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Abstract— Scaled graphs allow for graphical analysis of
nonlinear systems, but are generally difficult to compute. The
aim of this paper is to develop a method for approximating
the scaled graph of reset controllers. A key ingredient in our
approach is the generalized Kalman-Yakubovich-Popov lemma
to determine input specific input-output properties of a reset
controller in the time domain. By combining the obtained
time domain properties to cover the full input space, an
over-approximation of the scaled graph is constructed. Using
this approximation, we establish a feedback interconnection
result and provide connections to classical input-output analysis
frameworks. Several examples show the relevance of the results
for the analysis and design of reset control systems.

I. INTRODUCTION

This paper is concerned with the development of a frame-
work for graphical analysis and design of reset control
systems. The development of reset controllers has a long
history starting with the introduction of the Clegg integrator
in 1958 [1]. A reset controller is a linear time-invariant (LTI)
system in which (part of) the states are reset to certain values
whenever conditions on the inputs, outputs, and states are
satisfied [2], [3]. It has long been observed that introducing
resets in an LTI control loop can overcome fundamental
performance limitations of LTI control systems [2], [4].

Reset controllers are often not so easily embraced by
control engineers in industry. This is largely due to the
lack of general analysis and design techniques for reset
control systems that comply with graphical methods through
Nyquist and Bode diagrams, which still largely dominate
the industrial (motion) control design practice today. Some
graphical methods based on frequency-domain techniques
exist for reset control system analysis [5], [6], [7], but these
methods are specific to the situation at hand and may lead to
conservative results. All in all, a generic analysis and design
framework is still missing.

In this paper, we aim towards the development of a generic
framework for graphical analysis and design of reset control
systems by making use of the scaled graph. Scaled graphs
have been introduced in [8], [9] in convex optimization, and
the theory has recently been extended in [10], [11], [12], [13]
for (incremental) input-output analysis of feedback systems.
In particular, these works establish a generalization of the
classical Nyquist stability theorem for LTI systems, and
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provide an elegant means for graphically verifying stability
margins for nonlinear systems. Given these possibilities, the
scaled graph seems to be a promising tool for graphical
analysis and design of reset control systems.

The scaled graph of a linear operator was characterized
in [14], and the scaled graph of an LTI system is related to
its Nyquist diagram via a convexification procedure under a
nonlinear change of coordinates [10], [14]. Unfortunately, a
practical problem remains in obtaining the scaled graph of
a nonlinear system as this requires characterizing the input-
output behaviour of the system for an infinite (uncountable)
number of possible inputs. At best, we can estimate the
scaled graph by ‘sampling’ it with a finite set of inputs
[12], or by using general input-output properties such as
L2-gain and/or passivity properties that are guaranteed to
hold for all possible inputs. The approximation that results
from both these approaches, however, may not accurately
reflect the actual scaled graph; either we under-estimate it,
thereby losing accuracy in the analysis, or we over-estimate
it, possibly making it too conservative. Currently, this forms
the main bottleneck for applying the scaled graph as a
practical tool for system analysis and design.

In view of the difficulties in computing and using the
scaled graphs of nonlinear systems in general, and reset
controllers in particular, this paper presents two main con-
tributions. In our first main contribution, we provide a
computational tool for estimating the scaled graph of a
reset controller. Key in our approach is the extension of
the generalized Kalman-Yakubovich-Popov (KYP) lemma
for LTI systems [19], [20], [21] towards the class of reset
control systems. Essentially, the generalized KYP lemma
allows for splitting up the space of input signals into smaller
subspaces of input signals, each to which we can associate
different input-output properties by solving sets of linear
matrix inequalities (LMIs). The idea bears some resemblance
to methods for determining ‘mixed’ properties of systems
as in [22], [23], [24], [11], [25]. Exploiting the generalized
KYP lemma in this context is new, and provides a different
avenue and perspective for characterizing ‘mixed’ properties
of nonlinear systems. For our second contribution, we use
the scaled graph estimates of reset controllers in formulating
an interconnection result that allows for graphical stability
analysis of (closed-loop) reset control systems. We connect
this result to integral quadratic constraints (IQCs) [26].

This paper is organized as follows. We begin by treating
the concepts of reset controllers, the scaled graph and the
generalized KYP in Section II. We present our first main
contribution in Section III in the form of a computational
tool for the scaled graph of a reset controller. Our second
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contribution is presented in Section IV, where we formulate
a theorem for graphical stability analysis of reset control
systems. Proofs of the main results and further details may
be found in the submitted journal version of this paper [27].
All results are supported by illustrative examples. The main
conclusions are summarized in Section V.

II. BACKGROUND AND MAIN IDEA

In this section, we review reset controllers, scaled graphs
and the generalized KYP lemma for LTI systems, and sketch
the main idea that we pursue in this paper.

A. Reset controllers

Throughout this paper we study reset controllers that can
be modelled as hybrid dynamical systems of the form

R :


ẋr(t) = Arxr(t) +Bru(t) if (xr(t), u(t)) ∈ F
xr(t

+) = Rxr(t) if (xr(t), u(t)) ∈ J
y(t) = Crxr(t) +Dru(t),

(1)
with states xr(t) ∈ Rn, input u(t) ∈ R, and output y(t) ∈ R
at time t ∈ R≥0 = [0,∞), and where xr(t

+) = lims↓t xr(s).
The matrix R defines the reset map, and the sets F and J
denote the flow and jump sets, which are considered here as

F =
{
ξ ∈ Rn+1 | ξ⊤Mξ ≥ 0

}
, (2a)

J =
{
ξ ∈ Rn+1 | ξ⊤Mξ ≤ 0

}
, (2b)

where ξ = [x⊤
r , u

⊤]⊤ and M = M⊤. The class of reset
controllers modeled as in (1), (2) encompasses well-known
reset controllers from the literature, such as the (modified)
Clegg integrator [1], [5], first-order reset elements (FORE)
[2], [3] and second-order reset elements (SORE) [15].

We let L2 denote the space of square-integrable functions
on the time axis [0,∞), with inner product and norm

⟨u, y⟩ :=
∫ ∞

0

u(t)y(t)dt, and ∥u∥ =
√
⟨u, u⟩.

We make the following standing assumption on the open-
loop reset controller R in (1).

Assumption 1. The open-loop reset controller R in (1) is
L2-stable, in the sense that for initial conditions xr(0) = 0,
inputs u in L2 are mapped to states xr, time derivatives ẋr

(excluding jumps), and outputs y all in L2, and there is no
Zeno behaviour. We write then y ∈ R(u).

B. Scaled graphs

We are primarily interested in characterizing the input-
output behaviour of reset controllers in (1) through the notion
of the scaled graph, aiming towards a graphical tool for reset
control system design and analysis. For defining the scaled
graph of a reset controller, we follow the ideas from [10],
although we restrict our definition to a non-incremental form.

Definition 1. The scaled graph of the reset controller R in
(1) with initial condition xr(0) = 0 is defined as

SG(R) :=
⋃

u∈L2

z(u), (3)

where the set of complex numbers z(u) is given by

z(u) :=

{
∥y∥
∥u∥

e±j∠(u,y) | u ̸= 0, y ∈ R(u)

}
(4)

with

∠(u, y) := arccos

(
⟨u, y⟩
∥u∥∥y∥

)
∈ [0, π], (5)

and z(0) = {0}.

It is shown in [10] that, when R is linear and time-
invariant, its scaled graph contains its Nyquist diagram.
Scaled graphs of passive systems lie in the left-half plane,
and the maximum modulus of the scaled graph gives an L2-
gain bound for the system.

Estimating the scaled graph via the mentioned L2-gain
and/or passivity approaches could be restrictive, as we can
already see for LTI systems. For instance, when exciting a
second-order LTI mass-spring-damper system with a suffi-
ciently low-frequency sinusoidal input, the system behaves
as a passive system as the output lag is less than 90 degrees.
On the other hand, when exciting the system with a high-
frequency sinusoidal input, passivity is violated but the
amplitude of the output is small. Hence, these systems are
not passive, nor do they possess a small L2-gain bound for
every possible input. This example suggests that, instead of
looking for input-output properties that hold for all possible
inputs, it may be useful to consider input-output properties
for the system that only hold true for specific inputs (see also
the work on ‘mixed’ passive/small-gain systems in, e.g., [22],
[23]). In this way, we may be able to find estimates for the
scaled graph that better reflect the true input-output nature of
the nonlinear system. In general, it is not immediately clear
how to characterize input-specific input-output properties for
generic systems, but for the class of LTI systems this can
be done through application of the generalized KYP lemma
[19], [20], which we discuss next.

C. Generalized KYP lemma

Consider an LTI system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = 0, (6)

with x(t) ∈ Rn the state, and u(t) ∈ R the input, for t ∈
R≥0. The generalized KYP lemma establishes equivalences
between a set of LMIs and input-output properties of the
system (6) expressed in time domain that only hold true for
specific inputs that excite the system in a specific manner.

Theorem 1 ([20, Theorem 3]). Consider the LTI system (6)
and let a Hermitian matrix Θ, and a real parameter λ, be
given. Assume that A is Hurwitz and (6) is controllable.
Then, the following statements are equivalent:

1) There exist Hermitian matrices P and Q that satisfy
the LMIs Q ⪰ 0 and[

A B
I 0

]∗ [−Q P
P λ2Q

] [
A B
I 0

]
+Θ ⪯ 0. (7)
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2) The time-domain inequality∫ ∞

0

[
x(t)
u(t)

]∗
Θ

[
x(t)
u(t)

]
dt ≤ 0 (8)

holds for all solutions of (6) with u ∈ L2 such that∫ ∞

0

ẋ(t)⊤Qẋ(t)dt ≤ λ2

∫ ∞

0

x(t)⊤Qx(t)dt. (9)

The result in Theorem 1 provides a computational tool for
assessing input-specific properties of the LTI system in (6).
The specific inputs are characterized through the inequality
in (9). This inequality plays an important role as it essentially
allows for splitting up the set of all input signals into two
sets. That is, given a matrix Q and a number λ, simply stated
there is a set of inputs that satisfy (9) with Q ⪰ 0 (or in other
words with ‘≤’) and there is a set of inputs that satisfy (9)
with −Q ⪰ 0 (or in other words with ‘≥’). The union of
these sets covers the full input space. Setting Q = 0 recovers
the classical KYP lemma since then (9) holds for all inputs.

The role of the parameter λ in (9) can be better understood
by re-writing (9) in the frequency-domain using Parseval’s
equality, that is∫ λ

0

(ω2 − λ2)x̂∗Qx̂dω ≤
∫ ∞

λ

(λ2 − ω2)x̂∗Qx̂dω,

where x̂ is the Fourier transform of x. The inequality roughly
states that the content of x̂ in the range |ω| ≤ λ is smaller
than that in the remaining frequency range. The value of λ
essentially characterizes how much certain frequency content
(modes) of the system are excited by the corresponding
inputs that satisfy (9).

The main idea pursued in this paper is to generalize the
LMI conditions in Theorem 1 posed for LTI systems towards
reset control systems, to provide a computational tool for ver-
ifying certain input-specific input-output properties in time-
domain. In turn, combining these input-specific properties to
cover the full input space (i.e., by considering both Q and
−Q) then allows for bounding the scaled graph of a reset
controller through a non-convex set.

III. MAIN RESULT: SCALED GRAPH COMPUTATIONS

In this section we will formalize the idea described in
the previous section and present our first main result in the
form of a numerically tractable method for computing an
overapproximation of the scaled graph of the reset controller.

A. Input-specific time-domain properties

The following theorem provides sufficient conditions for
computing input-specific time-domain properties of reset
controllers, and is the crucial step in our procedure for
constructing the scaled graph.

Theorem 2. Consider the open-loop reset controller (1),
(2) and let Hermitian matrices Θ and Q ⪰ 0, and a real
parameter λ be given. Assume that Ar in (1) is Hurwitz and

xr(0) = 0. Suppose there exist real numbers τ ̸= 0 and
σ ≥ 0 and a Hermitian matrix P that satisfy the LMIs[

Ar Br

I 0

]∗ [−τQ P
P τλ2Q

] [
Ar Br

I 0

]
+Θ+ σM ⪯ 0,

(10)

R⊤PR− P ⪯ 0, (11)

where the matrices R and M are given in (1) and (2),
respectively. Then, the time-domain inequality∫ ∞

0

[
xr(t)
u(t)

]∗
Θ

[
xr(t)
u(t)

]
dt ≤ 0 (12)

holds for all solutions of (1), (2) with u ∈ L2 such that

τ

∫ ∞

0

ẋr(t)
⊤Qẋr(t)dt ≤ τλ2

∫ ∞

0

xr(t)
⊤Qxr(t)dt. (13)

Note that τ in Theorem 2 can take positive or negative
values, and essentially splits up the input space as the
sign of τ determines whether −τQ is positive or negative
definite (see also the discussion after Lemma 1). Moreover,
τ provides an additional decision variable in the LMIs.

For assessing input-specific input-output properties of the
reset system in (1), we select Θ in (10) to be of the form

Θ =

[
Cr Dr

0 I

]∗
Π

[
Cr Dr

0 I

]
, with Π =

[
a b
b c

]
(14)

where a, b, c ∈ R can be chosen to represent properties such
as passivity (a, b, c) = (0,−1, 0) and finite-gain (a, b) =
(1, 0), c < 0 [16], [17]. We assume that a ≥ 0 and det(Π) =
ac−b2 < 0 for reasons that become clear in the next section.

B. Connections to the scaled graph

The matrix Π in (14) directly relates to the scaled graph
in Definition 1. To see how, note that we may write∫ ∞

0

[
x
u

]∗
Θ

[
x
u

]
dt =

∫ ∞

0

[
y
u

]⊤
Π

[
y
u

]
dt

= a∥y∥2 + 2b⟨u, y⟩+ c∥u∥2.
(15)

Recalling the definition of the complex number z(u) in (4),
we find that Re {z(u)} = ⟨u, y⟩/∥u∥2. Then, assuming u ̸=
0 and dividing (15) by ∥u∥2, (15) can be rewritten as a|z|2+
2bRe {z}+c. When (15) is non-positive, i.e., (12) holds, this
inequality defines a region in the complex plane given by

S(Π) =

{
z ∈ C

∣∣∣∣[z1
]∗

Π

[
z
1

]
≤ 0

}
. (16)

Assuming a ≥ 0 and det(Π) = ac − b2 < 0, the region
described in (16) is convex and represents the inside of a
(shifted) circle centred on the real axis, or a half plane.

The region S(Π) in (16) corresponds to a single input-
output property characterized by Π, that holds for inputs
satisfying (13). It is possible that for these inputs, other
properties, characterized by different choices for Π may hold
as well. For example, a system could behave passive for
some signals and at the same time admit a small-gain for

1468



other signals. Given λ ∈ R and Q ⪰ 0, we define the set of
matrices Π that verify the LMIs (10), (11) with τ > 0 by

Π+(λ,Q) :=
{
Π ∈ S2×2 | (10), (11) feasible

}
. (17)

In a similar way we can define the set Π−(λ,Q) when the
LMIs are satisfied with τ < 0. Through these sets, we can
find a convex region in the complex plane that, given λ, and
Q characterizes the input-output properties for those inputs
satisfying (13). In particular, this region is given by

S+(λ,Q) =
⋂

Π+∈Π(λ,Q)

S(Π). (18)

We define S−(λ,Q) in a similar manner. Equipped with the
sets in (18) that we can find by application of Theorem 2,
we can find an over-approximation of the scaled graph of the
reset system R in (1) as formalized in the next main result.

Theorem 3. Given λ ∈ R and Q ⪰ 0. The scaled graph of
the reset system R in (1) satisfies

SG(R) ⊆ S−(, λ,Q) ∪ S+(λ,Q), (19)

where S±(λ,Q) is defined in (18).

Proof. We need to show that S−(λ,Q) ∪ S+(λ,Q) covers
the full input space. This is immediate from (13) as any input
satisfies (13) for either τ > 0 or τ < 0.

It is important to note that for estimating different regions
of the scaled graph we use a common matrix Q (up to some
scaling with τ ) to guarantee that (13) covers the full input
space. Using a common matrix Q, however, may not be
necessary and could introduce conservatism. Relaxing this
constraint is considered for future work.

We conclude this section with an example demonstrating
applicability of the computational tools for estimating the
scaled graph of a reset controller.

Example 1. Consider a second-order reset element modelled
as in (1) with system matrices given by[

Ar Br

Cr Dr

]
=

 −1 0 1

1 −1 0

0 1 0

 , (20)

and with the reset map and resetting condition given by

R =

[
0 0
0 0

]
, and M =

[
M11 0

0 0

]
=

 0 1 0

1 0 0

0 0 0

 . (21)

This element represents the series interconnection of two
first-order low-pass filters for which the states are reset to
zero on the basis of the condition x⊤M11x ≥ 0. A Nyquist
plot of the base linear system, i.e., the system without resets,
is shown in Fig. 1.

We will assess passivity and small-gain properties of this
reset element by considering matrices Π of the form

Πpassivity =

[
0 −1
−1 0

]
, and Πgain =

[
1 0
0 −γ2

]
. (22)

First, we want to test whether these properties hold for all
inputs u. Recall that this is guaranteed by feasibility of the
LMIs in (7)–(11) for Q = 0. It turns out that for Πpassivity no
feasible solution exists, and thus the system does not satisfy
the sufficient conditions (7)–(11) for passivity. For Πgain a
feasible solution was found with γ = 1. On the basis of this
result, we conclude that the scaled graph is contained within
the unit circle, indicated by the dashed black circle in Fig. 1.

Next, we test whether the passivity and small-gain prop-
erties hold for specific inputs. For this purpose, we solve the
LMIs in Theorem 2 with a common value for λ = 0.9868
and Q =

[
0.250 0.267
0.267 0.992

]
. It turns out that for τ = 1 > 0

and τ = 10−7 > 0 the LMIs are feasible for resepctively
Πpassivity and Πgain with γ = 1, indicating that the reset
system is passive with finite gain for all inputs satisfying
(13) with τ > 0. No feasible solution is found with Πpassivity
for τ < 0, but we do find a solution for Πgain with γ = 0.51
and with τ = −0.5 < 0. Hence, for inputs satisfying (13)
with τ < 0, the system is not passive, but does possess a
small-gain property. This result is not surprising given the
characteristics of the base linear system, which possesses
the same mixed passivity/small-gain property. Finally, we
conclude that the scaled graph of the reset system is con-
tained within the non-convex region {z ∈ C | |z| ≤ 0.51} ∪
{z ∈ C | |z| ≤ 1 and Re {z} ≥ 0}, which is illustrated in
Fig. 1 in light grey. Note that this region is significantly
smaller than the region obtained with only the small-gain
result, i.e., the dashed black circle in Fig. 1.

Im

Re

1−0.51

Fig. 1: Input-output characterizations of the reset controller.
The scaled graph of the reset controller is bounded by the
light grey region. The Nyquist plot of the base linear system
is shown in black, and its scaled graph in dark grey.

IV. MAIN RESULT: FEEDBACK STABILITY ANALYSIS

In this section, we present our second main contribution
in the form of a theorem for assessing stability of the
closed-loop system depicted in Fig. 2, where G represents a
(possibly nonlinear) plant, and R is a reset element (1).

In the remainder of this section, stability is understood
in the sense of L2-stability [17], [18], i.e., for zero initial
states, inputs u in L2 are mapped to outputs y in L2. The
feedback interconnection of Fig. 2 is said to be well-posed
if the map u 7→ e is uniquely defined on all of L2 and is
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causal. We define inversion in the complex plane via the
transformation rejϕ → (1/r)ejϕ, and the distance between
two sets A,B ⊆ C by dist(A,B) = infa∈A,b∈B |a− b|.

A. A general stability result

G

R

�

yu e

Fig. 2: Interconnection of a plant G and a reset element R.

Theorem 4. Consider the negative feedback interconnection
depicted in Fig. 2 and suppose that G and R are L2-stable,
as guaranteed by Assumption 1. Suppose that, for all µ ∈
(0, 1], the feedback interconnection of G and µR is well-
posed. Moreover, suppose that for some λ the set S̄λ :=
S−(λ,Q)∪S+(λ,Q) ⊆ C is non-empty. If there exists r > 0
such that, for all µ ∈ (0, 1],

dist(S̄−1
λ ,−µSG(G)) ≥ r, (23)

then the feedback interconnection is L2-stable with an L2

gain bound of 1/r.

Condition (23) in Theorem 4 essentially states that the
scaled graph of G does not intersect with the region in the
complex plane defined by −S̄−1

λ . This condition allows for
a graphical test, as we demonstrate in the next example.

Example 2. Consider the interconnection in Fig. 2, where
G is a stable LTI system described by the transfer function

G(s) =
14s+ 8

s5 + 13s4 + 58s3 + 96s2 + 34s+ 4.2
(24)

and the reset controller is defined earlier in Example 1, that
is, R is modelled as in (1) with system matrices given by (20)
and (21). To test stability of the feedback interconnection
we plot both −S̄−1

λ (which corresponds to the inverse of
the grey region in Fig. 1) and the scaled graph of G in
(24) in the complex plane. The result is shown in Fig. 3
and demonstrates that condition (23) is satisfied, hence the
closed-loop system is stable. Note that there is a gap between
the scaled graphs, indicating a robustness margin and finite
L2-gain of the closed loop.

Stability could not be verified solely on the basis of the
scaled graph resulting from the small-gain property (which
would require ∥G(jω)∥ < 1 for stability) nor on the basis
of the passivity property, as neither R nor G are passive.
Hence, by using a scaled graph approximation based on
input specific input-output properties, we are able to relax
the classical small-gain/passivity conditions.

B. Connections to IQCs

Scaled graphs are intimately related to the framework of
IQCs. The final contribution in this paper, Theorem 5 below,
establishes an initial connection between Theorem 4, and

Fig. 3: Graphical test for verifying condition (23) in Theo-
rem 4. The region −S̄−1

λ is indicated in dark grey. The scaled
graph of G in (24) is indicated in light gray. Note that this
region is bounded by the Nyquist curve of G, shown in black.

IQCs for LTI systems whose scaled graphs lie within their
Nyquist diagrams. We begin by characterizing this property.

Definition 2. Let G(s) be the transfer function of a stable
LTI system. We say that G(s) has a Nyquist-bounded scaled
graph if, for all 0 ≤ θ ≤ π,

argmax
z∈SG (G),
arg z=θ

|z| ∈ {G(jω)}ω∈R. (25)

Sufficient conditions for an LTI transfer function to have
a Nyquist-bounded scaled graph are given in [27] in terms
of conditions on the curvatures of the Nyquist diagram.

Theorem 5. Consider the feedback interconnection shown
in Fig. 2 where G is stable and LTI. Suppose that G has
a Nyquist-bounded scaled graph and that for some λ and
Q ⪰ 0 the sets Π±(λ,Q) in (17) are non-empty. Let the set
−S̄−1

λ be contained in the set {z ∈ C | f(z) ≥ 0}, with
f : C → R a (non-smooth) function. If the inequality

f(G(jω)) < 0 (26)

is satisfied for all ω ∈ R ∪ {∞}, then the feedback
interconnection of G and R is L2-stable.

To better understand how the result in Theorem 5, specif-
ically condition (26), relates to input specific IQCs, we first
consider an illustrative example.

Example 3. Consider again the interconnection in Fig. 2
with G given in (24) and R is given by (1) with (20),
(21). Recall that for this reset controller we found mixed
passivity/small-gain properties characterized through the ma-
trices in (22). For this example, it can be seen from Fig. 3
that the region −S̄−1

λ is contained in {z ∈ C | f(z) ≥ 0},
where f is given by

f(z) =

{
z2 − 1.96 for all ∠z ∈ (−π/2, π/2),

z2 − 1 for all ∠z ̸∈ [−π/2, π/2].
(27)

Since the scaled graph of G is bounded by its Nyquist curve
(see Fig. 3), condition (26) in Theorem 5 can be formulated
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in an IQC-like manner, that is

|G(jω)| < 1.96 for all ω ∈ Ω1, (28a)
|G(jω)| < 1 for all ω ∈ Ω2, (28b)

where Ω1 = {ω ∈ R ∪ {∞} | Re {G(jω)} ≥ 0} and Ω2 =
{ω ∈ R ∪ {∞} | Re {G(jω)} ≤ 0}. Here we indeed recog-
nize the input-dependent nature of the constraints. The
frequency region Ω1 relates to those inputs that excite the
LTI system G in a manner such that it behaves as a passive
system, and the constraint in (28a) accounts for situations
where R is not passive. Similarly, the region Ω2 relates
to inputs that excite the LTI system G in a manner that it
violates passivity but still admits small-gain behaviour, and
condition (28b) accounts for large-gain behaviour of the reset
controller R. In comparison, the classical small-gain IQC
requires ∥G(jω)∥ < 1 for all ω ∈ R∪{∞}, which is clearly
violated as can be seen from the Nyquist curve of G in Fig. 3.

As demonstrated in the previous example, in cases where
S±(λ,Q) consist of the finite intersection of circles and
half-planes, the function f(z) can, in fact, be written as a
piecewise quadratic function of z. Then, condition (26) can
be recast as a set of quadratic constraints on G(jω) each of
which only need to hold for some frequency range, instead of
for all frequencies. This reflects the input-dependent nature
of the integral time-domain inequalities in (12) that are used
for constructing the scaled graph of reset controllers.

V. CONCLUSIONS

We present a computational tool for estimating the scaled
graph of reset controllers. Key in our approach is the use of
the generalized KYP lemma to estimate input-specific input-
output properties of the reset controller in the time domain.
Each property maps to a region in the complex plane that
partly covers the scaled graph of the reset controller. By
combining all properties, we obtain a possibly non-convex
over-approximation of the scaled graph that is used in an
interconnection result and supports graphical robust stability
analysis of reset control systems.

In this paper, we have restricted our attention to the
class of single-input single-output reset controllers, but we
expect that the ideas apply to a much broader class of
nonlinear systems, including multivariable systems, unstable
systems and systems with time delay. Extending the results,
tightening the estimates of the scaled graphs, for instance
by allowing the matrix Π in (14) to be complex valued, and
incremental analysis will be topics for future research.
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