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Abstract— In this paper we propose strategies to alleviate
the impact of noise on data-driven model-order reduction by
moment matching. We classify the noise affecting the data-
driven methods as interconnection noise and measurement noise.
We then consider two statistical models of the noise, namely
Gaussian (white noise) and Student’s t, to represent noise in a
variety of applications. We propose and study the use of Wavelet
denoising for dealing with white noise and the use of Huber
regression for the Student’s t-distribution. We demonstrate by
means of extensive simulations how these strategies improve
the accuracy and robustness of the data-driven algorithms.

I. INTRODUCTION

To address the growing complexity of dynamical systems,
the field of model order reduction proposes methods to
reduce the dimension of the state of the system. A review
of linear model order reduction methods is available in [1].
More recently, there has been growing interest in data-driven
model order reduction methods. For this class of methods, the
full-order model is potentially unknown and a reduced-order
model is constructed directly from measurements. This paper
focuses on the family of data-driven model order reduction
methods firstly introduced in [2]. Therein a method to con-
struct one-sided reduced-order models by moment matching
from time-domain measurements of the signals of certain
systems’ interconnections has been proposed. The method
has then been extended in various directions. In particular the
data-driven swapped interconnection problem and the two-
sided interconnection problem for linear systems have been
solved in [3] and [4], respectively, and applied to power
systems with classical [5] and renewable [6] generation.
However, while these papers have focused on theoretical
development, they have seldom considered the effect that
noise may have on the estimated reduced-order models.
In this paper we fill this gap by proposing strategies to
alleviate the impact that noise may have on the data-driven
moment matching methods introduced in those papers. We
consider all possible sources of noise (from interconnection
of modules and from measurement) and study two different
noise distributions. We propose two methods to improve
the construction of reduced-order models from data and we
illustrate the results by means of extensive simulations.

The rest of the paper is structured as follows: Section II
reviews the data-driven model order reduction methods.
Section III discusses how noise impacts data-driven moment
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matching and the statistical models used in the paper. Sec-
tion IV explores the white noise scenarios and studies the
effect of Wavelet denoising. Section V explores the Student’s
t-distribution scenarios and studies the effect of Huber re-
gression. Section VI contains our concluding remarks.

All the simulations in the paper are performed on the
Los Angeles University Hospital building model from the
SLICOT benchmark library [7].

Notation. In this paper, we employ standard notation. R≥0

and R>0 denote the sets of non-negative and positive real
numbers, respectively. The set of complex numbers with a
negative real part is represented as C<0, while C0 refers to
the set of complex numbers with zero real part. The identity
matrix is indicated by I , and σ(A) represents the spectrum
of a matrix A ∈ Rn×n. The Kronecker product is denoted
by ⊗. The induced Euclidean or supremum matrix norms are
indicated by ∥A∥2 and ∥A∥∞, respectively. The vectorization
of a matrix A ∈ Rn×m is indicated by vec(A), which is
the nm × 1 vector formed by stacking the matrix columns,
i.e. vec(A) = [a⊤1 , a

⊤
2 , . . . , a

⊤
m]⊤, where ai ∈ Rn is the ith

column of A and ⊤ denotes transposition.

II. PRELIMINARIES

In this section, we recall model-based model order reduc-
tion by moment matching and its data-driven version. The
exposition summarizes the relevant results of the survey [8].

A. Model-Based Moment Matching

Consider a linear, single-input, single-output, continuous-
time, minimal system described by the equations

ẋ = Ax+Bu, y = Cx, (1)

with state x(t) ∈ Rn, input u(t) ∈ R, output y(t) ∈ R,
A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n. The moments of
system (1) are defined as follows.

Definition 1. Let si ∈ C\σ(A). The 0-moment of system (1)
at si is the complex number η0(si) = C(siI −A)−1B. The
k-moment of system (1) at si is the complex number ηk(si) =
(−1)k

k!

[
dk

dsk
(C(sI −A)−1B)

]
s=si

, with k ≥ 1 integer.

Consider two sets of interpolation points I1 =
{s1, s2, . . . , sν} ⊂ C\σ(A) and I2 = {sν+1, sν+2, . . . , s2ν}
⊂ C \ σ(A), with I1 ∩ I2 = ∅, and consider two ma-
trices S ∈ Rν×ν and Q ∈ Rν×ν such that σ(S) = I1
and σ(Q) = I2, and two vectors L ∈ R1×ν and R ∈
Rν×1 such that the pair (S,L) is observable and the pair
(Q,R) is reachable. There exist invertible matrices T and
T̃ such that CΠ =

[
η0(s1) . . . η0(sν)

]
T and ΥB =
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T̃
[
η0(sν+1) . . . η0(s2ν)

]⊤
, where Π ∈ Rn×ν and

Υ ∈ Rν×n are the unique solutions of the Sylvester equations

ΠS = AΠ+BL, (2a)
QΥ = ΥA+RC. (2b)

In e.g. [8] it has been shown that the matrices CΠ, ΥB and
ΥΠ are all that is needed to construct reduced-order models
by moment matching. In this section we recall how to obtain
data-driven estimates of these three matrices. Consider the
signal generator

ω̇ = Sω, θ = Lω, (3)

with ω(t) ∈ Rν and θ(t) ∈ R, and the interconnection (with
u = θ) between this generator and system (1), namely

ω̇ = Sω, ẋ = Ax+BLω, y = Cx. (4)

This interconnection is called direct interconnection. Con-
sider the filter

ϖ̇ = Qϖ +Rη, (5)

with ϖ(t) ∈ Rν and η(t) ∈ R, and the interconnection (with
η = y) between this filter and system (1), namely

ẋ = Ax+Bu, ϖ̇ = Qϖ +RCx, (6)

with u = δ0, where δ0 indicates the Dirac-delta gen-
eralised function. This interconnection is called swapped
interconnection. Finally, consider the signal generator (3),
the filter (5), and the interconnection between these and
system (1), yielding the system

ω̇ = Sω, ẋ = Ax+BLω, ϖ̇ = Qϖ +RCx. (7)

This interconnection is called two-sided interconnection.
In [2], it has been shown that under certain assumptions,

the quantity

vec(C̃Πk) := (W̃⊤
k W̃k)

−1W̃⊤
k Ỹk, (8)

where, with h ≥ ν,

W̃k =
[
ω(tk−h+1) . . . ω(tk−1) ω(tk)

]⊤
,

Ỹk =
[
y(tk−h+1) . . . y(tk−1) y(tk)

]⊤
,

(9)

is an online estimate of CΠ, namely there exists a se-
quence {tk} such that C̃Πk is well-defined for all k and
limk→∞ C̃Πk = CΠ.

In [3], it has been shown that under certain assumptions,
the quantity

vec(Υ̃Bk) = (Ẽ⊤
k Ẽk)

−1Ẽ⊤
k P̃k, (10)

where, with q̃ ≥ 1,

P̃k =
[
ϖ(tk−q̃+1)

⊤ · · · ϖ(tk−1)
⊤ ϖ(tk)

⊤ ]⊤
,

Ẽk =
[
eQ

⊤tk−q̃+1 · · · eQ
⊤tk−1 eQ

⊤tk

]⊤
,

(11)
is an online estimate of ΥB.

Finally, in [4] it has been shown that under certain
assumptions there exists γ > 0 such that as k approaches
infinity,

||Υ̃Πk −ΥΠ||∞ ≤ γ, (12)

where
vec(Υ̃Πk) := (Õ⊤

k Õk)
−1Õ⊤

k D̃k, (13)

where, with p ≥ ν,

Õk=


ω(tk−p+1)

⊤⊗Iν
...

ω(tk−1)
⊤ ⊗ Iν

ω(tk)
⊤ ⊗ Iν

, D̃k=


d̂(tk−p+1)−ϖ(tk−p+1)

...
d̂(tk−1)−ϖ(tk−1)

d̂(tk)−ϖ(tk)

,
(14)

where d̂ is the solution of
˙̂
d = Qd̂+ Υ̃BiLω, d̂(0) = 0. (15)

Alternatively, Υ̃Πk can be obtained by solving the
Sylvester equation

QΥ̃Πk − Υ̃ΠkS = RC̃Πk − Υ̃BkL, (16)

where C̃Πk is an estimate of CΠ and Υ̃Bk is an estimate
of ΥB.

III. INTERCONNECTION NOISE, MEASUREMENT NOISE
AND STATISTICAL MODELLING

In this section we describe the ways in which noise can
affect the data-driven moment matching methods recalled in
the previous section. In particular, we consider “intercon-
nection noise” and “measurement noise”. Then we describe
the statistical models considered in the paper to describe the
noise (Gaussian and Student’s t-distribution).

A. Points of Introduction of Noise

Noise can affect the data-driven moment matching meth-
ods in two ways.

Interconnection noise: In data-driven model order reduc-
tion by moment matching, noise can be introduced during
the interconnection of independent modules, such as the
signal generator and the system in (4). Whether connecting
electronic systems via wires, or mechanical systems via
gears and rods, these interconnections may introduce noise.
For example, imperfect electrical contact points can intro-
duce resistance-based noise, while mechanical vibrations
can result in noise from small physical displacements. We
call noise introduced due to imperfect connections intercon-
nection noise. Interconnection noise may affect data-driven
model order reduction methods when connecting modules
(system, generator, filter). In the direct interconnection (4),
noise may be introduced when connecting the signal gen-
erator with the system. In the swapped interconnection (6),
noise may be introduced when connecting the system and
the filter. In the two-sided interconnection (7), noise may
be introduced between generator and system and between
system and filter.
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Interconnection noise Interconnection noise

Fig. 1. Diagrammatic illustration of all sources of noise for the two-sided
interconnection.

Measurement noise: Data-driven moment matching is
based on the collection of time-domain samples to con-
struct the data-matrices in (9), (11) and (14). When using
instruments to measure these data, systematic errors may be
introduced due to the inaccuracy of the instruments. These
systematic errors are introduced in the form of noise which is
added to the signal. We call this type of noise measurement
noise. Measurement noise is introduced at the output of
modules that need to be measured.

Fig. 1 provides an illustration of the various types of
noise that can affect the two-sided interconnection. The
figure shows that this experimental setup can be affected
by measurement noise on three different quantities and
interconnection noise on two points. Note also that the first
half of this figure illustrates the direct interconnection, while
the second half illustrates the swapped interconnection.

B. Statistical Modeling of Noise

We consider two noise distributions: Gaussian (i.e. white
noise) and Student’s t.

Gaussian distribution: Gaussian distribution is one of
the most common ways of modelling noise in science
and it represents white noise. White noise has constant
power spectral density and statistical independence between
different samples. These are properties which are used to
represent a variety of different random perturbations. The
mathematical model of white noise is a Gaussian distribution
with probability density function

φ(x) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

,

where µ is the mean and σ is the standard deviation. In the
simulations in this paper we have set µ = 0 and changed
σ depending on the signal-to-noise ratio (SNR) which we
needed to produce.

Student’s t-distribution: Considering noise with more
abrupt or extreme fluctuations, we turn to the Student’s t-
distribution. This distribution can model the presence of out-
liers more effectively due to its long-tailed characteristic. The
probability density function of the Student’s t-distribution is
given by

φ(x) =
Γ( v+1

2 )
√
πvΓ( v2 )

[
1 +

x2

v

]− v+1
2

, (17)

where v is the number of degrees of freedom which deter-
mines whether the long-tailed property is significant or not

and Γ is the gamma function. In the simulations in this paper
we have set v = 1.

IV. REDUCING THE IMPACT OF WHITE NOISE VIA
WAVELET DENOISING

In this section we first briefly recall the Wavelet denoising
technique and explain the rationale of using it. Then we show
the effect of the technique, first on the estimation of the
parameters (e.g. CΠ) and then on constructing the reduced-
order model.

A. Wavelet Denoising and its Applicability

Since the Ordinary Least Squares (OLS) method is the
best linear unbiased estimator when dealing with signals
that include white noise, and formulas (8), (10) and (13)
are already OLS, we turn to signal preprocessing prior
to parameter estimation for this kind of noise. We have
evaluated several denoising techniques such as time-domain
filtering, Fourier Transform denoising, Short-Time Fourier
Transform denoising, and Wavelet denoising. Overall, the
best results were achieved with Wavelet denoising, which
we now describe. Wavelet denoising is based on the Wavelet
transform, defined by

Wf(a,b) =
1√
|a|

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt, (18)

where f is the function (signal), ψ is the wavelet, a is the
scale factor, related to frequency, and b is the translation fac-
tor, related to time. Wavelet denoising adapts its window size
based on signal characteristics, thereby fine-tuning time and
frequency resolution without spectral leakage. Its localized
approach is especially effective for handling white noise-
induced changes. In particular, Wavelet denoising methods
prove to be beneficial if the signal and noise are effectively
separated at different intensities and scales. This is the case in
data-driven moment matching methods based on the direct
and on the two-sided interconnections as the quantities in
these two interconnections are driven by a signal generator
of known frequencies. On the other hand, the data-driven
method based on the swapped interconnection utilises the
impulse response as input instead of signals with narrow fre-
quency bands. As such, we do not expect Wavelet denoising
to be as beneficial for the estimation of ΥB.

B. Effect of Wavelet Denoising on Parameter Estimation

To assess the performance of Wavelet denoising in the
estimation of CΠ, ΥB and ΥΠ, we employ the ℓ2-error.
Let q be a quantity of interest and q̂ its estimated value.
The ℓ2-error is defined as ∥ q̂−q

q ∥2. The ℓ2-error captures
the cumulative error across all dimensions, representing the
energy distribution of the error in the entire vector space.

In the simulation experiment we consider the direct inter-
connection (4) and the swapped interconnection (6) affected
by interconnection noise and measurement noise. In partic-
ular, for the direct interconnection we have

ω̇ = Sω, ẋ = Ax+B(Lω + wi
1), (19)
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Fig. 2. ℓ2 error of CΠ, with (blue) and without (red) Wavelet denoising,
for white noise. Insert: detail.

with
ωmeas = ω + wm

1 , ymeas = y + wm
2 , (20)

while for the swapped interconnection we have

ϖmeas = ϖ + wm
3 , (21)

where wi
1 is a white interconnection noise and wm

1 , wm
2 and

wm
3 represent white measurement noise. We have omitted in-

terconnection noise in the swapped interconnection because
all our results are illustrated on the basis of SNR; since in the
swapped interconnection the interconnection variable goes to
zero exponentially, the SNR would change and this would
make a comparison with the other results difficult.

In the experiment, we consider a SNR ranging from 25dB
to 75dB. The data-driven model order reduction process
was executed 500 times at each SNR level, using the non-
denoised data and the Wavelet denoised data1. In the direct
interconnection, the quantity CΠ was estimated using the
OLS formula (8) with h = 10ν. In the swapped inter-
connection, the quantity ΥB was estimated using the OLS
formula (10) with q̃ = 10. The quantity ΥΠ was estimated
using (16). The experimental results for CΠ and ΥB are
shown in Fig. 2 and 3, respectively (the behaviour of ΥΠ
is analogous to that of CΠ and thus the figure is omitted).
The blue curves in the figures show the mean ℓ2-errors

when using Wavelet denoised data across varying SNR
levels, while the red curves show the mean errors when non-
denoised data is used. The shaded region represents the 95%
confidence interval in the two cases. Consistent lower blue
curves and narrower blue regions confirm that the data-driven
algorithms for the estimation of CΠ (and ΥΠ) benefit from
pre-processing the data with Wavelet denoising when the
data are affected by white interconnection and measurement
noise. As expected, Wavelet denoising does not improve as
much the results for ΥB when the swapped interconnection
is affected by measurement noise. However, even though the
mean error does not improve, the 95% confident region is

1This has been implemented in MATLAB with the following settings:
Wavelet: Daubechies; number: 10; denoising method: Bayes; level of
Wavelet decomposition: 10; thresholding rule: soft; method of estimating
variance of noise: level-independent.
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Fig. 3. ℓ2 error of ΥB, with (blue) and without (red) Wavelet denoising,
for white noise.

still narrower when using Wavelet denoising. This suggests
that using Wavelet denoising in this case still has the benefit
of increasing the consistency of results for low values of
SNR (large noise).

Remark 1. If the objective is to improve the estimation of
ΥB, one can increase the parameter q̃ in (10), as demon-
strated in [6]. In fact, for all parameters (CΠ, ΥB and
ΥΠ) better results can be obtained by increasing the number
of data points in the corresponding ordinary least square
algorithms. However, the point of this paper is to study
specifically the effect of data preprocessing in addition to
the use of least squares.

C. Effect of Wavelet Denoising on Reduced-Order Models

The above experiment shows that Wavelet denoising pro-
vides more accurate estimates of CΠ and ΥΠ (and more
consistent estimates of ΥB) under the influence of white
noise. We now look at the effect that these improvements
have on the reduced-order model.

We measure the error using the H∞-norm, comparing
the difference between the transfer function of the reduced-
order model and the transfer function of the original system.
The experimental setup is identical to that of the previous
section and thus it is not repeated here. The only difference
is that in this section we repeat the experiment 1000 times
for each SNR level to increase the accuracy of the results.
Since the obtained reduced-order models may be unstable
under the influence of noise, a stability check is performed
before calculating the error. We compute the H∞-error for
the stable systems and we discard (but count the number
of) the unstable systems. Fig. 4 shows the H∞-errors of
the Wavelet denoised (blue curve) and non-denoised (red
curve) reduced-order models. The shaded areas (histogram)
represent the 95% confidence interval of the error (with the
same color coding) with an additional twist: the opacity of
each bar in the histogram represents the proportion of stable
systems in each of the 1000 iterations at each SNR level.
The higher the opacity, the greater the proportion of stable
systems. It can be observed that the blue curve is lower than
the red curve and that the shaded blue region is narrower
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Fig. 4. H∞-error of the reduced-order models, with (blue) and without
(red) Wavelet denoising, for white noise. The opacity of the bars in the
histogram represents the proportion of stable reduced-order models at each
SNR level. Insert: detail.

than the red region at most SNR levels. This is particularly
noticeable at smaller SNR (larger noise). Moreover, one can
notice that the blue region is darker (more opaque) than
the red region at each SNR level, indicating that Wavelet
denoising increases the chance of obtaining a stable reduced-
order model.

V. REDUCING THE IMPACT OF STUDENT’S t NOISE VIA
HUBER REGRESSION

In this section we briefly recall the Huber regression
method and explain the rationale of using it. Then we show
the effect of the technique, first on the estimation of the
parameters (e.g. CΠ) and then on constructing the reduced-
order model.

A. Huber Regression

We consider now noise drawn from the Student’s t-
distribution. Since this is not white noise, OLS is not
necessarily the best approximating method. This distribution
has long-tail and symmetric distribution characteristics and
we choose Huber regression as an improvement. Huber
regression combines ℓ1 and ℓ2 loss functions and exhibits
excellent robustness to outliers, while being computationally
efficient. Compared with some nonlinear methods or com-
plex statistical models, the parameters of Huber regression
are easier to interpret and select. We also note that Huber
regression can handle many types of noise distributions
(i.e. different from Student’s t) without requiring specific
modifications for each noise distribution.

The Huber loss function for a single data point (x, y) is
defined as

LK(y, f(x)) =

{
K|y − f(x)| − K2

2 , |y − f(x)| > K,
(y−f(x))2

2 , |y − f(x)| ≤ K,

(22)

where f(x) is the estimator and K > 0 is the robustness
parameter that balances bias and robustness. In this work we
select K = 1.345 (the default value in MATLAB).

B. Effect of Huber Regression on Parameter Estimation

In this section, we use the swapped and the two-sided
interconnection, and consider only measurement noise. Thus,
for the swapped interconnection we have

ϖmeas = ϖ + wm
4 , (23)

and for the two-sided interconnection we have

ωmeas = ω + wm
5 , ymeas = y + wm

6 , ϖmeas = ϖ + wm
7 ,
(24)

where wm
4 , wm

5 , wm
6 and wm

7 are drawn from from the Stu-
dent’s t-distribution. No interconnection noise is introduced.
In the experiment, we consider an SNR ranging from 25dB
to 75dB. The data-driven model order reduction process was
executed 250 times at each SNR level, using OLS and Huber
regression. In the swapped interconnection, the quantity ΥB
was estimated using the OLS formula (10) with q̃ = 10
and Huber regression. In the two-sided interconnection the
quantity CΠ was estimated using the OLS formula (8) with
h = 10ν and Huber regression, whereas the quantity ΥΠ
was estimated using the OLS formula (13) with p = 10ν
and Huber regression. Fig. 5 and 6 show the ℓ2-error of CΠ
and ΥB, respectively (the behaviour of ΥΠ is analogous to
that of CΠ and thus the figure is omitted). The color coding
is the same as that of the figures in Section IV-B. From the
figures it is evident that the blue curves are always much
lower than the red curves at all SNR levels. This shows that
when Huber regression is used for parameter estimation, the
error obtained is significantly lower than that obtained using
ordinary least square. Similarly, the blue shaded areas are
significantly narrower than the red shaded areas at all SNR
levels. This indicates that the estimates exhibit less sensi-
tivity to noise when Huber regression is used, significantly
mitigating the adverse effects of the randomness of noise on
the accuracy of the estimates.

C. Effect of Huber Regression on Reduced-Order Models

The above experiment shows that Huber regression pro-
vides more accurate estimates of CΠ, ΥB and ΥΠ under
the influence of Student’s t noise. We now look at the
effect that Huber regression has on the reduced-order model.
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Fig. 5. ℓ2 error of CΠ, with Huber regression (blue) and OLS (red), for
Student’s t-noise. Insert: detail.
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Fig. 7 shows the H∞-errors of the reduced-order models
obtained with the Huber regression (blue curve) and with
OLS (red curve). The shaded areas (histogram) represent the
95% confidence interval of the error (with the same color
coding). The opacity of each bar in the histogram represents
the proportion of stable systems in each of the 250 iterations
at each SNR level. The higher the opacity, the greater the
proportion of stable systems. The opacity of the blue shaded
bars is much higher than that of the red shaded bars for
all SNR levels, suggesting that models reduced using Huber
regression are much more likely to be stable. It is worth
noting that at lower SNR levels, OLS was unable to produce
a stable system in any of the 250 experimental repetitions.
In contrast, the method using Huber regression was able
to generate a small number of stable systems under these
challenging conditions.

Finally, Fig. 8 shows a comparison of the Bode plots for
an SNR of 65dB. The green curve represents the original
system. The blue and red shaded areas represent the 95%
confidence interval obtained by constructing reduced-order
models using Huber regression and OLS, respectively. The
figure clearly demonstrates that the reduced-order models
obtained using Huber regression are closer to the Bode plot
of the original system and are less sensitive to noise.

Together, these observations highlight that the method
utilizing Huber regression not only produce better reduced-
order models but it also increases the chance of obtaining a
stable reduced-order model.

VI. CONCLUSIONS

In this paper we have presented strategies to reduce the
impact of noise in the context of data-driven model order
reduction by moment matching. By means of extensive sim-
ulations, we have shown that Wavelet denoising is beneficial
in the presence of white noise in the estimation of CΠ and
ΥΠ and that overall it reduces the sensitivity of the reduced-
order model to randomness. We have also shown that Huber
regression outperformed OLS substantially in the presence
of Student’s t-distribution noise: all three parameters (CΠ,
ΥB and ΥΠ) greatly benefited from Huber regression and
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Fig. 6. ℓ2 error of ΥB, with Huber regression (blue) and OLS (red), for
Student’s t-noise. Insert: detail.

25 30 35 40 45 50 55 60 65 70 75
SNR (dB)

0

0.005

0.01

0.015

0.02

0.025

H
in

f n
or

m
 e

rro
r

25 30 35 40 45 50 55 60 65 70 75
SNR (dB)

0

100

200

300

400

500

600

700

800

Er
ro

r (
2-

no
rm

)

95% Confidence Interval with OLS Method
Mean Error with OLS Method
95% Confidence Interval with Huber Regression
Mean Error with Huber Regression

Fig. 7. H∞-error of the reduced-order models, with Huber regression
(blue) and OLS (red), for Student’s t noise. The opacity of the bars in the
histogram represents the proportion of stable reduced-order models at each
SNR level.

Fig. 8. Bode plot with Student’s t-noise at an SNR of 65dB: original
(green), Huber (blue) and OLS (red).

the chance of obtaining a stable reduced-order model was
significantly increased.
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