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Abstract— This paper focuses on the control of multi-input
multi-output (MIMO) over-actuated systems with unknown
output disturbances and partially unknown dynamics. Our
proposed solution integrates model predictive control (MPC)
and active disturbance rejection control (ADRC) methodologies,
offering a unified solution tailored to the specific demands
of over-actuated constrained systems. We demonstrate the
effectiveness of the proposed approach through comprehensive
simulation results and also provide proof of the intervals that
guarantee the convergence, feasibility, and BIBO stability of
the method. Notably, our approach outperforms conventional
output-feedback MPC, resulting in better performance in terms
of noise reduction and reference tracking accuracy.

Index Terms— Receding Horizon Control, Unmodelled Dis-
turbance Compensation, Robust Control

I. INTRODUCTION

Constrained control systems with uncertain or partially
unknown dynamics, potentially coupled with disturbances
and noise, represent a significant and recurring challenge in
the field of control engineering. These complex systems find
extensive application in a diverse array of practical domains,
encompassing disciplines such as robotics, industrial automa-
tion, aerospace and automotive control.

Model-predictive control (MPC) provides a flexible and
powerful tool for handling these kinds of systems. It ex-
plicitly considers the constraints on the control inputs, the
output, and state variables and leverages predictive modeling
to optimize control inputs at each time step with respect
to a specific cost function while adhering to the system’s
constraints. However, MPC assumes that a model of the
system dynamics is known. When the model is imprecise,
or disturbances are difficult to model—as is often the case
in real-world scenarios—the MPC performance can be sig-
nificantly impacted.

Alternatively, active disturbance rejection control (ADRC)
[1] is a control tool characterized by the ability to mitigate
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the effects of unmodeled dynamics, disturbances, and noise
on system dynamics, based on a unified global disturbance
term that encapsulates all these unknown quantities [2].

Properly combining the MPC predictive power with the
disturbance-rejection capabilities of ADRC may allow to
optimally manage constrained dynamical systems affected
by unmodelled dynamics or noises, as already shown in the
case of torque or speed control of induction machines [3],
[4], tracking control of wheeled robot [5], and visual servoing
applications of underwater vehicle manipulator systems [6].

A common feature of all of the mentioned systems,
however, is that the number of control inputs m is equal to
the number of control outputs p. In the present paper, instead,
we are interested in solving a similar problem involving
MIMO over-actuated constrained systems (i.e., such that
m > p), subject to unknown output disturbances and/or
having partially known dynamics. Briefly, we address the
control problem of a plant whose dynamics follow:

ẏ = f (y, w) +Mu (1)

where u ∈ Rm, y ∈ Rp, and w ∈ Rp are the control input,
the output, and an unknown disturbance, respectively; while
f(·) is a function describing the unknown or unmodelled
dynamics. Let M ∈ Rp×m = M0 + ∆M , where M0 is
the best available estimate of the matrix M and ∆M is
the associated uncertainty. The plant is input-affine, over-
actuated, i.e., m > p, and it is subject to the following
constraints:

u ∈ U ⊂ Rm, y ∈ Y ⊂ Rp, (2)

and to an unknown and bounded disturbance w ∈ W ⊂ Rp.
We seek a control strategy for tracking an output reference
yref ∈ Y, satisfying the system constraints, while also miti-
gating the disturbance effects on the measured output. Our
proposed solution combines MPC with a properly modified
ADRC approach able to deal with over-actuated systems.
Recently in [7], the authors present an ADRC-based control
strategy for an over-actuated vehicle, exploiting the Moore-
Penrose pseudo-inverse matrix to spread the virtual control
action to the effective actuators. However, their control
approach cannot cope with possible constraints related to
control inputs, controlled variables, or state variables. In con-
trast, our proposal considers the constraints on the physical
system’s inputs and outputs while mapping those constraints
into properly tuned limitations for the virtual control actions
of the squared system obtained by applying the ADRC
strategy.
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A. Motivating example

As a motivation for our research, consider the problem of
beam trajectory control in synchrotrons, i.e., cyclic particle
accelerators in which the accelerating particle beam travels
along a fixed closed trajectory.

A fundamental component of such a facility is the storage
ring—a high-vacuum steel tube—comprising a fixed number
of beam position monitors (BPMs) and a fixed number of
correction magnets. BPMs are used for real-time monitor-
ing, providing measurements of the horizontal and vertical
positions of the particle beam at different points in its orbit.
Simultaneously, the correction magnets generate magnetic
fields that deflect the electrons within the beam from their
existing orbit to align them with the desired trajectory.

Denoting by u ∈ Rm the currents driving the corrector
magnets, and by y ∈ Rp the monitored beam positions, an
interesting and particular case is the one with m > p, i.e.,
the number of corrector magnets in the facility is greater
than the number of BPMs. This design choice allows greater
flexibility and more degrees of freedom in control. For
example, by doubling the number of correctors near each
BPM, and imposing one narrow-band and one wide-band
corrector at each location, the resulting over-actuation can
be conveniently exploited to improve the control efficacy of
the overall structure.

It is usual to describe the steady-state relationship between
a generic current variation ∆u and the corresponding orbit
modification ∆y, by introducing the orbit response matrix
R ∈ Rp×m [8]:

∆y = R∆u, (3)

where the generic entry Rij could be evaluated using a model
[9], [10], or, more often, estimated based on experimental
data [11], [12].

Let’s denote by ℓ the time required by the j-th BPM to
correctly perform data acquisition, transmission, and pro-
cessing, and only consider the low-frequency dynamics of
the corrector magnets. The dynamics of the general i, j-
th correction channel, i.e., the one including the i-th BPM
and the j-th corrector magnet, can be easily modeled as
follows [13]:

Tij(s) = Rij
aj

s+ aj
e−ℓ s, (4)

where aj is the bandwidth of the j-th corrector magnet. Then,
assuming that the delay ℓ is negligible, a state-space linear
model for the whole orbit control system takes the form of:{

ẋ = Ax+Bu

y = Cx+ d
, (5)

where x ∈ Rn is the state corresponding to the correction
channels (n = m), d represents both measurement noise
and the disturbances, B = −A, C = R, while A =
diag {−λ1,−λ2, . . . ,−λn} describes the low-pass dynamics
of the correction channels, where each λi, i = 1, 2, . . . , n,
depends on the cut-off frequency value of the corresponding
corrector magnet.

This orbit control system is usually an ill-conditioned
MIMO system challenging to control due to the presence
of small singular values in the R matrix [14]. Moreover, the
orbit response matrix is usually affected by uncertainty, i.e.,
R = R0 +∆R. Therefore, the corresponding orbit control
strategy needs to operate far enough from the physical
constraints of the corrector magnets1 and must be able to
overcome possible modelling errors to avoid subsequent
stability problems. In addition, the complete absence of
a model characterizing the time behavior of d makes it
difficult to reduce its effect on the system output, thus not
guaranteeing a steady electron beam. The inherent difficulties
in controlling such systems are well-known and lead to
the use of model-free approaches [15], [16], as well as of
iterative, learning-based approaches, such as [17].

B. Notation
In the reminder of the paper, we denote by S(1) the {1}-

inverse of a matrix S, i.e., the matrix satisfying SS(1)S =
S [18], by ker (S) the kernel of the matrix S, and by Il the
identity matrix of size l × l.

II. ACTIVE DISTURBANCE REJECTION CONTROLLER

Typically, active disturbance rejection controllers [19] al-
low tracking a reference yref on a system subject to unknown
disturbances and of which only a partial model knowledge
is available.

Controller (CB)
−1 Plant

ESO

yref u0 u y

ẑ1

−
ẑ2

d

Fig. 1. General ADRC schematic.

Consider a dynamical system as in (5), with C = C0 +
∆C, assume m = p and d ∈ C2, with the derivatives of d
unknown but bounded. Equation (1) leads to the following:

ẏ = z2 + C0Bu, (6)

where z2 = f
(
x, ḋ

)
= CAx+∆CBu+ ḋ is a virtual state

that plays the role of all unknown, or unmodeled, dynamical
components.

The main idea of [19] consists of using an estimate of z2
to decouple the known dynamics of the system from both the
actual disturbance acting on it and the neglected dynamics.
The rate of change of z2 is unknown but bounded owing the
assumption on d and according to (2). By considering the
extended state version of (6):

ż1 = C0Bu+ z2

ż2 = w

y = z1,

(7)

1otherwise, huge control signals in the low-gain directions lead to
correction magnets saturation.
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where z =
[
z⊤1 , z⊤2

]⊤ ∈ R2p is the extended state vector,
and w is the unknown bounded rate of change of the
neglected dynamics z2, an extended state observer (ESO)
able to provide punctual estimates ẑ1 and ẑ2 of z1 and z2,
respectively, takes the form of:

˙̂z1 = ẑ2 + C0Bu+ β1(y − ẑ1)

˙̂z2 = β2(y − ẑ1)

ŷ = ẑ1,

(8)

where β1 and β2 are the observer gain matrices.
Imposing C0Bu = u0 − ẑ2, as ẑ − z → 0, from (7), we

get:

ż1 = u0 (9)
y = z1, (10)

and we can compute the virtual control input u0 leading the
system output (10) towards a desired reference, e.g., y →
yref.

In particular, if C0B is a non-singular m×m matrix, then
the resulting plant control input is:

u = (C0B)−1 (u0 − ẑ2) . (11)

A general ADRC scheme is presented in Figure 1. Notice
that no assumptions related to the control approach to be used
are made. Therefore, depending on the task at hand, any type
of control approach can be chosen. However, as previously
observed, in the case of non-square C0B matrix, e.g., when
m > p, (11) cannot be applied in order to obtain the plant
control input vector from u0 and ẑ2. This particular case,
which is the one we are interested in solving, requires further
technicalities, to be addressed in the following section.

III. PROPOSED SOLUTION

To apply the ADRC approach to a dynamical system de-
scribed by the equations (5) (or the more general expression
(1) ), characterized by over-actuation (m > p), we need first
of all to establish a suitable method for replacing (11). This
replacement must guarantee that the mapping operation from
the p-dimensional vector u0−ẑ2 to the m-dimensional vector
u results in input values that meet the physical constraints
of the plant, ultimately requiring suitable conditions on u0.

Subsequently, given our objective of solving a tracking
problem with a reference output value denoted by yref, all
the necessary components are in place to formulate an MPC
strategy that operates on the variable ẑ1. This strategy is
capable of generating u0 in such a manner that ensures that
both u belongs to the U set, and y belongs to the Y set.

A schematic representation of the proposed ADRMPC
(Active Disturbance Rejection Model Predictive Control)
reference tracking control strategy is provided in Figure 2.

In practice, denoting by T the plant sampling time, every
T time units, the plant output y and control input u are
provided to the ESO, which returns ẑ2 in order to punctually
compensate for disturbances and unknown dynamics, and ẑ1,
which estimates the noise-cleaned output. The latter becomes
the input for the MPC, yielding u0 as the output. As a final

P3 P2 Plant

ESO

yref u0 u y

ẑ1

−
ẑ2

d

Fig. 2. General schematic of the proposed Active Disturbance Rejection
MPC approach.

step, the resultant p-dimensional signal u0 − ẑ2 is mapped
into an m-dimensional vector u, i.e., the actual plant input.
The procedure is repeated over time and may be employed
for tracking non-constant references as well.

In the following, we first expand upon the ADRC theory,
customizing it to address the specific challenges posed by
over-actuated systems. We then introduce our Active Dis-
turbance Rejection Model Predictive Control (ADRMPC)
approach, providing evidence of robustness and stability. We
also provide the conditions to guarantee feasibility.

A. ADRC for over-actuated systems

When m > p, Equation (11) cannot be applied.
Following Corollary 2 of [18], page 53, the solutions of

C0Bu = u0−ẑ2, when (C0B)
(1)

C0B ̸= Im, may be written
as:

u = (C0B)
(1)

(u0 − ẑ2) + (Im − (C0B)
(1)

C0B)λ, (12)

for any arbitrary λ ∈ Rm. To ease the notation we define
L = (Im − (C0B)

(1)
C0B).

Then, given u0 ∈ U0 and z2 ∈ Z2, the plant control input
u can be obtained by solving the following optimization
problem:

min l (λ)

s.t. : (12), u ∈ U, ;
(P2)

where l(·) is a suitably designed cost function, e.g., l(·)
could be designed in order to properly map the p-dimensional
signal u0 − ẑ2 into an m-dimensional plant input u by
optimizing some performance criterion.

It is worth noticing that the constraints imposition on u in
(P2) allow us to determine the u0 constraints, to be imposed
on the MPC, such that (P2) always admits solution.

Assumption 1: U is a box-shaped set including the origin:

U = {u ∈ Rm :
¯
u ≤ u ≤ ū} , (13)

where
¯
u and ū denote the vectors containing the lower and

the upper bounds of each component of u and such that
0 ∈ U.

Assumption 2: ẑ2 ∈ Z2, where Z2 is a box-shaped set:

Z2 = {ẑ2 ∈ Rp :
¯
z2 ≤ ẑ2 ≤ z̄2} . (14)

where
¯
z2 and z̄2 denote the vectors containing the lower and

the upper bounds of each component of ẑ2.
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We further denote by zavg = ¯
z2 + z̄2

2
the average vector

of ẑ2, and by zδ =
z̄2 −

¯
z2

2
the mid-range of the admissible

values of ẑ2.
Theorem 1: Let U and Z2 be defined as in (13) and (14),

respectively. Denote by cb(i) the i-th row of (C0B)
(1), and

by
¯
u(i) and ū(i) the i-th component of

¯
u and ū, respectively.

Then by imposing:

cb(i)u0 ≤ ū(i) + cb(i)ξ+ + cb(i)zavg

−cb(i)u0 ≤ −
¯
u(i) − cb(i)ξ− − cb(i)zavg,

(15)

where ξ+ and ξ− are chosen according to:

ξ+ = arg min
ξ+∈{−zδ,zδ}

ū(i) + cb(i)ξ+ + cb(i)zavg,

ξ− = arg min
ξ−∈{−zδ,zδ}

−
¯
u(i) − cb(i)ξ− − cb(i)zavg,

(16)

(P2) always admits at least one feasible solution, regardless
of the chosen λ.

Proof: We denote by ker (C0B) =
{u ∈ Rm : C0Bu = 0} the kernel of the linear map
C0B : Rm → Rp, where 0 is the origin in Rp. Since
Lλ ∈ ker (C0B), then C0B Lλ = 0.

On the other hand, imposing u ∈ U in (P2) we are defining
a polytope

L = {λ ∈ Rm :

¯
u− (C0B)

(1)
(u0 − ẑ2) ≤ Lλ ≤ ū− (C0B)

(1)
(u0 − ẑ2)

}
.

Then, if {
¯
u− (C0B)

(1)
(u0 − ẑ2) ≤ 0

ū− (C0B)
(1)

(u0 − ẑ2) ≥ 0
(17)

are component-wise satisfied (i.e., (15) holds), then L is
centered in − (C0B)

(1)
(u0 − ẑ2) and contains the origin.

Therefore, ∀λ ∈ Rm, L ∩ ker (C0B) contains at least the
origin, and (P2) always admits solution regardless of the
chosen λ.

By imposing (15), we guarantee a solution for (P2), and,
practically, we constrain u0 in a polytope U0, which can be
used as MPC constraint.

B. Active disturbance rejection MPC

We can now formalize the ADRMPC approach.
Given a plant whose dynamics follows (5), with m > p,

and such that (C0B)
(1)

C0B ̸= Im. We assume that Cf(x)
and the unknown disturbance d ∈ D are bounded. Then, an
ESO can be designed as in (8).

We recall that z1 = y and that y ∈ Y, then z1 ∈ Y.
Assumption 3: Y is a symmetric, box-shaped set including

the origin:

Y = {z1 ∈ Rp :
¯
z1 ≤ z1 ≤ z̄1} , (18)

where
¯
z1 and z̄1 denote the vectors containing the lower and

the upper bound of each component of z1, respectively, and

¯
z1 = −z̄1.

Assumption 4: u0 ∈ U0, with U0 a box-shaped set includ-
ing the origin, defined by (15):

U0 = {u0 ∈ Rp :
¯
u0 ≤ u0 ≤ ū0} . (19)

where
¯
u0 and ū0 denote the vectors containing the lower

and the upper bound of each component of u0, and such
that 0 ∈ U0.

The overall output-feedback problem of finding an input
such that y ∈ Y and y → yref can be solved by repeating the
following steps at each k-th time instant:

1) solve the following receding horizon control problem
involving the ZOH-discretization of (9)

min
u0(·)

H−1∑
i=0

g (z1(i), u0(i)) + gH (z1(H)− yref) ,

s.t. : z1(k + 1) = Ipz1(k) + Ipu0(k)

z1(k) ∈ Y
u0(k) ∈ U0

z1(0) = z0 ∈ Y
z1(H) ∈ ZH

(P3)
where H is the control horizon, and g (z1, u0) and
gH (z1 − yref) two convex cost functions, and ZH is
a µ-ball of ∞-norm centered in yref, i.e., ZH =
{z1 ∥z1 − yref∥∞ ≤ µ}.

2) apply the first control input of the sequence of H steps
obtained with the MPC.

3) solve (P2) to convert the control input (u0 − ẑ2) ∈ Rp

into an u ∈ U ⊂ Rm.

If Assumption 4 holds, the solution of the step 1 allows
to formulate a feasible (P2) in accordance with Theorem 1.

Notice that, since the dynamical system on which the
MPC operates is a fully actuated and decoupled system,
by properly choosing the horizon H we can ensure the
feasibility of (P3).

We define by ∆h the vector containing in each i-th
component ∆h(i) the least number of steps required to reach
the i-th component of yref (i.e., y(i)ref ) starting from the farthest
admissible initial value of the i-th component of the state
z
(i)
1 :

∆h(i) =
max

{∣∣∣̄z(i)1 − y
(i)
ref

∣∣∣ , ∣∣∣z̄(i)1 − y
(i)
ref

∣∣∣}
min

{∣∣∣
¯
u
(i)
0

∣∣∣ , ∣∣∣ū(i)
0

∣∣∣} . (20)

Then, by choosing H in P3 such that: H ≥ ∥∆h∥∞ holds
(i.e., imposing a horizon greater than the maximum value
among the ∆h(i)), (P3) is feasible.

Remark 1: The BIBO stability of the ADRMPC approach
is contingent upon the stability of the ESO system. Indeed,
when considering the ADRMPC closed-loop system, it can
be represented by the following state-space equation:[

ẏ
ė

]
=

[
0 −IpEz

0 Az − βCz

] [
y
e

]
+

[
0
Ez

]
w +

[
Ip
0

]
u0. (21)
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Fig. 3. Magnitude spectrum of the applied disturbance during the performed
simulations.

where e = z − ẑ, Az =

[
0 Ip
0 0

]
, Ez =

[
0
Ip

]
, and Cz =[

Ip 0
]
. Clearly, the ADRMPC closed-loop system is BIBO

stable provided that the matrix Az − βCz is Hurwitz.

IV. IMPLEMENTATION

To evaluate the proposed approach, we conducted sim-
ulations using the experimental setup described in Section
Section I-A, where m = 15 and p = 7. Each corrector
magnet was assigned a cutoff frequency of f = 500Hz.
As a result, the continuous-time model (5) was defined with
A = 2πfIm. The R matrix used in the simulations and
the code for replicating experimental results can be found
in https://github.com/EricaSalvato/ADRMPC.
git. The applied disturbance d exhibited frequency char-
acteristics shown in Figure 3. Additionally, we assumed

¯
ui = −ūi = −10A for all i = 1, 2, . . . ,m and

¯
yi = −ȳi =

−2mm for all i = 1, 2, . . . , p. We run a simulation of 5 s
performing the proposed ADRMPC with a sampling-time
T = 1 × 10−4 s , β1 = 1.9136 , β2 = 9.1544 · 103 . The
control strategy (P3) was designed to minimize a quadratic
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O
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Fig. 4. (a) the 7 outputs in the ADRMPC simulation with respect to
their references values (thin black marked lines); (b) trend of all the 15
input provided by the ADRMPC during the simulation with respect to their
constraints (dotted lines)

cost function:

J =

H−1∑
i=0

(
z⊤1 (i)

1

2
Qz1(i) + u⊤

0 (i)
1

2
Ru0(i)

)
+ (z1(H)− yref)

⊤
QH (z1(H)− yref) ,

(22)

where H = 4, Q = Ip, R = 10−3Ip, and QH is the
solution of the discrete algebraic Riccati equation corre-
sponding to the discrete-time version of (9) with quadratic

cost
∞∑
i=0

z⊤1 (i)
1

2
Qz1(i) + u⊤

0 (i)
1

2
Ru0(i). The objective was

to achieve both reference tracking and constraint satisfaction.
In (P2), we sought to minimize ∥λ∥∞ .

The simulation results, as depicted in Figure 4, clearly
demonstrate the effectiveness of ADRMPC in reference
tracking while adhering to input and output constraints. In
Figure 5, the capability of ADRMPC in reducing distur-
bances, particularly in the 0 − 200Hz frequency band, is
highlighted. To assess the performance of ADRMPC in
comparison to a standard MPC output-feedback controller
[20], simulations were run for different values of the MPC
time horizon H ∈ 4, 8, 12, 16, 20. Results, presented in Table
IV, are based on three performance indices:

• The reduction of the standard deviation of the output
error std(y−yref) with respect to the standard deviation
of the disturbance std(d) during the simulation

STDred =
std(y − yref)

std(d)

• The reduction of the maximum value of the output error
max (|y − yref|) with respect to the maximum value of
the disturbance max(|d|) during the simulation

max (d)red =
max (|y − yref|)

max(|d|)
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TABLE I
PERFORMANCE INDICES VALUES OF ADRMPC (BLUE) VS. MPC (WHITE)

STDred max (d)red ||y − yref||1
H = 4 H = 8 H = 12 H = 16 H = 20 H = 4 H = 8 H = 12 H = 16 H = 20 H = 4 H = 8 H = 12 H = 16 H = 20

0.5290 0.5297 0.5301 0.5317 0.5340 0.5814 0.5767 0.5774 0.5818 0.5865 127.6176 128.7167 130.4902 132.5130 134.5785
0.8951 0.8951 0.8951 0.8951 0.8951 0.9059 0.9059 0.9059 0.9059 0.9059 266.5091 266.5109 266.5096 266.5046 266.5162
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Fig. 5. Magnitude spectrum of the first component of the output error
(orange) with respect to the magnitude spectrum of the first component of
the disturbance (blue) during the simulation.

• The norm-1 of the output error ||y − yref||1 during the
simulation.

In all three indices, better performance is indicated by lower
values. We can observe that ADRMPC outperforms the
standard output-feedback MPC in terms of all three indices
and for the different horizon values adopted during the
simulations.

V. CONCLUSIONS

This study proposes a closed-loop control solution for
MIMO over-actuated systems with uncertain output distur-
bances and partially known dynamics that integrates model
predictive control (MPC) and active disturbance rejection
control (ADRC) methodologies. The proposed approach
successfully ensures BIBO stability while simultaneously
satisfying the plant’s physical output and input constraints.
The effectiveness of the proposed approach has been tested
through extensive simulations performed on a simplified ver-
sion of a synchrotron. Notably, results highlight that our ap-
proach outperforms conventional output-feedback MPC tech-
niques, demonstrating superior noise reduction and reference
tracking accuracy. Further works could explore extending this
methodology to real-world implementations and integrating
adaptive elements to enhance adaptability to varying system
conditions and disturbances.
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