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Abstract— This paper presents a direct transcription frame-
work for optimising the operation of gyroscope-based iner-
tial wave energy harvesters (WEH). In contrast to currently
adopted procedures, we introduce a tailored optimal map
as part of the total flywheel speed of the WEH, designed
to maximise energy absorption. Since the target optimisation
problem is infinite-dimensional, we derive a direct transcription
process accordingly, exploiting tools from the field of moment-
based theory. Following a formal derivation, the proposed
framework is applied to a gyropendulum-based system, offering
a numerical appraisal of the main characteristics underlying the
methodology. We show that the procedure offered within this
study is able to significantly enhance power absorption, hence
contributing towards optimal energy-maximising operation of
this family of systems.

I. INTRODUCTION

The energy available in ocean waves has a massive po-
tential towards effective decarbonisation, with estimates of
available energy of up to 30,000 TWh/year [1]. As a matter of
fact, recent efforts in exploitation of this resource have shown
that wave energy harvesters (WEH), often also referred to as
blue energy harvesters, are expected to replace traditional
batteries in offshore applications [2]. These devices have the
potential to play a significant role in meeting the growing
global demand for clean and sustainable energy, and are
expected to be exploited in a wide range of applications,
including desalination and water treatment systems, as well
as powering autonomous underwater vehicles, and sensor
platforms used for ocean monitoring and data collection (see
e.g. [3], [4]).

Internal reaction mass (IRM) WEH use the mechanical
interaction between a floater and a rigid body to generate
internal reaction forces, which can be of a different nature,
e.g. inertial or elastic, having the advantage of a being fully
enclosed absorption systems. Standard IRM devices can be
generally classified in pendulum-based (such as e.g. [8]–
[10]) and gyroscopic-based (see for instance e.g [11], [12])
systems. A particularly novel wave absorption concept has
been presented for large-scale energy conversion in [16],
which introduces the so-called swinging omnidirectional
wave energy converter, referred to as SWINGO. This system
is composed of a floating hull enclosing a gyropendulum de-
vice, combining pendulum and gyroscopic effects, exploiting
both functionalities to activate an electromagnetic conversion
system. An optimal operation of the gyropendulum is, natu-
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rally, fundamental to achieve reliable and efficient wave en-
ergy absorption, and enhance the operational performance of
the overall WEH, hence unleashing its maximum potential.

Motivated by this, we present, in this paper, an optimi-
sation framework for the optimal operation of the flywheel
speed of a small-scale SWINGO device, adopted as a repre-
sentative benchmark study for the family of IRM harvesting
systems. In particular, in contrast to the state-of-the-art,
which operates using a constant (and hence suboptimal)
flywheel velocity (see e.g. [11]), we propose to incorporate
an optimal speed regime as a function of the input wave
period, computed based on an associated optimisation prob-
lem, which is formulated in an infinite-dimensional space.
In order to transcribe such a problem into a tractable finite-
dimensional nonlinear program, we exploit tools from so-
called moment-based theory [17], leveraging the steady-state
properties of the WEH system under analysis. We show that
moment-based methods, which have been recently applied
with success for optimal control of wave energy systems in
e.g. [18], [19], provide a tailored tool for the optimisation
of the operation regime of IRM WEH systems, showing
significant improvements with respect to the methodology
currently adopted within the literature.

The reminder of this paper is organised as follows.
Section I-A introduces the main notation used within this
study, while Section II briefly recalls the fundamentals of
modelling for IRM WEH systems. Section III is the core of
this paper, providing a formal derivation of the proposed
moment-based optimisation methodology. Finally, Section
IV offers a numerical appraisal of the main characteristics
of the proposed technique with application to the SWINGO
system, while Section V encompasses the main conclusions
of this paper.

A. Notation and conventions

R+ denotes the set of non-negative real numbers. C<0

denotes the set of complex numbers with negative real part.
The span of the set X = {xi}ki=1 ⊂ Z , where Z is a
vector space over a field F, is denoted as span(X). If Z
is finite-dimensional, its dimension is denoted by dim(Z ).
The symbol 0 stands for any zero element, dimensioned
according to the context, while In denotes the identity in
Cn×n. The spectrum of a matrix A ∈ Cn×n is denoted
as λ(A). Given two functions f1 and f2 in L2(Ξ) = {f :
Ξ→ R |

∫
Ξ
|f(τ)|2dτ < +∞}, their standard inner-product

operation is 〈f1, f2〉Ξ =
∫

Ξ
f1f2 dt. The notation enj ∈ Rn

is used for a vector with zeros everywhere but its j-th entry,
which is set to 1 (e.g. e3

1 = [1 0 0]T).
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II. MODELLING FUNDAMENTALS

SWINGO, schematically depicted in Figure 1, consists of
an axisymmetric floating hull containing a gyropendulum
system linked to a corresponding power take-off (PTO)
axis, commonly termed ε-axis, that converts the associated
gyropendulum motion into electric energy. Throughout this
paper, we consider that the hull is constrained to move
in pitch (δ), being the primary degree-of-freedom (DoF)
for wave energy absorption, due to the positioning of the
gyropendulum axis [16].

Fig. 1. Schematic illustration of the SWINGO system, including hull and
gyropendulum mechanism.

The dynamics associated with SWINGO and, in general,
any IRM WEH, can be modelled in terms of a set of
differential equations, written as a continuous-time, finite-
dimensional, dynamical system Σ, i.e.

Σ :


Ipδ̈ +Hrκ+ shδ − Jφε̇ = fe,

Ig ε̈+ kpε+ Jφδ̇ − fPTO(ε̇) = 0,

κ̇− Frκ−Grδ̇ = 0,

(1)

where δ(t) ∈ R, denotes the (rotational) displacement in
pitch, and ε(t) ∈ R denotes the gyropendulum precession
angle. The wave excitation torque, i.e. the external uncon-
trollable input due to the incoming wave field, is denoted
by fe(t) ∈ R. The state-vector κ(t) ∈ Rnr , with nr ∈ N,
is used to denote the internal dynamics associated with
radiation (memory dissipation) effects acting on the hull,
fully characterised by the set of matrices (Fr, Gr, H

T
r ) ∈

Rnr×nr × Rnr × Rnr . Note that λ(Fr) ⊂ C<0 due to the
passivity property associated with radiation effects (see [20]).

The parameter sh ∈ R+ is the so-called hydrostatic
stiffness, characterising hull restoring effects in pitch, while
kp ∈ R+ is the gyropendulum mechanism stiffness. The
set of parameters {Ip, J, Ig} ⊂ R+ denotes the inertia of
the device in pitch (including the so-called added-inertia at
infinite-frequency [6]), gyroscopic inertia, and total moment
of inertia in the ε-axis, respectively. The PTO moment fPTO
is chosen here based upon a standard damping absorption
law [21], i.e.

fPTO(t) = −bPTOε̇(t), (2)

with bPTO ∈ R+ designed according to the sea-state condi-
tion, based on the principle of maximum power transfer (see
the discussion provided in Section IV-A). Note that, with this
selection of fPTO, the absorbed (mechanical) energy by the
harvester, within an interval Ξ = [0, Tw] ⊂ R, is given by

E(ε̇) =
1

Tw

∫
Ξ

p(t)dt =
1

Tw

∫
Ξ

bPTOε̇(t)
2dt. (3)

with p(t) ∈ R+ the instantaneous mechanical power.
Finally, the map φ : R+ → R, t 7→ φ(t), denotes the

gyropendulum flywheel speed, which is the core concern of
this paper. In particular, within the literature, φ(t) is always
kept to a constant value φ0 ∈ R+, and hence not fully
exploited to improve the performance of the harvester. In
the light of this, within this study, we consider the map φ
to be composed of a superposition of φ0 and a user-defined
zero-mean function ψ ∈ L2(Ξ), i.e.

φ(t) = φ0 + ψ(t), (4)

where ψ is to be optimised to maximise the mechanical
energy absorption E in (3).

Aiming to provide a description of system Σ compatible
with moment-based procedures (see Section III), we derive,
in the following, a state-space representation of (1). Let x =
[δ, δ̇, ε, ε̇, κT]T, x(t) ∈ Rn, with n = 4 + nnr , be the state-
vector associated with the SWINGO system. Define

A0 =


0 1 0 0

− shIp 0 0 Jφ0

Ip

0 0 0 1

0 −Jφ
0

Ig
− kp

Ig
− bPTO

Ig

 , B0 =


0
1
Ip

0
0

 ,

gψ(x, ψ) =


0
Jψ
Ip
x4

0

−JψIg x2

 .
(5)

Exploiting the definitions provided in (5), a state-space
representation for system Σ can be readily written as

Σ :
{
ẋ = f(x, ψ, fe) = Ax+Bfe + g(x, ψ), (6)

where the pair of matrices (A,B) ∈ Rn×n × Rn, and
mapping g ∈ C∞, are given by the expressions below:

A =

[
A0 −B0Hr
Gre

4
2 Fr

]
, B =

[
B0

0

]
, g(x, ψ) =

[
gψ(x, ψ)

0

]
.

(7)

Remark 1. Note that the map g in (7) is such that g(0, 0) = 0
and ∂g(0, 0)/∂x = 0.
Remark 2 (Local stability). Via Remark 1, it is straightfor-
ward to check that (x, ψ, fe) = (0, 0, 0) is an equilibrium
point for ẋ = f(x, 0, 0). In fact, note that the Jacobian
linearisation of Σ about the zero equilibrium is

∂Σ : {ẋ = Ax+Bfe, (8)

where λ(A) ⊂ C<0 for any physically meaningful values for
the parameters involved in the definition of the SWINGO
system, and hence the zero equilibrium of (6) is locally
exponentially stable in the Lyapunov sense.
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III. OPTIMAL FLYWHEEL OPERATION VIA
MOMENT-BASED THEORY

Within this section, we derive a methodology to optimise
the flywheel velocity φ in (4), via the proposed mapping ψ,
exploiting so-called moment-based theory [19]. To achieve
this objective, we begin by providing a formal definition of
the optimisation problem (P ) considered to compute ψ: For
a given wave excitation torque fe, and mean velocity φ0

in (4), find a zero-mean mapping ψopt which optimises the
absorbed energy for the WEH as defined in (3), i.e.

(P ) : ψopt = arg max
ψ∈L2(Ξ)

E(en4x),

subject to:
ẋ = Ax+Bfe + g(x, ψ),

ψ ∈ [−ψlim, ψlim] ⊂ R, ∀t ∈ Ξ,

(9)

where the value ψlim denotes the maximum admissible vari-
ation for ψ. Note that problem (P ) in (9) is, effectively,
carried over an infinite-dimensional space, so an appropri-
ate transcription process is required, in order to generate
an associated finite-dimensional nonlinear program. This is
performed, within this paper, employing tools from moment-
based theory, and exploiting steady-state properties of the
WEH under analysis.

In particular, following moment-based transcription [19],
we begin by expressing the external (uncontrollable) input
fe in terms of an associated implicit form description, i.e. an
autonomous continuous-time signal generator G, defined as

G :



υ̇ = Sυ,

fe = Leυ,

S =

[
0 ωe

−ωe 0

]
,

υ(0) = υ0,

(10)

where the triple of matrices (S,LT
e , υ(0)) ∈ R2×2×R2×R2

is minimal. Note that minimality of (S,LT
e , υ(0)) implies

observability of (S,LT
e ) and reachability (i.e. excitability

[22]) of the pair (S, υ(0)). The wave frequency ωe is defined
in terms of the associated wave period Tw, i.e. ωe = 2π/Tw.

Remark 3. While ‘regular’, i.e. monochromatic, excitation
inputs are considered within this paper, a polychromatic
counterpart can be obtained straightforwardly, by changing
the eigenstructure of the matrix S in (10) accordingly (see
[19]).

Even though the input wave torque is considered to be
monochromatic, the corresponding optimal flywheel opera-
tion map ψ is not, in general, a monochromatic function.
In order to achieve a suitable representation of ψ in (4) in
terms of an implicit form description, we define the so-called
extended signal generator G̃, which essentially incorporates
G while ‘extending’ its definition (see Remark 4) to a suitable

higher dimensional space, i.e.

G̃ :



Υ̇ = S̃Υ,

fe =
[
Le 0

]
Υ = L̃eΥ,

ψ = L̃ψΥ,

S̃ = S ⊕

(
ν⊕
k=2

[
0 kωe

−kωe 0

])
,

L̃e =
[
Le 0

]
,

Υ(0) =
[
υ0 Υ0

]
,

(11)

where the pair of matrices (S̃,Υ(0)) ∈ Rq×q × Rq is
excitable, and q = 2(1 + ν).
Remark 4. System (11) is an extension of (10) in the
following sense. Let X = span({υ1, υ2}) and X̃ =
span({Υi}qi=1). It is straightforward to see that λ(S) ⊂ λ(S̃)
and, given the excitability condition on the pairs (S, υ(0))

and (S̃,Υ(0)), X ⊂ X̃ ⊂ L2(Ξ) with dim(X ) = 2 <

dim(X̃ ) = q. Furthermore,

X = span({cos(ωet), sin(ωet})),
X̃ = span({cos(kωet), sin(kωet)}νk=1),

(12)

so that G̃ ‘extends’ G by adding ν harmonic functions of
the fundamental frequency ωe to the state-space description
associated with such a signal generator.
Remark 5. Note that fe, originally written in terms of the
implicit form (10), is defined in terms of G̃ by simply using
a corresponding inclusion operator, i.e. the map R2 ↪−→ Rq :
Le 7→ L̃e = [Le 0].

Given the nature of the extended signal generator G̃, which
generates both bounded and Tw-periodic mappings fe and
ψ, and the local exponential stability properties of the zero-
equilibrium of the VEH system Σ (see Remark 2), there
exists [23] a unique locally defined mapping π : Rq → Rn
which solves the partial differential equation

∂π(Υ)

∂Υ
S̃Υ = f(π(Υ), L̃ψΥ, L̃eΥ), (13)

such that the steady-state response xss of system (6), for a
given trajectory Υ(t) of the signal generator (11), is fully
characterised in terms of π, i.e. xss(t) = π(Υ(t)).

Following [24], we propose a candidate approximate so-
lution π(Υ) ≈ π̃(Υ) = ΠΥ for equation (13), i.e. an
approximation of π in terms of the q-dimensional space
X̃ generated by G̃. The computation of Π, for a given
trajectory Υ(t), can be performed following a Galearkin-like
procedure, where an associated residual map R is defined:

R : ΠS̃Υ−AΠΥ−BL̃eΥ− g(ΠΥ, L̃ψΥ), (14)

and minimised accordingly by orthogonal projection onto the
approximation space X̃ , i.e.

R̃ : 〈R,ΥT〉Ξ = 0. (15)

Via direct algebraic manipulation, (16) can be brought to a
nonlinear set of algebraic equations in compact form, i.e.

R̃ : ΠS̃ −AΠ−BL̃e − g̃(Π, L̃ψ)P−1 = 0, (16)
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where

P = 〈Υ,ΥT〉Ξ ∈ Rq×q,
g̃(Π, L̃ψ) = 〈g(ΠΥ, L̃ψΥ),ΥT〉Ξ ∈ Rn×q,

(17)

and λ(P) /∈0 due to the excitability of (S̃,Υ(0)) [22].
Remark 6. Existence of solutions for equation (17) is always
guaranteed for a sufficiently large dimension q in (11).
Furthermore, π̃(Υ(t)) → π(Υ(t)) = xss(t) as q → ∞ (see
[24]), i.e. the quality of the approximation π̃ can be directly
controlled by the dimension of G̃.

Direct substitution of the candidate steady-state solution
x 7→ xss = π̃(Υ) in the objective map (3) yields

E(en4 π̃(Υ)) =
bPTO

Tw

∫
Ξ

(en4 ΠΥ)(en4 ΠΥ)Tdt

=
bPTO

Tw
(en4 Π)

(∫
Ξ

ΥΥTdt
)

(en4 Π)T,

=
bPTO

2
(en4 Π)(en4 Π)T,

(18)

which is fully parameterised in terms of the solution Π
associated with the set of equations (16).

Finally, by exploiting the moment-based equations (16)
and (18), the infinite-dimensional optimisation problem (9)
can be transcribed to a finite-dimensional nonlinear program,
i.e.

(̃P ) : ψopt =L̃opt
ψ Υ,

L̃opt
ψ = arg max

L̃T
ψ∈Rq

bPTO

2
(en4 Π)(en4 Π)T,

subject to:

ΠΥ−AΠ−BL̃e − g̃(Π, L̃ψ)P−1 = 0,

L̃ψΥ ∈ [−ψlim, ψlim] ⊂ R, ∀t ∈ TΞ,

(19)

where the set TΞ = {ti}Ñi=1 ⊂ Ξ, with Ñ > q, Ñ ∈
N, is a set of collocation points, uniformly distributed in
Ξ, used to enforce the flywheel operational constraints in
terms of the state-vector Υ. Note that, as expected from
the transcription procedure, problem (̃P ) in (19) is carried
over the q-dimensional space Rq , as opposed to problem (P )
in (19), which is defined over L2(Ξ). Problem (19) can be
solved using standard optimisation routines, e.g. sequential
quadratic programming methods [25].

IV. NUMERICAL STUDY

Within this section, we present a numerical appraisal of
the application of the technique proposed in Section III. In
particular, we consider a 1:sf scale, with sf = 20, SWINGO
WEH system1, as presented in Section II and conceptualised
(in full scale) in [16]. We refer the reader to [16] for a full
account on the computation of the parameters involved in (1).
For the numerical analysis, regular waves are considered,
with a fixed wave height of 2/sf [m], and corresponding
wave periods Tw in the set [4/

√
sf , 8/

√
sf ] [s]. Note that the

1All quantities involved in this section are referred explicitly to their full
scale counterparts, to facilitate a direct comparison with [16].

hydrodynamic resonance in pitch for this device is located at
Tr ≈ 6.5/

√
sf [s]. The mean (constant) velocity in (4) is set

to φ0 = 90 [rad/s], while the limit value for the computation
of ψopt in (19) is set to φlim = 0.5φ0, i.e. ψopt can take values
in ±50% of the mean velocity φ0.

A. Tuning of bPTO

The value for bPTO in (2) needs to be tuned accordingly,
to maximise energy absorption for each considered sea state.
Within this paper, we follow the standard procedure used
when φ = φ0 in (4), i.e. ψ = 0 is considered. In this
situation, tuning of bPTO can be performed by exploiting the
theory of maximum power transfer [26], since system (6)
is effectively linear when ψ = 0 (see also Remark 2 and
equation (8)). In particular, let G : R→ C,

G(ω) = en2 (ωIn −A)−1B, (20)

be the frequency response associated with the input-output
map fe 7→ δ̇ = x2 in (8). Following maximum power transfer
theory, the value of bPTO is chosen in terms of the inverse
map of (20), i.e., for a given input frequency ωe:

bPTO = |G(ωe)
−1|. (21)

B. Optimal flywheel operation

We begin by presenting a numerical analysis on the se-
lection of the dimension associated with the extended signal
generator (11), i.e. the number of harmonics q/2 = 1 + ν,
and its influence on the optimality of the solution ψopt.
Recall that this value defines the dimension of the finite-
dimensional space over which problem (̃P ) is effectively
solved. In particular, Figure 2 shows the ratio between the
absorbed energy for the WEH with an optimal velocity ψopt

computed with a given number of harmonics q/2, termed
Eq/2, and that computed with a sufficiently large number
q/2 = 20, i.e. E20. The latter has been chosen as a
‘maximum’ energy benchmark, since numerical experience
shows virtually zero improvement for this WEH by adding
more than 20 components to the signal generator (11). Based
on Figure 2, a value of q/2 = 10 is adopted from now on,
being this a reasonable compromise between optimality and
computational complexity for solving problem (19), with an
energy absorption of about 99% of E20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.9

0.92

0.94

0.96

0.98

1

Fig. 2. Number of harmonics and its influence on the optimality of the
solution.
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Having defined the dimension of the approximation space
in (̃P ), we analyse the performance improvement that can be
achieved by the flywheel optimisation procedure proposed
within this study. In particular, Figure 3 shows the ratio
between the energy absorbed by considering the optimised
flywheel velocity, i.e. ψ = ψopt in equation (4), and by the
‘baseline’ benchmark methodology, i.e. E = E0 with ψ = 0
in (4), for different wave periods.

Fig. 3. Performance improvement achieved with the proposed moment-
based optimisation.

The results presented in Figure 3 show that a significant
performance improvement can be achieved by the proposed
methodology, with up to ≈ 80% more energy absorption,
for both large and short wave periods. Note that, the small-
est enhancement that can be achieved is, naturally, at the
resonance period, where the designed fPTO torque performs
reasonably well in terms of energy absorption with a constant
speed φ0 (i.e. the baseline case). Nonetheless, even for this
case, an enhancement in power absorption of ≈ 20% can
be appreciated, further demonstrating the capabilities of the
proposed approach for the full operational bandwidth.

To illustrate the effect of the optimised flywheel operation
in the overall WEH dynamics, Figure 4 presents a time-
domain characterisation of the SWINGO system for three
selected wave periods (marked in red within Figure 3). In
particular, Figure 4 presents motion (first from the top),
operational space (second from the top), instantaneous power
(third from the top), and flywheel velocity (fourth from the
top), for both baseline (solid-grey), and proposed moment-
based (solid-black) methodologies. We begin by noting that,
for all three cases, motion and operational space are en-
hanced by means of the proposed flywheel optimisation,
taking larger values of velocity and position (especially for
shorter and longer periods). This consistently translates, for
the two extreme cases (left and right columns of Figure 4),
in significantly larger instantaneous power values, producing
a corresponding enhance in absorbed energy, as per Figure 3.
It is interesting to note that, in resonance conditions (middle
column of Figure 4), the optimised moment-based flywheel
speed is capable of providing ≈ 20% of energy absorption
enhancement, while yet having smaller peak instantaneous
power requirements than those exhibited by the baseline case.
Finally, as can be appreciated in all three cases, we note

that the optimised ψopt has a distinctive fundamental period,
which corresponds to Tw/2. This is, naturally, not arbitrary,
and can be traced back to the structure of the map g in (6):
It is straightforward to show that, if ψopt has a fundamental
period of Tw/2, the output of the map g(x, ψopt) (in steady-
state) has a fundamental period of Tw due to the bilinearity
of g, hence being able to generate a Tw-periodic contribution
in Σ (i.e. coincident with the input wave), hence increasing
the capabilities of ψopt to modify the VEH response.

V. CONCLUSIONS

This paper presents a tailored approach to optimise the
flywheel operation regime for IRM WEH. In contrast to
the standard procedure employed within the literature, a
zero-mean map is introduced to the total flywheel speed of
the WEH, designed to maximise energy absorption. Since
the target optimisation problem is infinite-dimensional, a
transcription process is derived accordingly, exploiting tools
from the field of moment-based theory. Following a for-
mal derivation, the proposed framework is applied to the
SWINGO system, offering a numerical appraisal of the main
characteristics of the methodology. In summary, it is shown
that: The procedure proposed is able to significantly enhance
power absorption, in the full operational bandwidth of the
WEH system; and improvements of up to 80% can be
obtained for the analysed WEH, for both short and long
input wave periods. Overall, the proposed technique is able
to enhance the performance associated with the IRM WEH
in a wide set of operating conditions, hence contributing
towards optimal energy-maximising operation of this family
of systems. Future work will target an experimental analysis
of this method for the SWINGO system, hence validating
the proposed flywheel optimisation.
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