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Abstract— Target-controlled infusion (TCI) constitutes a clin-
ically available alternative to manually administering the in-
fusion rate of the anesthetic drug propofol. In TCI, a drug
infusion profile is optimized to track a reference trajectory of
blood plasma or effect site (brain cortex) drug concentration, or
a corresponding clinical effect. TCI is a pure feed-forward open-
loop strategy, fully reliant on an underlying dynamic patient
model. We show how TCI dosing of propofol—to achieve a
desired depth of hypnosis—can be posed as a QP problem. We
design this QP problem based on a nominal pharmacological
propofol model by Eleveld et al. Then, we investigate how inter-
patient variability, described as mixed effects of a particular
distribution within the Eleveld model, affects TCI performance.
Based on the Mahalanobis distance, we sample from probability
quantiles of the mixed-effect model and evaluate the TCI
designed for the nominal patient across these samples. The main
outcome is that performance, in terms of achieved hypnotic
depth, deteriorates to what is at the limit of clinical acceptance
already when considering only 1 % of the most likely patients
drawn from the uncertainty model. This is under the—for the
TCI system unrealistically favorable—assumption that there is
no uncertainty in the relation between effect site concentration,
and clinical effect. The conclusion from the arising results is
that the benefit of propofol TCI over manual dosing is unclear,
even within the model that the TCI system was designed for.

Keywords: Model uncertainty, model predictive control,
pharmacological modeling, target-controlled infusion

I. INTRODUCTION

Propofol is an intravenously administered anesthetic drug
that affects awareness. It is commonly used as a hypnotic
agent in general surgery [1], where its administration rate
is governed by an infusion pump. The pump can issue
constant rate infusion and brief “impulse” doses referred
to as boluses. Most commonly, the issuing of boluses, and
titration of the infusion rate, are achieved manually by an
anesthesiologist. Dose changes are based on an assessment
of how deeply anesthetized the patient is compared to what
is desired. This assessment can be based on signs such as
twitching, eye reflexes, changes in skin coloring or sweating;
and measurements such as heart rate and blood pressure.
In addition to such indirect information, there also exist
monitors aimed at directly estimating hypnotic depth. The
most common is the bispectral index (BIS) monitor, which
outputs a real-time scalar hypnotic depth estimate based on
measurements of the electroencephalogram (EEG) [2]. The
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BIS scale goes between 100 (awake, fully aware) and 0 (deep
anesthesia). Generally, a BIS value between 40 and 60 is
desired within general surgery [3].

Along with manual dosing of propofol, there exist two
automatic dosing regimens. One is closed-loop control. In
this regimen, a feedback loop from BIS (or another monitor)
to the infusion pump is closed over a digital computer. While
this dosing regimen has been broadly studied [3]–[7], there
is to date no commercially available system for closed-loop
controlled infusion of propofol.

The second automatic dosing regimen is called target-
controlled infusion (TCI). In TCI, a dosing profile is op-
timized to follow a reference effect-site (brain) or blood
plasma concentration trajectory, corresponding to a given
hypnotic depth [8]–[10], as characterized by the BIS scale.
TCI differs from closed-loop control mainly in that no sensor
feedback is used. In control system terms, TCI is therefore
an feed-forward open-loop control system, as opposed to a
closed-loop one [7], [11].

There exist commercial TCI systems [12], and their sup-
porters claim that they are superior to manual dosing, since
they take individual patient dynamics into account via the
underlying model [8]. While closed-loop control has a nat-
ural advantage over TCI in that it relies on sensor feedback,
it is also susceptible to sensor faults, and technically more
complicated. It is therefore legitimate to ask: how well can
we expect a TCI system to perform, in the face of model
uncertainty, and the absence of sensor feedback?

In this work, we employ a state-of-the-art pharmacological
model for propofol by Eleveld et al. [13]. Within it, inter-
individual variability in drug response dynamics are mainly
modeled by known covariates (such as body mass, age,
gender, etc). The remaining variability is described by ran-
dom effects, acting on the model parameters. As is common
practice within pharmacological modeling [14], these random
effects are modeled by a multivariate distribution from which
parameters of the patient model are drawn. In this work
we study how the uncertainty resulting from these random
effects affects TCI performance for patients with a covariate
setup that was considered to be the “reference” patient in the
modeling work by Eleveld et al.

II. METHODS

We pose the TCI as a quadratic programming (QP) prob-
lem to obtain a drug infusion profile that tracks a reference
trajectory of effect site (brain) drug concentration. Then, we
study how a TCI system optimized for the nominal (without
random effects) patient could be expected to behave. We do
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Fig. 1: Linear four-compartment model of propofol: a three-
compartment model of the PK and a one-compartment PD
model in (1) and (2). The input is given by the drug mass
infusion rate u, while rate constants kij describe drug transfer
from compartment i to j. Drug elimination from the central
compartment is governed by the rate constant k10 and from
the effect site compartment at rate ke0.

this by simulating its BIS-response when inducing anesthesia
on a patient model drawn from the associated inter-patient
variability distribution. Using the Mahalanobis distance [15],
we can draw from within likelihood quantiles, e.g., from
within the 1 % of the most likely patient dynamics, and
assess TCI performance across those obtained samples.

A. PKPD modeling

Pharmacokinetics (PK) refers to the uptake, distribution,
and elimination of a drug in the body. The pharmacokinetics
of propofol are commonly modeled by a three-compartment
model [1].

Pharmacodynamics (PD) refers to the relationship between
blood plasma drug concentration and the clinical effect.
The pharmacodynamics for propofol are commonly modeled
using two sub-models: one compartment modeling the drug
concentration at the effect site (i.e., the brain) and a non-
linearity relating effect site concentration to clinical effect,
the hypnotic depth. Here, we consider BIS to represent the
clinical effect.

Let xi [µg L−1] denote the drug concentration of the ith

compartment and u [µg min−1] the drug mass infusion rate.
We combine the PK model with the linear part of the PD
model (effect-site compartment) to create the linear part of
the PKPD model with four compartments. This model is
shown in Figure 1, and its dynamics can be expressed in
state space form as

ẋ =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0

k13 0 −k31 0

ke0 0 0 −ke0


︸ ︷︷ ︸

A

x+



1

V1

0

0

0


︸ ︷︷ ︸

B

u,

(1)

where kij [min−1] are rate constants governing drug transfer
from compartment i to j and V1 [L] is the central com-
partment volume. Drug elimination from the central com-
partment is described by the rate constant k10 [min−1]. The

effect site concentration x4 [µg L−1] is related to the central
compartment concentration x1 by the first-order elimination
rate constant ke0 [min−1].

The nonlinear relationship between effect-site concentra-
tion and clinical effect (BIS) is commonly modeled by a
sigmoid due to saturation effects at low and high concentra-
tions. This sigmoid is often parameterized as a Hill function
[3]

BIS = 100
Cγ

e,50

Cγ
e,50 + xγ

4

, (2)

where Ce,50 [µg mL−1] is the effect site concentration at
which the clinical effect is 50 % of the maximal possible,
i.e., x4 = Ce,50 ⇔ BIS = 50. γ is a parameter determining
the steepness of the sigmoid, and 100 is the BIS value in the
absence of propofol.

It is common to describe the PK model in terms of
volumes V1, V2, V3 [L] and clearances CL,Q2, Q3 [L min−1]
and the conversion between these are

k10 = CL/V1, (3a)
k12 = Q2/V1, (3b)
k13 = Q3/V1, (3c)
k21 = Q2/V2, (3d)
k31 = Q3/V3. (3e)

If dose changes are actuated at discrete time points, with
sampling period h [min], we can use the approximation-free
zero-order-hold discretization

x(k + 1) = Φx(k) + Γu(k), (4a)

of (1), where

Φ = eAh, (4b)

Γ =

∫ h

0

eAτdτB, (4c)

and where x(k + 1) now indicates sample k + 1, corre-
sponding to x(t) with t = kh+h. We can then simulate the
linear system (1) by successively computing the future state
x(k+1) from the current state x(k) and drug administration
u(k).

B. Modeling inter-patient variability

Pharmacometric covariate modeling is a branch of phar-
macology aimed at obtaining dynamical models that capture
the response dynamics to a drug while accounting for inter-
individual variability [13], [16]. Commonly, a Bayesian
framework is used, within which the inter-individual vari-
ability in the model parameters (V1, k10, . . . ) of (1) and (2)
is partly explained by known covariates such as age, gender,
etc, and partly by random effects.

In this study, we use the reference patient considered in
Eleveld et al. [13], with covariates according to Table I. To
study the effects of inter-individual variability, we fix the
covariates to those of Table I, and apply random effects
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TABLE I: Covariate set of the reference patient used in [13].

Covariate Value Unit

Age 35 year

Weight 70 kg

Height 170 cm

Added opioids False -

Gender Male -

Blood sampling Venous -

TABLE II: Multivariate random effect stochastic variable η
with components ηi ∼ N (0, σ2

i ), describing inter-individual
variability of the Eleveld pharmacokinetic (PK) model [13]
according to (5).

Random
effect

Standard
deviation (σi)

η1 0.781

η2 0.752

η3 0.773

η4 0.515

η5 0.588

η6 0.457

according to [13]. These random effects affect the PK
parameters so that

V1 = 6.28 exp(η1) L, (5a)
V2 = 25.5 exp(η2) L, (5b)
V3 = 272.9 exp(η3) L, (5c)

CL = 1.79 exp(η4) Lmin−1, (5d)

Q2 = 1.91 exp(η5) Lmin−1, (5e)

Q3 = 1.11 exp(η6) Lmin−1, (5f)

where the random effects are modeled by the variables ηi for
i = 1, . . . , 6, with ηi ∼ N (0, σ2

i ). The standard deviations
σi are given in Table II.

In some PKPD models, such as the Eleveld model [13], the
PD parameters are also modeled with parameter uncertainty.
We have chosen to keep the PD parameters fixed at their
nominal values, as this is the case for most PKPD models
for propofol [1]. Table III shows the PD parameters from
[13], also used in this paper.

C. TCI as a quadratic program (QP)

The objective of the TCI algorithm is to optimize a drug
infusion profile to follow a reference effect-site concentration
trajectory.

The drug concentrations within the effect-site compart-
ment across a horizon of N samples are

χ =
[
x4(1) . . . x4(N)

]⊤
, (6)

TABLE III: Parameters for the pharmacodynamic (PD)
model, according to (1) and (2), of the reference patient in
the Eleveld model [13].

Parameter Value Unit

Ce,50 3.08 µgmL−1

ke0 0.146 min−1

γ 1.47 -

where the indices from now on indicate sample number,
instead of time as in (4). Letting

r =
[
r(1) . . . r(N)

]⊤
(7)

be the desired (reference) trajectory of the effect-site con-
centration x4, we seek a drug infusion profile

u =
[
u(1) . . . u(N)

]⊤
, (8)

that minimizes the quadratic cost function

J ′(χ) =

N∑
k=1

(χ(k)− r(k))2

= (χ− r)⊤(χ− r)

= χ⊤χ− 2r⊤χ+ r⊤r.

(9)

For our TCI problem, we want to minimize cost over u,
rather than over χ. Thus, we rewrite (9) in terms of u.
Assuming the initial state x(0) = x0, we can express x
(and therefore also χ) in u using the recursion

x(1) = Φx0 + Γu(1),

x(2) = Φ2x0 +ΦΓu(1) + Γu(2),

...

x(N) = ΦNx0 +ΦN−1Γu(1) + . . .+ Γu(N).

(10)

Letting Φ4 be the fourth row of Φ and Γ4 the fourth
element of Γ, we obtain

χ(1) = Φ1
4x0 +Φ0

4Γ4u(1),

χ(2) = Φ2
4x0 +Φ1

4Γ4u(1) + Φ0
4Γ4u(2),

...

χ(N) = ΦN
4 x0 +ΦN−1

4 Γ4u(1) + . . .+Φ0
4Γ4u(N),

(11)

which we write in matrix form as

χ =


Φ1

4

...

ΦN
4


︸ ︷︷ ︸

E

x0 +


Φ0

4Γ4

Φ1
4Γ4 Φ0

4Γ4

...
...

. . .

ΦN−1
4 Γ4 ΦN−2

4 Γ4 . . . Φ0
4Γ4


︸ ︷︷ ︸

F

u.

(12)
We note that E and F are constant matrices since they only
depend on Φ4 and Γ4, and can therefore be precomputed if
several iterations of the TCI are to be performed.
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Combining (9) with (12) yields

J ′(u) = (Ex0 + Fu)⊤(Ex0 + Fu)

− 2r⊤(Ex0 + Fu) + r⊤r.
(13)

Expanding and taking into account that the cost is scalar, we
obtain

J ′(u) = u⊤F⊤Fu+ 2x⊤
0 E

⊤Fu− 2r⊤Fu

+ x⊤
0 E

⊤Ex0 − 2r⊤Ex0 + r⊤r.
(14)

Since the last terms are independent of u and thus do not
affect minimization over u, we can remove those from the
cost function to obtain the cost

J(u) =
1

2
u⊤F⊤Fu+ x⊤

0 E
⊤Fu− r⊤Fu, (15)

which therefore shares minima with J ′(u) in (14).
Next, we want to introduce constraints so that u(k) ≥ 0

for k = 1, . . . , N , since drug can be intravenously added,
but not actively removed. This can be expressed as u being
element-wise larger or equal to zero, i.e.,

u ≽ 0N×1, (16)

where 0N×1 is the zero vector of size N .
We want to avoid a large undershoot and stay within

the recommended clinical BIS range of 40− 60. Therefore,
we limit our effect-site concentration by an upper bound,
corresponding to a BIS value of 40, and add this as a
constraint, so that

χ = x4 ≼ Ce,max1N×1, (17)

where Ce,max is the maximum allowed effect site concentra-
tion. Using (12), we can rewrite (17) as

Ex0 + Fu ≼ Ce,max1N×1. (18)

Combining the two constraints (16) and (18), we arrive
at the following quadratic programming (QP) problem of
minimizing (15) over u subject to−IN×N

F

u ≼

 0N×N

Ce,max1N×1 − Ex0

 , (19)

where IN×N denotes the identity matrix of size N ×N .
This problem can be solved using standard QP solvers,

such as quadprog in MATLAB [17], or OSQP available in
MATLAB, Python, and Julia [18].

D. Uncertainty quantile sampling

Now that we can solve the TCI optimization problem,
we move on to study how a TCI system, optimized for the
nominal patient, behaves in the face of inter-individual PK
variability, characterized by the Eleveld random effect model.
For example, if we want to study the 1 % likelihood quantile
of “most likely patients”, we need to sample from a subset
of the random effect model corresponding to 1 % of the
probability mass. This probability mass is chosen to contain
the most likely values of the underlying random variable. To
do this, we will use uncertainty quantile sampling.

The parameter uncertainty described by random effects in
the Eleveld model follows a multivariate normally distributed
variable η ∼ N (0,Σ), with variance-covariance matrix Σ =

diag
[
σ1 . . . σn

]
according to Table II.

The likelihood of a sample ηs of η is

l(ηs) =
exp

(
− 1

2m(ηs)
)√

(2π)n detΣ
, (20a)

m(ηs) = η⊤
s Σ

−1ηs, (20b)

where the right-hand-side of (20a) is the probability density
function (PDF) of N (0,Σ) evaluated at ηs. The number of
PK parameters are n = 6, and m(·) of (20b) defines the
squared Mahalanobis distance [15].

Since our normal PDF has a unique mode at 0 and is
strictly monotonously decreasing in ∥ηs∥, the likelihood
l(·) defines a sequence of unique and closed level surfaces,
such that each point interior to a level surface has a higher
probability than points on the level surface, while each point
exterior to a level surface has a lower likelihood than points
at the level surface. The level surface containing ηs can thus
be used to uniquely partition the support of η into a set of
points with a likelihood larger than or equal to l(ηs), and
one set of points with a likelihood smaller than η.

To sample from the α-quantile of most likely η, we thus
have to find the level surface enclosing points corresponding
to a fraction α of the total probability mass. The sought
surface can be conveniently determined using the squared
Mahalanobis distance (20b), which has the property that each
point at the level surface that goes through ηs shares the
Mahalanobis distance with ηs. The Mahalanobis distance
thus constitutes a generalization of the univariate Gaussian
standard deviation to the multivariate case.

A convenient property of the squared Mahalanobis dis-
tance is that it follows the χ2-distribution of order n, as
explained in [19]. To find the squared Mahalanobis distance
mα corresponding to our sought α-quantile we thus (numer-
ically) find the unique solution mα of

P (m(ηs) ≤ mα) = α =

∫ mα

0

m(n−2)/2e−m/2

2m/2Γ(n/2)
dm, (21)

where the right-hand-side is the cumulative distribution func-
tion (CDF) of the mentioned χ2-distribution.

Finally, to sample from the α-quantile of interest, we first
sample ηs from η. If m(ηs) ≤ mα we keep the sample; else
we repeat until we obtain a sample that fulfills this inequality.

E. Simulation example

We investigate how random effects in the PK parameters
affect TCI performance. Particularly, we consider the induc-
tion phase of anesthesia, during which a propofol infusion
profile is optimized to transition the patient from the fully
aware state of BIS 100 to the desired anesthetic depth
of BIS 50. This transition should be as fast as possible
while avoiding undershoots below BIS 40, or subsequent
overshoots exceeding BIS 60 [3].
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In our formulation from Section II-C, this corresponds
to fixing the reference trajectory r at the effect site con-
centration equivalent of BIS 50. To avoid the mentioned
undershoot, we chose the maximum allowed effect site
concentration Ce,max to the value that corresponds to a BIS
value of 40. Note that both the reference and the undershoot
limit are for the nominal patient, in the absence of random
effects.

To assess how inter-individual variability affects TCI per-
formance, we generate a set of 1000 models by sampling
from the random effect uncertainty model in (5), and apply
the propofol trajectory optimized to the nominal patient
model to each of them. Specifically, we sample from the
50 % and 1 % quantile (α = 0.5 and α = 0.01, respectively)
using the quantile sampling method described in Section II-
D.

To achieve this, we implemented our methodology in the
programming language Julia and employed the QP solver
OSQP [18] to (15). The code is available in [20].

III. RESULTS

Figure 2 shows the propofol infusion profile u optimized
for the nominal patient, while the resulting BIS response for
the nominal patient is shown in Figure 3 in red. The infusion
profile commences with a bolus that makes the nominal
patient BIS approach the reference of BIS 50, minimizing the
cost function (15). Since infusion rates cannot be negative,
this bolus is followed by an episode of zero infusion over
the next few minutes. After this, the infusion profile changes
to balance out the effect of drug elimination that would
otherwise make the BIS deviate from its reference level.

Using the sampling strategy of Section II-D, we have then
simulated 1000 patient models each sampled from the 50 %
and 1 % quantiles, with results shown as blue curves in
Figure 3.

To further characterize the spread in responses for these
quantiles, we have drawn their steady-state distributions (i.e.,
their spread at 10 min in Figure 3) in Figure 4. The dashed
black lines in Figure 3 and Figure 4 indicate the clinically
recommended BIS range, as mentioned in Section I.

Code examples reproducing all results are available in
[20].

IV. DISCUSSION

Figure 3 shows that inter-patient variability of the Eleveld
PK model [13] affects TCI performance notably. When
individuals are selected from the 50 % model uncertainty
quantile, the resulting range of BIS values is large. This can
be seen in Figure 3a where 34 % of the drawn patients
have stationary BIS values that fall outside the clinically
recommended 40–60 range. To ensure that 99 % of the
drawn patients fall within the recommended range, we need
to delimit sampling to within the 1 % quantile, as seen in
Figure 3b.

The spread of induction phase profiles in Figure 3 suggests
that there is a considerable spread not only in the steady-
state, but also in the preceding transient. As a result, the
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Fig. 2: Propofol infusion profile computed by the TCI
algorithm for the considered nominal patient. The initial
bolus is capped, to resolve the subsequent infusion profile.
The drug amount provided in this bolus is 9.7 mg.
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Fig. 3: Simulated responses across samples from the 50 % (a)
and 1 % (b) most likely patients, drawn from the distributions
of the PK random effect vector η, cf. Table II and (5). The
input is the drug profile in Figure 2. Red curves show the
response for the nominal patient, on which the TCI design
was based. Horizontal dashed curves show the bounds of the
clinically recommended BIS range.

possible motivation to use TCI systems to improve transient
behavior could be questioned.

That inter-patient variability has a negative impact on
TCI performance should in itself not come as a surprise,
since TCI is a pure open-loop control regimen. However,
the extend of this degradation, as indicated by Figure 3 and
Figure 4 is concerning.

When administrating propofol using a TCI algorithm,
there is an anesthesiologist present, just like in the case
of manual dosing. This means that the anesthesiologist can
intervene if there are signs of under- or overdosing. Instead of
changing the infusion rate directly, the anesthesiologist will
now instead change the reference concentration of the TCI
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Fig. 4: Expected distribution of the steady-state BIS values
across from the 50 % (blue) and 1 % (red) most likely
patients, drawn from the distributions of the PK random
effect vector η, cf. Table II and (5). I.e., the range of BIS
values at t = 10 min in Figure 3. Vertical dashed lines
indicate the clinically recommended BIS range.

system. Since a higher reference concentration will result in a
higher drug infusion rate, this mechanism enables accounting
for inter-patient variability, just like manual dose changes
would. These event-driven dose changes make it challenging
to make fair comparisons between manual dosing and TCI in
a clinically realistic setting. This prompted our investigation
of TCI in a simulation setting where it is employed in the
model it was designed for in the first place.

Our study focuses on how random effect variability of
the PK parameters affects the TCI. However, in some PKPD
models, such as the Eleveld model [13], the PD parameters
are also associated with random effects. We have chosen to
keep the PD model fixed at its nominal parameter values.
Including their variability in the analysis would further
increase the already concerning range of the expected BIS in
Figure 3 and Figure 4. For instance, if we add random effects
to the PD parameters according to the Eleveld model [13],
and draw from the 50 % quantile, we obtain that 50 % of
the steady-state BIS values are outside the clinically feasible
40–60 range.

BIS-guided closed-loop dosing solutions has shown
promising clinical results [5], [21]. However, it only works
well if the BIS signal is reliable, but suffer issues when
feedback signal quality is poor. In the extreme case of total
signal loss, TCI would then be the best choice for setting
drug infusion. We are currently working on exploiting this
insight and devising a state-observer-based hybrid between
closed-loop control and TCI, which smoothly transitions
between the two based on a scalar signal quality index (SQI),
provided by the BIS and other clinically available monitors
[22].

V. CONCLUSIONS
TCI, in the absence of manual reference adjustments,

can merely maintain clinically acceptable performance when
taking into account as little as the 1 % most likely fraction of
the population. Therefore, the main conclusion of our work is
that it can be questionable whether these TCI systems come
with a clinical advantage over manual dosing, based on that
the models were designed for these systems in the first place.
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