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Abstract— The decentralized strong stabilization problem,
i.e., the problem of designing a decentralized stable stabilizing
controller, is considered for linear time-invariant (LTI) multi-
input multi-output time-delay systems. A characterization of
decentralized blocking zeros is given and it is shown that
the parity interlacing property, where decentralized blocking
zeros, instead of centralized ones, should be used, is also a
necessary condition for decentralized strong stabilizability of
LTI time-delay systems. A numerical example is also presented
to demonstrate a possible application of the theoretical results.

I. INTRODUCTION

The necessity of modeling and control of large-scale
systems is increasing as a result of the magnitude and
complexity of real-world industrial operations. For many
large-scale systems, gathering all the information in one
location, processing it there, and distributing the control com-
mands from there may be prohibitively expensive or perhaps
impossible [1]. Practical examples of large-scale systems are
electric power networks, transportation and traffic systems,
water distribution systems, inventory management systems,
and the global economic system (see [2], [3], [4] and refer-
ences therein). The idea of information flow structure usually
describes the fundamental difference between the feedback
control of small-scale and large-scale systems. Unlike small-
scale systems, the overall plant is not controlled by a single
controller but by several independent local controllers each
of which can operate only on certain input-output channels of
the system. This control strategy is known as decentralized
control, and those independent local controllers all together
represent the overall decentralized controller [1]. Given the
numerous input-output channels and high level of complexity
of large-scale systems, time delays are an unavoidable part of
such systems. As a result, it is essential to take time delays
into account in the design of decentralized controllers for
such systems [5], [6], [3].

Even though unstable controllers can attain closed-loop
stability, they may have some drawbacks in some real-world
applications [7]. Because of that, designing a stable stabi-
lizing controller (known as strong stabilization problem) has
become an important topic of control theory and applications.
Even though the centralized strong stabilization problem has
been well studied in the past four decades (e.g., [8]–[13]),
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the literature is not that rich for the decentralized counter-
part of this problem. To the authors’ best knowledge, the
decentralized strong stabilization problem has been explicitly
studied only in [14]–[18]. In those studies, the decentralized
blocking zeros have been characterized for finite-dimensional
systems. Then, it has been shown that the parity interlacing
property1, where decentralized blocking zeros are considered
instead of centralized blocking zeros, is a necessary condition
for decentralized strong stabilizability of finite-dimensional
linear time-invariant (LTI) systems, and also a sufficient
condition under some assumptions. A stable controller design
method, which is based on the sequential design of stable lo-
cal controllers, has also been proposed for finite-dimensional
systems in the same works. However, to the authors’ best
knowledge, apart from a recent dissertation [20], no works on
decentralized strong stabilization of time-delay systems have
appeared to date in the literature. Therefore, in the present
study, we consider this problem for a broad class of LTI time-
delay systems. We show that the parity interlacing property,
where decentralized blocking zeros are considered instead
of centralized blocking zeros, is a necessary condition for
decentralized strong stabilization of LTI time-delay systems.

In the next section, the description of multi-agent time-
delay systems is given along with an outline of spectral prop-
erties of such systems. Then, in Section III, decentralized
time-delay controllers are introduced. In Section IV, the main
result of the paper is given. A numerical example is presented
in Section V. Finally, in Section VI, some concluding remarks
are made.

Throughout the paper, R, C, and Z denote the sets of
real numbers, complex numbers, and integers, respectively.
Furthermore, Ce denotes the extended complex plane, i.e.,
Ce :=C∪{∞}. For s∈C, Re(s) denotes the real part of s. For
ε ∈R, C+

ε := {s ∈C | Re(s)≥ ε}, C+e
ε :=C+

ε ∪{∞}, R+
ε :=

{s ∈ R | s ≥ ε}, and R+e
ε := R+

ε ∪ {∞}. H ∞
R denotes the

Hardy space of real functions which are bounded and analytic
in {s ∈C | Re(s)> 0}. For non-negative integers k and l, Rk

and Rk×l respectively denote the spaces of k-dimensional real
vectors and k× l-dimensional real matrices. I and 0 denote
the identity and the zero matrices of appropriate dimensions,
respectively. j denotes the imaginary unit; det(·), rank(·),
nrank(·), ρ(·), and (·)T denote the determinant, the rank,
the normal rank, the spectral radius, and the transpose of
(·), respectively. Finally, bdiag(. . .) denotes a block diagonal
matrix with (. . .) on the main diagonal.

1A system is said to satisfy the parity interlacing property if the number
of poles (counted according to their McMillan degrees) between any pair
of blocking zeros on the extended positive real-axis is even [19].
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II. MULTI-AGENT TIME-DELAY SYSTEMS

We consider an LTI time-delay system with ν control
agents, described as

Eẋ(t) =
σ

∑
i=0

(
Aix(t−hi)+

ν

∑
k=1

Bi,kuk(t−hi)
)

yk(t) =
σ

∑
i=0

(
Ci,kx(t−hi)+

ν

∑
l=1

Di,k,lul(t−hi)
)
,

(1)

k = 1, . . . ,ν , where x(t) ∈ Rn, uk(t) ∈ Rmk , and yk(t) ∈ Rqk

are, respectively, the state, the input, and the output vectors
at time t. Here, σ indicates the number of distinct time
delays involved in (1) and hi > 0, i = 1, . . . ,σ , are the time
delays. We use h0 := 0 for notational convenience, thus i = 0
corresponds to the delay-free part of the system. All the
matrices involved are constant real matrices. The system
may have an arbitrary number of time delays both in the
autonomous part and the input-output channels. Although
we represent the time delays compactly here, the state, the
input, and the output time delays may indeed be different,
in which case certain matrices in (1) would be zero. We
note that a system in which the delayed derivatives of the
state appear explicitly can be brought into the form (1) by
an extension of the state vector (see [21]). Thus, description
(1) is quite general and covers all LTI proper systems with
constant pointwise time delays.

In the case rank(E)< n, let the columns of U (respectively
V ) be a minimal basis for the left (respectively right) null
space of E. Then, U ∈ Rn×ñ and V ∈ Rn×ñ, where

ñ := n− rank(E) , (2)

are such that

UT E = 0 and EV = 0 . (3)

In order to ensure the solvability of (1), it is assumed that
either rank(E) = n or UT A0V is nonsingular [22], [23].

In the remainder of this section, we will outline the
spectral properties of (1) to establish a background for the
following sections. For the details and further properties, the
reader may refer to [20].

Definition 1: For any given ε ∈ R, the set of ε-modes of
(1) is defined as

Ωε =
{

s ∈ C+
ε | det(φ(s)) = 0

}
, (4)

where
φ(s) := sE−A(s) (5)

is the characteristic matrix of the system, where

A(s) :=
σ

∑
i=0

Aie−shi . (6)

Furthermore, any s ∈Ω0 is said to be an unstable mode.
When ñ= 0, where ñ is the rank deficiency of E as defined

in (2), or UT AiV = 0, for i = 1, ...,σ , (1) has only delay-
differential equations; hence it describes a retarded system.
For retarded systems, Ωε is a finite set for any ε ∈R [24]. In
other words, even though the time-delay system has infinitely

many modes, there are always finitely many of them on the
right-hand side of any vertical line on the complex plane.
As a result, a retarded system always has a finite number of
unstable modes.

On the other hand, in the case 1 ≤ ñ < n, i.e., when E
is a rank deficient matrix, (1) describes a neutral system if
UT AiV 6= 0, for at least one i ∈ {1, ...,σ}. In this case, the
associated delay-difference equations of (1) can be described
as

σ

∑
i=0

Âix̂(t−hi) = 0 , (7)

where Âi :=UT AiV , i = 0, . . . ,σ , and U and V are as in (3).
Here, x̂(·) ∈ Rñ is a dummy state vector.

The system (1) is exponentially stable if there exist a ξ >
0, such that Ω−ξ = /0 [24].

Definition 2: (1) is said to be insensitively stable 2 if it is
stable for nominal values of the time delays and remains
stable when infinitesimal perturbations occur in the time
delays.

Definition 3: The insensitive bound, indicated by CD, is
the least upper bound of the real part of the modes of (7)
under all infinitesimal perturbations in the time delays.

The insensitive bound, CD, is equal to the unique root of

g(ζ )−1 = 0 ,

where, for σ = 1,

g(ζ ) := ρ

(
Â−1

0 Â1e−ζ h1
)
,

and, for σ ≥ 2,

g(ζ ) := max ρ

(
Â−1

0

[
Â1e−ζ h1 +

σ

∑
k=2

Âke−ζ hk ejθk

])
,

where the max is taken over {θ2, . . . ,θσ} ∈ [0,2π]σ−1 [22].
Note that the set of ε-modes is finite for all ε > CD and

remains finite even when infinitesimal perturbations in the
time delays occur. Furthermore, for any ε > CD, all the ε-
modes of (1) can be calculated by the spectral method of
[26].

Definition 4: For a given ε ∈R, the set of ε-decentralized
fixed modes (ε-DFMs) of (1) is defined as

Ξε = {s ∈ C+
ε | det(φΣ,K (s)) = 0, ∀K ∈K} , (8)

where φΣ,K (s) is the characteristic matrix of the closed-loop
system obtained by applying controller K to (1), and K is
the class of all decentralized LTI feedback controllers under
which the closed-loop system remains proper (see [27] for
details). Furthermore, any s ∈ Ξ0 is said to be an unstable
DFM.

Note that any ε-DFM is a ε-mode, since the class K
includes the null controller (i.e., the controller which applies

2We should note that, first in [25], then in some other studies (see [24] and
references therein) the term strong stability was used instead of insensitive
stability. However, strong stability is a term well-established to mean closed-
loop stability achieved by a stable controller (see [7], [11] and references
therein). Therefore, in order to avoid this ambiguity, here we use the term
insensitive stability as in [21] and [13].
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no feedback). Once the ε-modes of (1) are calculated for any
ε >CD, the ε-DFMs can be determined using the rank test
given in [27] or the numerical test given in [20].

Definition 5: The transfer function matrix (TFM) of (1) is
given as

T (s) :=C(s)(sE−A(s))−1 B(s)+D(s) , (9)

where A(s) is as defined in (6),

B(s) :=
σ

∑
i=0

Bie−shi , C(s) :=
σ

∑
i=0

Cie−shi , (10)

and

D(s) :=
σ

∑
i=0

Die−shi , (11)

where Bi := [Bi,1 · · · Bi,ν ], Ci := [CT
i,1 · · · CT

i,ν ]
T , and

Di :=

Di,1,1 · · · Di,1,ν
...

...
Di,ν ,1 · · · Di,ν ,ν

 . (12)

Furthermore, z ∈ Ce is said to be a (centralized) blocking
zero of (1) if T (z) = 0.

III. DECENTRALIZED CONTROLLERS

For a large-scale time-delay system with ν control agents,
described as (1), we have ν local controllers which all
together represent the decentralized controller. The kth local
controller, k = 1, . . . ,ν , can access only {uk,yk} pairs of the
system given in (1). Here, we consider the most general
form of decentralized LTI output feedback controllers with
pointwise time delays, where the kth local controller is
described as

Lk żk(t) =
σ̂k

∑
i=0

(
Fi,kzk(t− ĥi,k)+Gi,kyk(t− ĥi,k)

)
uk(t) =

σ̂k

∑
i=0

(
Hi,kzk(t− ĥi,k)+Ki,kyk(t− ĥi,k)

)
,

(13)

where zk(t)∈Rlk is the state vector at time t.3 Here, ĥi,k > 0,
i = 1, . . . , σ̂k, are the time delays, where σ̂k indicates the
number of distinct time delays of the kth local controller (here
σk may be zero, i.e., some or all of the local controllers may
be finite-dimensional), and ĥ0,k := 0 is used for notational
convenience. All the matrices involved are constant real
matrices. It is assumed that either rank(Lk) = lk or UT

k F0,kVk
is nonsingular, where the columns of Uk (respectively Vk)
form a minimal basis for the left (respectively right) null
space of Lk. Furthermore, it is assumed that the matrices in
(13) are such that the overall closed-loop system is proper,
i.e., these matrices satisfy

det(I− (K0−K )(D0−D)) 6= 0 , (14)

3Here, some or all of the local controllers may involve no state vector, in
which case one will have lk = 0 and the controller will be defined simply
as uk(t) = ∑

σ̂k
i=0 Ki,kyk(t− ĥi,k).

where K0 := bdiag{K0,1, . . . ,K0,ν}, K :=
bdiag{K1, . . . ,Kν}, where

Kk :=
{

0 , if rank(Lk) = lk
H0,kVk(UT

k F0,kVk)
−1UT

k G0,k , otherwise ,

D0 is as defined in (12) (with i = 0), and

D :=
{

0 , if rank(E) = n
C0V (UT A0V )−1UT B0 , otherwise ,

where B0 and C0 are as defined following (11) (with i = 0).
Note that (14) reduces to det(I−K0D0) 6= 0 when rank(E) =
n and rank(Lk) = lk, k = 1, . . . ,ν .

IV. DECENTRALIZED STRONG STABILIZABILITY

It has been shown in [28] that it is not possible to assign
infinitely many unstable modes of a LTI time-delay system
to the stable region in the complex plane by using a proper
LTI controller. According to this result, to be able to design
a stabilizing proper LTI decentralized controller, it must
be ensured that the open-loop system has finitely many
unstable modes. Therefore, CD < 0 is a necessary condition
for stabilizability of (1) since only then it is guaranteed that
the open-loop system has finitely many unstable modes. To
this end, we make the following assumption before going
into the decentralized strong stabilizability of (1).

Assumption 1: (1) satisfies CD < 0.
It has been shown in [27] that, given CD < 0, (1) is

stablizable by a decentralized LTI controller whose kth local
controller is in the form of (13) if and only if it does not have
any unstable DFMs. For this reason, we make the following
assumption in addition to Assumption 1.

Assumption 2: (1) does not have any unstable DFMs.
Under Assumptions 1 and 2, all the unstable modes of (1)

can be assigned to the left-hand side of the complex plane
by a decentralized LTI controller [27].

A necessary condition for decentralized strong stabiliz-
ability was derived in [18] for finite-dimensional systems,
more specifically, for systems in the form of (1) with σ = 0
and E = I. Here, we extend this result to time-delay systems
described by (1), by following the line of [18], and using
the results of [11] which considers the centralized strong
stabilizability problem for a broad class of LTI infinite-
dimensional systems, including time-delay systems. In the
remainder of this section, we extensively use bicoprime fac-
torization for the system and left/right coprime factorization
for the controller. We note that there are several advantages
of using both of these two types of factorization approaches
(see [29] and [30]).

Let us denote the TFM of (1) as T = [Ti, j], where
Ti, j, i, j = 1, . . . ,ν , are the qi×m j dimensional TFMs cor-
responding to the channel with input u j and the output yi.
Also, let us denote the mk×qk dimensional TFM of the kth

local controller (13) as Ck, then denote the TFM of the
overall decentralized controller as C = bdiag{C1, . . . ,Cν}.
The decentralized strong stabilization problem can be defined
as designing a decentralized stable controller C , which is
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composed of stable local controllers Ck, k = 1, . . . ,ν , for T
such that the overall closed-loop system of (T ,C ) is stable.

It is known that the ordered triple (P,Q,R) is bicoprime in
H ∞

R if the pairs (P,Q) and (Q,R) are right and left coprime
over H ∞

R , respectively [30]. Furthermore the ordered triple
(P,Q,R) is a bicoprime factorization of T over H ∞

R if
(P,Q,R) is bicoprime in H ∞

R , Q is a square matrix with
det(Q(∞)) 6= 0, and T =PQ−1R, where P, Q and R are q×ξ ,
ξ ×ξ and ξ ×m dimensional matrices in H ∞

R , respectively.
Here, ξ must be such that nrank(T ) ≤ ξ [30]. Note that,
for T , one can always find these pairs (Pr,Qr) and (Ql ,Rl)
which are right and left coprime in H ∞

R , respectively [31].
Then a bicoprime factorization can be found via right or left
coprime factorization. For example, once a right coprime
factorization of T = PrQ−1

r over H ∞
R is found, then the

ordered triple (P,Q,R) can be determined as a bicoprime
factorization of T over H ∞

R by choosing P = Pr, Q = Qr,
and R = I. A dual procedure can also be applied by using
the left coprime factorization. Furthermore, a bicoprime
factorization can be directly derived from (1) if and only
if (1) is both spectrally stabilizable and spectrally detectable
[30].

If T = PQ−1R is a bicoprime (also if T = PQ−1 is a
right coprime or T = Q−1R is a left coprime) factorization,
where T is the TFM of a stabilizable and detectable system
(note that under Assumption 2, the system (1) is stabilizable
and detectable [27]), then the C+

0 modes of the system are
precisely the C+

0 roots of det(Q)(s) = 0.
A decentralized controller C , whose each local controller

is in the form of (13), has always a right coprime factor-
ization C = PcQ−1

c over H ∞
R such that Pc and Qc are right

coprime over H ∞
R where Pc and Qc are m× q and q× q

dimensional matrices in H ∞
R [31].

Now, let us introduce the notion of decentralized blocking
zeros which will play a central role in the remainder of this
section.

Definition 6: z0 ∈ Ce is a decentralized blocking zero of
T = [Ti, j], i, j = 1, . . . ,ν , if, when evaluated at z0, all
the main block diagonal entries and the entries below the
main diagonal blocks of the system TFM become zero after
a suitable symmetric permutation of the block rows and
columns. In other words, z0 is a decentralized blocking
zero of T = [Ti, j] if for some permutation {i1, . . . , iν},
Tik,il (z0) = 0, for k = 1, . . .ν and l = 1, . . . ,k. Thus, the set
of decentralized blocking zeros can be described as

ΛT := {z0 ∈ Ce | ∃ a permutation {i1, . . . , iν} o f {1, . . . ,ν}

such that
Ti1,i1 0 0 . . . 0
Ti2,i1 Ti2,i2 0 . . . 0
Ti3,i1 Ti3,i2 Ti3,i3 . . . 0

...
...

...
. . . 0

Tiν ,i1 Tiν ,i2 Tiν ,i3 . . . Tiν ,iν

(z0) = 0}. (15)

For instance, when ν = 2, the set of decentralized blocking
zeros of T can be defined as

ΛT = {z0 ∈ Ce |
[
T1,1 0
T2,1 T2,2

]
(z0) = 0 or

[
T1,1 T1,2

0 T2,2

]
(z0) = 0} .

Some other equivalent descriptions of the decentralized
blocking zeros can be found in [18]. We note that, for a
single-channel system, i.e, when ν = 1, the decentralized
blocking zeros are equal to the centralized blocking zeros. By
definition, while a decentralized blocking zero may not be
a centralized blocking zero, any centralized blocking zero
is a decentralized blocking zero. Consequently, the set of
decentralized blocking zeros can be a much larger set than
the set of centralized blocking zeros.

Obviously, to determine the decentralized blocking zeros
of (1), roots of certain quasi-polynomials must be calculated.
Such a calculation can be done by using the quasi-polynomial
mapping based root-finder (QPmR) of [32].4

Let us denote the right-half plane decentralized blocking
zeros of the system as

Λ
+
T = ΛT ∩C+e

0 .

The following two lemmas, which are borrowed from [14],
are needed to prove our main result.

Lemma 1: Let (1) has no unstable DFMs. Then the set of
modes of (1) and Λ

+
T are disjoint.

Lemma 2: Let (1) has no unstable DFMs and T =
PQ−1R be a bicoprime factorization over H ∞

R , where P =
[PT

1 . . .PT
ν ]T and R= [R1 . . .Rν ]. Let Cν =Pcν Q−1

cν be the local
controller applied to the ν th channel of T , where (Pcν ,Qcν)
is a pair of right coprime matrices over H ∞

R with appropriate
dimensions. Then, the resulting ν−1 channel system has a
bicoprime factorization over H ∞

R as

T ν−1 :=

 P1 0
...

...
Pν−1 0

[ Q Rν Pcν

−Pν Qcν

]−1 [R1 · · · Rν−1
0 · · · 0

]
(16)

and Λ
+
T ⊂ Λ

+
T ν−1 .

Now we present our main result.
Theorem 1: Let Assumptions 1 and 2 hold. Let

z1,z2, . . . ,zt denote the elements of ΛT ∩R+e
0 arranged in an

ascending order. Also, let ηi denote the number of R+
0 modes

of (1) counted with multiplicities in the interval (zi,zi+1),
i = 1,2, . . . , t−1. Define η be the number of odd integers in
the set {η1, . . . ,ηt−1}. Then, every decentralized stabilizing

4Although QPmR can find the roots in a finite region of the complex
plane, to check the condition of Theorem 1, we only need to calculate the
R+

0 decentralized blocking zeros of (1) on the finite interval [0,σmax], where
σmax is the right-most R+

0 mode of (1) and check whether there is also at
least one real decentralized blocking zero to the right of σmax (which may
be at ∞; see [20]).
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controller C = bdiag{C1, . . . ,Cν} has at least η modes in
R+

0 (counting multiplicities).5

Proof: Let T = PQ−1R be a bicoprime factorization
over H ∞

R , where P = [PT
1 . . .PT

ν ]T and R = [R1 . . .Rν ]. Also
let C j =Pc jQ−1

c j , j = 1, . . . ,ν , be a right coprime factorization
over H ∞

R . Without loss of generality, assume that i j = j,
j = 1, . . . ,ν , where {i1, . . . , iν} is such that (15) holds. By
applying (16) ν−1 times we obtain:

T 1 :=
[
P1 0 · · · 0

]
Q̃−1 [RT

1 0 · · · 0
]T

, (17)

which, by Lemma 2, is a bicoprime factorization over H ∞
R ,

where

Q̃ :=


Q Rν Pcν · · · R2Pc2
−Pν Qcν 0

...
. . .

−P2 0 Qc2

 .

Note that

det(Q̃) = det(Q)det(Q̃c− P̃Q−1R̃) , (18)

where Q̃c := bdiag{Qcν , . . . ,Qc2}, P̃ := [−PT
ν · · · −PT

2 ]T ,
and R̃ := [Rν Pcν · · · R2Pc2]. Note that, by (15),
PkQ−1Rl(zi) = Tkl(zi) = 0, for k = 1, . . . ,ν , l = 1, . . . ,k,
i = 1, . . . , t. Thus,

det(Q̃c− P̃Q−1R̃) = det(Q̃c) = det(Qcν) · · ·det(Qc2)

at any zi, i = 1, . . . , t. Therefore,

det(Q̃) = det(Q)det(Qcν) · · ·det(Qc2) (19)

at any zi, i = 1, . . . , t. For j = 1, . . . ,ν , let n j denote the
number of R+

0 modes (counting multiplicities) of C j. Since
C is assumed to be stabilizing, T 1 can not have any unstable
fixed modes. Then, by Theorem 1 of [11], C1 stabilizes
T 1 only if the number of sign changes of det(Q̃) at the
R+e

0 blocking zeros of T 1 is not greater than n1 (note
that since T 1 can not have any unstable fixed modes,
det(Q̃) is non-zero at the C+e

0 blocking zeros of T 1). Let
η̃ denote the number of sign changes of det(Q̃) at the
sequence z1,z2, . . . ,zt . Then, since by Lemma 2 the sequence
z1,z2, . . . ,zt is a subset of the blocking zeros of T 1, C1 sta-
bilizes T 1 only if η̃ ≤ n1. However, since by the assumption
of the theorem, C is a stabilizing decentralized controller, C1
must stabilize T 1. Thus, we must have η̃ ≤ n1. On the other
hand, by the assumption of the theorem, the number of sign
changes of det(Q) at the sequence z1,z2, . . . ,zt is equal to η

[11] (note that, by Assumption 2 and Lemma 1, det(Q)(zi) 6=
0, i = 1, . . . , t). Then, by (19), η̃ ≥ η − nν − . . .− n2. Thus,
η − nν − . . .− n2 ≤ n1, or η ≤ n1 + . . .+ nν , which proves
the theorem.

5We note that T may have infinitely many R+e
0 decentralized blocking

zeros (see [11] for the centralized case, which may be extended to the
decentralized case), in which case we replace the finite sequence z1,z2, . . . ,zt
by the infinite sequence z1,z2, . . ., which diverges to +∞. Furthermore, even
the sequence z1,z2, . . . ,zt is finite, we may have zt = ∞ [11], which must
also be taken into account. However, there can be only finitely many such
blocking zeros in any finite interval [11]. Furthermore, by Assumption 1,
there can be only finitely many unstable modes of (1), thus η is always
finite.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
Re(s)

-50

0

50

Im
(s

)

Fig. 1. The −8-modes of the system with imaginary parts between −50
and 50.

Remark 1: Theorem 1 is a generalization of part (i) of
Theorem 2 in [18] to the time-delay case. However, its proof
is different than the proof given in [18]. Firstly, rather than
using an induction argument as in [18], we directly proved
the result for a ν-channel system. More importantly, here
we used the results of [11], which were given for a broad
class of infinite-dimensional systems, instead of those of [7],
which were restricted to finite-dimensional systems.

The following result is now apparent from Theorem 1.
Corollary 1: Under Assumptions 1 and 2, (1) is decen-

tralized strongly stabilizable only if η = 0.
We note that Corollary 1 is a generalization of the neces-

sity part of Theorem 1 in [11] to the decentralized case.

V. NUMERICAL EXAMPLE

We consider an LTI time-delay system with two control
agents described as

ẋ(t) =


−1 0 0 0
0 2 0 0
−2 0 1 0
0 0 0 −2

x(t)+


0.5 0 0 0
0 0 0 0

0.5 0 0 0
0 0 0 0

x(t−1)

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

x(t−0.5)+


1
0
0
0

u1(t)+


−2
0
0
0

u1(t−h)

+


0
0
0
1

u2(t)+


0
4
0
0

u2(t−0.3)+


0
0
0
−2

u2(t−h)

y1(t) =
[
1 1 0 0

]
x(t)

y2(t) =
[
1 0 −1 1

]
x(t) ,

with four distinct pointwise time delays in which h > 0 is
left as a parameter. Note that the above description is in the
form of (1) where E = I. Therefore the system is a retarded
type time-delay system since ñ = 0. Accordingly, one can
immediately claim that CD = −∞, thus Assumption 1 is
satisfied. Relying on that, we can calculate the C+

ε modes, for
ε =−1, as Ωε = {−0.6298,−0.3149,1,2} using the spectral
method of [26]. Also, the modes of the system in a prescribed
region, calculated using QPmR of [32], are shown in Fig. 1.
Obviously, the system is unstable due to two C+

0 modes
s1 = 1 and s2 = 2. We then check whether s1 and/or s2 is a
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DFM, using the rank test of [27]. We find that s1 is a DFM
when h= log(2) and s2 is a DFM when h= log(2)

2 .6 However,
for any other h> 0, the system is free of any unstable DFMs,
thus Assumption 2 is satisfied for h /∈ {log(2), log(2)

2 }.
In order to calculate the decentralized blocking zeros, we

first obtain the TFM as

T (s) =

 1−2e−hs

s+1−0.5e−s
4e−0.3s

s−2

1−2e−hs

s−1
1−2e−hs

s+2−e−0.5s

 .
According to Definition 6, the set of C+e

0 decentralized
blocking zeros are given as

ΛT =

{
1
h

log(2)+ j
2l
h

π

}
l∈Z
∪{∞} .

Therefore, the R+e
0 decentralized blocking zeros are z1 =

log(2)
h and z2 =∞.7 Thus, η = 0 when h< log(2)

2 or h> log(2)
and η = 1 when log(2)

2 < h < log(2). Therefore, according
to Corollary 1, the system is not decentralized strongly
stabilizable when log(2)

2 < h < log(2).

VI. CONCLUSION

It has been shown that, under Assumptions 1 and 2, a LTI
time-delay system is strongly stabilizable by a decentralized
LTI output feedback time-delay controller only if the parity
interlacing property (where decentralized blocking zeros are
considered instead of centralized blocking zeros) is satisfied.
Whenever the system is strongly stabilizable by decentralized
LTI feedback, a time-delay or finite-dimensional decentral-
ized stable LTI controller can be designed by extending
the constrained optimization-based approach of [13] to the
decentralized case.
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[8] M. Zeren and H. Özbay, “On the strong stabilization and stable H ∞

controller design problems for MIMO systems,” Automatica, vol. 36,
pp. 1675–1684, 2000.

6s1 is in fact a centralized fixed mode (an uncontrollable mode) when
h = log(2), i.e., it is not possible to move s1 by centralized or decentralized
LTI feedback when h = log(2); however, s2 is a DFM when h = log(2)

2 ,
although it is not a centralized fixed mode, i.e., it is possible to move s2
by centralized LTI feedback, but not by decentralized LTI feedback when
h = log(2)

2 .
7We note that the only centralized blocking zero is z=∞. Thus, according

to the results of [11], the system is strongly stabilizable by LTI centralized
feedback for any positive h 6= log(2) (recall that s1 = 1 is a centralized fixed
mode when h= log(2), thus the system is not stabilizable when h= log(2)).
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