, regardless of the location where they may
hit. Our idea is to promote the design of sparse controllers
that imitate, in hindsight, the behavior of denser ones. To do
so, first define the error between the cost of the controller
K ∈ S and K̂ ∈ Ŝ for a given δ as

e(δ,K, K̂) := J(δ,K)− J(δ, K̂) . (3)

Then, we introduce a new metric that we call Spatial Regret
quantifying the worst-case scenario of (3) as

SpRegret(K, K̂) := max
∥δ∥2≤1

e(δ,K, K̂) . (4)

Finally, the minimization problem we want to solve is

min
K

SpRegret(K, K̂) (5a)

s. t. K ∈ S , S ⊂ Ŝ . (5b)

From (4), note that a non-positive spatial regret value implies
that the oracle K̂ cannot improve the performance of the
controller K to be designed for any disturbance δ ̸= 0.
Therefore, (4) is not well-posed in the sense that it is
meaningless to match the performance of a universally worse
benchmark for any disturbance. An example demonstrating
this point is reported in [17][App. A]. Problem (5) presents
two key challenges. First, we need to verify when it is well-
posed, meaning that SpRegret(·, ·) is lower bounded for any
selected controller K ∈ S , given the oracle K̂. Second,
notice that (5) is composed of multiple nested optimization
problems, making its solution intractable in this form. In
Section III-B we provide a convex approximation of (5).

Remark 1: Our SpRegret metric is inspired by [14]–
[16], [18]–[20], where centralized controllers are designed
by minimizing regret with respect to a benchmark policy
that has foreknowledge of future realization of δ. Unlike
these and related works rooted in online optimization, see
e.g., [21], our approach introduces a spatial notion of regret
instead of a temporal one. Studying the interplay between
spatial and temporal notions of regret is left as an interesting
direction for future research.

Remark 2: In the case of a perfect oracle achieving zero
cost for every disturbance realization, (4) reduces to the ob-
jective of classic H∞ controllers. However, the key strength
of our metric emerges when considering imperfect oracles:
the spatial regret metric allows mimicking the behavior of
an unattainable policy that has additional sensor data (which
we lack). This approach prioritizes mitigating disturbances
where this additional information would be most beneficial,
all while complying with the information sparsity of the
system.

B. Review of convex design of distributed controllers

We review results on the convex design of distributed
controllers that are instrumental in solving the above

challenges. Let Z denote the block-downshift operator,
namely a block-matrix with identity matrices along its
first block sub-diagonal and zeros elsewhere. Define the
matrices A := blkdiag(A0, . . . , AT−2, 0n×n), and B :=
blkdiag(B0, . . . , BT−2, 0n×m). Then, the state evolution of
(1) can be represented compactly as

x = ZAx+ ZBu+ δ . (6)

Considering a control law u = Kx and (6), it is straight-
forward to write the closed-loop maps Φx,Φu from the
disturbances δ to x and u as[

x
u

]
=

[ (
I − Z(A+BK)

)−1

K
(
I − Z(A+BK)

)−1

]
δ =

[
Φx

Φu

]
δ = Φδ. (7)

Here, Φ is the vertical stacking of Φx,Φu. The closed-loop
responses Φx,Φu are lower block-diagonal due to causality.
It is easy to verify that K and Φ are linked through the
relation K = h(Φ) = ΦuΦ

−1
x , with h : R(m+n)T×nT →

RmT×nT . Also, as shown in [22], it can be proved that there
exists a controller K such that (7) holds if and only if

(I − ZA)Φx − ZBΦu = I . (8)

With the introduction of the maps Φx,Φu, the cost J(δ,K)
can be rewritten as

J(δ,K) = δ⊤Φ⊤CΦ δ . (9)

Moreover, as shown in [22], the classic H2 and H∞ control
problems, can be reformulated as

H2 : Eδ∼D[J(δ,K)] =
∥∥∥C 1

2ΦΣδ

∥∥∥2
F
, (10)

H∞ : max
∥δ∥2≤1

(J(δ,K)) =
∥∥∥C 1

2Φ
∥∥∥2
2→2

, (11)

where D in (10) denotes the probability distribution of
δ, with zero mean and covariance Σδ ⪰ 0. Thus, the
costs (10) and (11) are convex in Φ. Nonetheless, the sparsity
condition (5b) is nonconvex in Φ. However, when the QI
condition defined next holds, the sparsity constraint (5b) can
be rewritten linearly in Φ [4].

Definition 1: Define G := (I − ZA)−1ZB. A subspace
S ⊆ RmT×nT is QI with respect to G if and only if

KGK ∈ S , ∀K ∈ S .
If S is QI with respect to G, then it is was shown [6] that

K ∈ S ⇔ ΦuΓ ∈ S , (12)

where Γ := I − ZA. Thus, the QI condition enables us to
search over all possible sparse controllers K ∈ S, allowing
globally optimal minimization of any convex cost, such
as (10), (11). However, the QI condition may not be satisfied
for every desired dynamical system or sparsity matrix. In [9],
a technique was introduced for deriving sparse controllers,
even in cases where QI does not hold. Specifically, the work
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[9] establishes a method to compute, given S, a matrix
Vx ∈ BnT×nT such that

ΦuΓ ∈ S and ΦxΓ ∈ Sparse(Vx) , (13a)
⇓

K = h(Φ) = ΦuΦ
−1
x ∈ S , (13b)

where Φx, Φu satisfy (8). The authors refer to (13) as the
Sparsity Invariance (SI) condition. A minimally restrictive
choice of the binary matrix Vx complying with (13) is given
by [9, Alg. 1], which we report here as Algorithm 1 for the
sake of completeness. In this paper, we denote the set of

Algorithm 1 Generation of Vx [9, Alg. 1]
Input: S (System’s Sparsity Matrix)

1: Initialize Vx = 1nT×nT

2: for each i = 1, . . . ,mT , k = 1, . . . , nT do
3: if Si,k == 0 then
4: for each j = 1, . . . , nT do
5: if Si,j == 1 then (Vx)j,k ← 0

sparse controllers parametrized by SI as

Θ := {h(Φ) : (8), (13a)} . (14)

If Vx is designed according to Algorithm 1, then we have
Θ ⊆ S.

III. MAIN RESULTS

In this section, we address the two key challenges of
problem (5) regarding the well-posedness of the metric and
its convex reformulation. First, we establish that if the oracle
K̂ ∈ Ŝ is optimal according to H2 or H∞ criteria, then
SpRegret is well-posed in the sense that imitating its be-
havior is advantageous for some δ. Second, we demonstrate
that the QI condition plays a crucial role in the design of
the oracle K̂ for enabling a convex synthesis of the spatial
regret optimal policy K.

Proposition 1: Assume an oracle K̂ is derived by solving
the optimization problem

min
K̂

f(K̂) s. t. K̂ ∈ Ŝ , S ⊂ Ŝ (15)

where f(K̂) is Eδ∼D[J(δ, K̂)] or max∥δ∥2≤1(J(δ, K̂)).
Then, SpRegret(K, K̂) ≥ 0 for any K ∈ S.

Proposition 1 sheds light on two possible design criteria.
One could follow to synthesize a denser controller K̂ ∈ Ŝ
that is guaranteed to be informative, in the sense that no
other controller K ∈ S can outperform it for all possible
realizations of δ. Despite these advancements, how to obtain
an oracle K̂ with sparsity constraints Ŝ by solving (15) re-
mains still a non-trivial challenge. The next section addresses
this crucial aspect in detail.

Remark 3: With an unconstrained noncausal benchmark,
obtaining an optimal benchmark for any δ is possible, as
shown in [13], [16]. Therefore, formulations that minimize
worst-case regret with a noncausal oracle are always well-
posed. Our result in Proposition 1 reaffirms that spatial

regret preserves this property even when introducing sparsity
constraints in the oracle design.

A. Synthesis of the oracle K̂

Thanks to Proposition 1, we have demonstrated there
always exist choices for the oracle K̂ that ensure the well-
posedness of problem (5). For example, an optimal cen-
tralized H2 or H∞ oracle K̂, is a valid choice. However,
a key challenge remains how to effectively synthesize the
distributed controllers K and K̂ while guaranteeing well-
posedness of the spatial regret. Since (13) yields linear con-
straints on Φ that come with tightness guarantees and comply
with any desired information structure, a seemingly natural
approach would be to exploit Algorithm 1 to synthesize both
Vx and V̂x, satisfying the SI condition (13) for S and Ŝ,
respectively. It must be pointed out that these steps might
fail to obtain a well-posed spatial regret metric, in general.
An example illustrating this point is detailed in [17, App. C].
Nonetheless, in the following theorem, we reveal the crucial
role of the QI condition in designing an informative oracle K̂
in conjunction with SI for the synthesis of the spatial regret
optimal policy for any S.

Theorem 1: Let Ŝ be QI with respect to G, with S ⊂ Ŝ.
Additionally, denote with Vx and V̂x the binary matrices
computed using Algorithm 1 based on S and Ŝ, respec-
tively. Assume an oracle K̂ = h(Φ̂) is derived through the
optimization problem

min
Φ̂

f(Φ̂) s. t. (8), Φ̂uΓ ∈ Ŝ, Φ̂xΓ ∈ Sparse(V̂x), (16)

where the function f(Φ̂) can be either (10) or (11) and Γ :=
(I − ZA). Then, SpRegret(K, K̂) ≥ 0 for any K ∈ Θ.

With Theorem 1, we proved that if the oracle structure
satisfies the QI condition, then the well-posedness of the
spatial regret metric is preserved using the SI condition (13)
to enforce both sparsity constraints over the oracle K̂ and
then the actual controller K.

Remark 4: Given the sparsity matrix S, one can obtain its
closest QI superset ŜQI such that

ŜQI := argmin
S∗

card(S∗ − S)

s. t. S ⊆ S∗, S∗ = Sparse(S∗),

S∗ is QI w.r.t. G.

(17)

In [23] the authors proposed a method to obtain efficiently
ŜQI in a finite number of steps. While results hold for any
QI subspace Ŝ ⊃ S , the method (17) can always be utilized
to generate Ŝ.

Remark 5: It is important to note that the “distance” in
terms of cardinality between the two sparsity matrices S and
Ŝ plays an important role in obtaining well-performing con-
trollers. When card(S) is approximately equal to card(Ŝ),
the controller K may struggle to learn adequately, leading it
to imitate the oracle K̂. Conversely, when the two structures
are significantly different, with card(S) ≪ card(Ŝ), the
behavior of the oracle may be too challenging for the actual
controller to follow, resulting in poor performance. Choosing
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the nearest QI superset has been demonstrated to yield
heuristically good performance, particularly when the actual
matrix G is highly sparse.

B. Convex reformulation of the spatial regret problem

Here, we tackle the challenge of obtaining a convex
approximation of the SpRegret minimization problem (5).

Proposition 2: Let K̂ = h(Φ̂) ∈ Sparse(Ŝ) be a solution
of (16), where Ŝ is QI with respect to G. Consider the
following convex optimization problem

min
Φ,λ

λ (18a)

s. t. (8) , (13a) ,[
I C

1
2Φ

Φ⊤C
1
2 λI + Φ̂⊤CΦ̂

]
⪰ 0 , (18b)

where Vx in (13a) is designed according to Algorithm 1.
Let the set of parametrized controllers Θ ⊆ S be defined as
per (14). Finally, let Φ⋆ denote an optimal solution to (18)
and K⋆ = h(Φ⋆) the corresponding controller. Then:

1) SpRegret(K, K̂) ≥ 0 for any K ∈ Θ,
2) SpRegret(K⋆, K̂) ≤ SpRegret(K, K̂) for all K ∈ Θ,
3) If S is QI with respect to G, then K⋆ is a globally

optimal solution to problem (5).
For the sake of clarity, we summarize the steps of our
controller design method in Algorithm 2.

Algorithm 2 Controller synthesis for SpRegret
Input: S (System’s Sparsity Matrix)

1: Choose a QI subspace Ŝ ⊇ S , for instance, using (17).
2: Compute Vx and V̂x with Algorithm 1, starting from S

and Ŝ, respectively.
3: Derive the oracle controller K̂ by solving (16).
4: Obtain the SpRegret controller K through (18).

IV. NUMERICAL RESULTS

We conduct a comparative analysis between distributed
controllers minimizing spatial regret metrics and traditional
KH2

and KH∞ ones, all utilizing the same sparsity structure
S and synthesized using the SI condition (13). We use a
multi-mass spring-damper system consisting of 10 masses
within a time window of T = 30 and a sampling time of
Ts = 0.5 s. For full model details and simulation settings,
please refer to [17, App. F].2

We design two SpRegret controllers: KRQI
and KRC

.
The former employs an oracle with sparsity determined by
the nearest QI superset of S. The latter imitates a centralized
oracle, which is guaranteed to be QI by definition. We
perform two distinct experiments, the results of which are
depicted in Fig. 1 and Fig. 2. In both cases, our main focus is
to determine the percentage of times in which each controller
yields a better (i.e., smaller) cost J(·) compared to the other
three.

2The code used in this work is accessible at https://github.com/
DecodEPFL/SpRegret.

In the first experiment, we aim to replicate the unpre-
dictability and uncertain nature of disturbances by simulating
perturbations δ, drawn from a non-centered uniform distri-
bution U [−0.5, 1]. These disturbances are then applied to a
random number of masses within the system. The number of
affected masses is also drawn uniformly, within the interval
[1, N ]. We gradually increase the value of N up to the total
number of interconnected subsystems (in this case 10). The
results are presented in Fig. 1. The percentage value of times
each policy yields better performance is computed over 1000
realizations of δ and, to obtain the 95% confidence interval
of these measurements, we iterated this step 100 times, for
a total of 105 experiments. As expected, when the number
of affected masses is small, the resulting disturbance is zero
for most of the agents, aligning with the H2 hypothesis on
a distribution D centered around 0. However, as the number
of affected masses increases, the cumulative effect of non-
standard δ on the overall system becomes more pronounced,
thus favoring the performance of the controller KRQI

. In
the table below, we report the average cost of the controller
KRQI

over 105 experiments and the relative increase in cost
for the other controllers compared to KRQI

for an increasing
number of masses.

N.Masses Av. cost KRQI
KH2 KH∞ KRC

1 14.20 +7.39% +1.35% +0.44%
5 30.21 +13.43% +3.32% +1.25%
10 39.35 +43.82% +4.32% +1.20%

As we can observe, KRQI
consistently achieves lower av-

erage control costs. Notably, the cost advantage of KQI over
other controllers increases with system complexity (number
of masses). For instance, with 10 masses, KRQI

outperforms
the KH2

controller by over 43%, while just improving by
4% and 1% compared to KH∞ and KRC

, respectively. This
demonstrates the effectiveness of our spatial regret-based
approach in achieving efficient control, particularly for larger
and potentially more challenging systems.

In the second experiment, we evaluate the performance
improvement of controllers minimizing spatial regret as the
sparsity structure of the large-scale system becomes more
and more distributed. For this reason, we choose a QI bench-
mark as it strikes a favorable balance between imitating a
sparse structure and a centralized one. We consider the same
multi-mass spring damper system of the first experiment
with a progressively increasing number of masses, from 3
to 10. For each new configuration, we synthesize again all
the controllers (KH2

, KH∞ , KRQI
). Then, we simulate

the effects of perturbations δ drawn from a non-centered
uniform distribution U [−0.5, 1] applied to all the masses
with the same amount of experiments as in the previous
study case. The results are shown in Fig. 2. It is evident
that for a small number of systems affected by noise, KH∞

outperforms the other control policies. However, as the size
of the system increases, and consequently its sparsity, KRQI

exhibits superior performance, highlighting its capacity to
leverage information from the ideal oracle.
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Fig. 1. Percentage of times a control policy outperforms the remaining
three as a function of the maximum number of masses affected by uniformly
distributed disturbances in the interval [−0.5, 1] in a system of 10 masses.
Shaded areas around the dotted lines represent the 95% confidence interval
around the corresponding mean values.
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Fig. 2. Percentage of times a control policy outperforms the remaining two
as a function of the number of masses constituting the large-scale systems
when all the masses are affected by uniformly distributed disturbances in
the interval [−0.5, 1]. Shaded areas around the dotted lines represent the
95% confidence interval around the corresponding mean values.

V. CONCLUSIONS

In this work, we aimed to design and synthesize dis-
tributed controllers for large-scale linear dynamical systems,
affected by localized and highly heterogeneous disturbances.
To do so, we first introduced the novel metric SpRegret.
Then, we demonstrated its well-posedness when the oracle
satisfies the QI condition. Finally, we provided a convex
formulation for designing regret-optimal controllers with
arbitrary sparsity structures, optimizing them to close the
performance gap to an ideal QI subspace that encodes richer
information for the control policy. To illustrate the real-world
relevance of our approach, we provided numerical examples
involving a multi-mass spring-damper system that requires to
be controlled in the presence of non-standard disturbances.
Through comparisons with classic H2 and H∞ policies, our
results showcased the superior performance of SpRegret
controllers in handling disturbances that may target large-
scale distributed systems.

Future research will explore methods for designing con-
strained benchmarks that ensure non-negative regret and
improved performance over H2 and H∞ for user-defined
disturbance classes. Possible new directions will include
investigating how to automatically select the sparsity struc-
ture of the oracle tailored to the problem to guarantee
better performance, extend our results to the infinite-horizon
case, and consider larger and more complex applications to
showcase the potentiality of our novel metric.
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