
Multilevel parallel GPU implementation of SQP solvers
for Nonlinear MPC

P. C. N. Verheijen1, A. H. Derkani1, Y. A. Agarwal1, M. Lazar1 and D. Goswami1

Abstract— In recent literature, it has been shown that the
number of steps in a sequential quadratic programming algo-
rithm for a non-linear model predictive control (NMPC) prob-
lem can be greatly reduced by a parallel shooting method. The
efficiency of such a parallel shooting method further depends
on how the algorithm is implemented on parallel computing
platforms such as Graphics Processing Units (GPUs). The
GPU implementation should consider the degree of parallelism
necessary for higher time efficiency as well as the hardware
resource consumption/limitation at the GPU for a given problem
size. In this paper, we present a multilevel parallel GPU
implementation for sequential quadratic programming and an
(Alternating Direction Method of Multipliers) ADMM solver.
First, we introduce a GPU implementation enabling parallel
computing of many quadratic programs (QPs) by functional
parallelism. Next, we parallelize each QP solver using data
parallelism of basic linear matrix operations. We show that the
proposed GPU implementation greatly scales with the degree
of parallelism in the parallel shooting method. Further, we
show how a GPU implementation can be configured for a given
problem size avoiding resource overprovisioning.

Index Terms— Nonlinear MPC, Sequential Quadratic Pro-
gramming, CUDA programming, Parallel Shooting

I. INTRODUCTION

Nonlinear MPC is a key enabling technology for the
future; it started in the process industry but now enters high-
tech, safety–critical industries with fast dynamics: mecha-
tronics, electrical machines, power electronics, power sys-
tems, automotive systems, robotics - UAVs, water networks
[1] or manufacturing systems, to name a few. In these new
application areas, some common characteristics challenge
the real–time implementation of NMPC at a large scale:
strongly nonlinear dynamics leading to non-convex nonlinear
programs to be solved online and large state-space dimen-
sions which in combination with long horizons yield medium
to large–scale nonlinear programs that need to be solved
efficiently.

Nonetheless, a decent amount of off-the-shelve solvers
are available to solve the corresponding NLPs [2]. These
include strategies such as interior point methods, projected
gradient methods, or Sequential Quadratic Programming
(SQP) [3] [4]. To expand on the latter, SQP solves an NLP by
successively linearizing the problem and solving the resulting

This research was performed within the framework of the research
program AquaConnect, funded by the Dutch Research Council (NWO,
grant-ID P19-45) and public and private partners of the AquaConnect
consortium and coordinated by Wageningen University and Research.

1Department of Electrical Engineering, Eindhoven University
of Technology, The Netherlands, Corresponding E-mail:
p.c.n.verheijen@tue.nl

Quadratic Program (QP) using any favored QP solver. With a
wide range of QP solvers available (such as Hildreth, OSQP
[5], qpOASES [6], etc), the efficiency of the SQP algorithm
can be tailored to the NLP problem size and structure.

In the domain of MPC, a vast body of literature offers
insights into implementing diverse optimization algorithms
on single- and multi-core CPUs, however, few studies have
focused on GPU implementations. For example, [7] demon-
strated the improved performance of the matrix-free interior
point method with GPU acceleration. The GPU imple-
mentation of the OSQP [8] algorithm, which is based on
the Alternating Direction Method of Multipliers (ADMM),
accelerates solving large-scale problems on a GPU [8].
Other GPU-based implementations for solving QP problems
include qpDUNES [9], parallel Interior Point [10], and PQP
[11]. These methods accelerate solving a QP through data
parallelism, i.e., computing basic linear algebra operations
within a single iteration of the corresponding algorithm in
parallel. To delve a bit deeper into the implementation side
of these algorithms, consider the details in [8], which include
CUDA libraries such as Thrust, cuBLAS, and cuSPARSE
to efficiently perform complex operations such as reduction,
linear algebra, and sparse matrix operations. On the other
hand, [12] shows that by splitting the problem over the input
channels (thus generating multiple problems), the reduced
problems can each be computed in parallel. Although they
then implement it for an FPGA, [13] expands this idea to
a GPU implementation. The idea of computing multiple
QPs in parallel, i.e., function parallelism allows for another
dimension of achieving faster NMPC solvers. The results
reported by [13] also indicate that both parallel approaches
can achieve improved performance and increased throughput
compared to sequential solvers. However, it is unclear how
such implementation can take into account the limitations of
the GPU resources given the QP problem size. We present an
alternative perspective on how to use the GPU capabilities
for solving multiple QPs simultaneously using the OSQP
algorithm using both levels of parallelism while offering
configuration knobs concerning the problem size.

In this work, we introduce multilevel parallel GPU im-
plementation for sequential quadratic programming and an
ADMM algorithm targeting an NVIDIA architecture (most
commonly used in industrial platforms). At the QP level, we
present functional parallel implementation enabling a large
number of QPs to be solved in parallel. Within each QP,
we present a data parallel GPU implementation significantly
reducing the execution time of a single QP problem. In

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2285

combination, the proposed method shows great scalability
concerning the degree of parallelism. Furthermore, we show
how to configure a GPU implementation for a given problem
size to avoid resource overprovisioning.

II. PRELIMINARIES AND PROBLEM STATEMENT

Sequential Quadratic Programming (SQP) solves a nonlin-
ear problem by sequentially linearizing the problem over its
current operating point. The operating point (that we shall
further refer to as a “trajectory”) is updated with the optimal
solution from the linearized Quadratic Program (QP). For the
next part, we re-use the explanation in [14], adapted from [4].
Consider the following nonlinear MPC problem:

min
xi|k,ui|k

N−1∑
i=0

f(xi|k, ui|k) + fT (xN |k)

s.t. g(xi|k, ui|k) ≤ 0, ∀i = {0, . . . , N − 1}
gT (xN |k) ≤ 0,

x0|k = x(k),

h(xi|k, ui|k) = xi+1|k, ∀i = {0, . . . , N − 1},
(1)

which minimizes the sum of the running cost f(·) over the
prediction horizon N and the terminal cost fT (·). Problem
(1) computes a control input u(k) = u0|k for a discrete
nonlinear system

x(k + 1) = h(x(k), u(k)), k ∈ N, (2)

where u(k) ∈ Rq and x(k) ∈ Rn. To simplify the notation
in the remainder of the paper, consider

zi|k =
[
xT
i|k uT

i|k

]T
, ∀i = {0, . . . , N − 1}

zN |k = xN |k.

With this notation, we linearize (1) over an estimated guess
trajectory zgi|k [4], which results in the following QP prob-
lem:

min
∆zi|k

N∑
i=0

1

2
∆zTi|kQi∆zi|k +∆zTi|kFi

s.t. Mi∆zi|k ≤ −si, ∀i = {0, . . . , N − 1}
MN∆zN |k ≤ −sN ,

E∆z0|k = x(k)− Ezg0|k

E∆zi+1|k −Ai∆zi|k = ri+1, ∀i = {0, . . . , N − 2}
∆zN |k −AN−1∆zN−1|k = rN ,

(3)
where the optimization variable ∆zi|k is the optimal step
direction with respect to zgi|k, E =

[
In×n 0n×q

]
and

Qi =
∂2f(z)

∂z2

∣∣∣∣
zg
i|k

, Fi =
∂f(z)

∂z

∣∣∣∣
zg
i|k

,Mi =
∂g(z)

∂z

∣∣∣∣
zg
i|k

,

QN =
∂2fT (z)

∂z2

∣∣∣∣
zg
N|k

, FN =
∂fT (z)

∂z

∣∣∣∣
zg
N|k

, si = g(zgi|k),

MN =
∂gT (z)

∂z

∣∣∣∣
zg
N|k

, sN = gT (z
g
N |k),

Ai =
∂h(z)

∂z

∣∣∣∣
zg
i|k

, ri = h(zgi|k)− Ezgi+1|k,

rN = h(zgN−1|k)− zgN |k.

(4)

To express the cost function without the prediction time index
i, consider the following augmented vectors and matrices:

zg =

 zg0|k
...

zgN |k

 ,A =


E

−A0
. . .
. . . E

−AN−1 I

 ,

Q =

Q1

. . .
QN

 ,M =

M0

. . .
MN

 ,

F =

F1

...
FN

 , r =


x(k)− Ezg0|k

r1
...
rN

 , s =

 s1
...
sN

 ,

(5)

where zg ∈ Rp, with p = N(n+ q) + n, and corresponding
control problem

min
∆z

∆zTQ∆z+∆zTF

s.t. M∆z ≤ −s
A∆z = r.

(6)

Solving (6) using any QP solver and updating the guess
trajectory zg+(k) = zg(k)+α∆z. By repeating this cycle (of
linearizing the problem, solving the problem and updating
the guess trajectory), the corresponding guess trajectory will
converge to the solution of the NMPC problem if the initial
guess trajectory is “close” to the optimal solution or, the step
size α is chosen to guarantee convergence of the linearization
error [3]. These two conditions will play a crucial role in
what we explain next.

Remark 1: We use the apostrophes around “close” to
emphasize that this is not a measurable bound. Instead, this
vastly varies per problem and operating point, and more
specifically, how quickly the linearization error increases
when ∥z∗(k)− zg(k)∥2 increases.

A. Parallel Shooting SQP

In Parallel Shooting SQP (PS-SQP), the convergence
of the SQP algorithm is accelerated through the shooting
method [14]. This exploits shooting in two phases, each
designed to strengthen convergence concerning the afore-
mentioned conditions. Furthermore, since each step of each
of the “shot” SQP is independent, they can (and should) all
be executed in parallel. We will use Figure 1 to illustrate the
algorithm explained next.

2286

Fig. 1. Parallel Shooting SQP

a) Phase 1: Shooting in trajectories: In this first
phase, we generate m initial trajectories, each randomly
displaced from our “personal best-selected candidate” (most
commonly, the shifted optimal solution from the last time–
index). This shooting principle enhances the chance of
having an initial trajectory close enough to the solution for
fast convergence (fixing α = 1). More specific strategies
on how to generate these trajectories are discussed in [14].
Yet, as is mentioned there as well, since m must be a
finite number, there exists no guarantee that any of the
generated initial trajectories is “close”. In that case, the PS-
SQP algorithm switches to phase 2, which is designed to
guarantee convergence.

b) Phase 2: Shooting in step sizes: In the standard SQP
algorithm, convergence is guaranteed through selecting the
right step–size α, often obtained with a searching strategy
over the Wolfe Conditions and the Armijo Constraint [3].
To prevent a lengthy search of the optimal step–size, we
shoot over many values of α, in parallel. At the beginning
of a new SQP iteration, we only consider the best (i.e.,
the most converged) trajectory from the previous iteration
and linearize all parallel NLPs using the best trajectory and
a different step–size. Assuming plenty of parallel QPs are
employed, a converging step–size will always be tested.

In both phases, having the resources to execute many
QPs in parallel is key to convergence. However, the limiting
number of cores present in a CPU causes a problem in
running this algorithm efficiently on the CPU (given that
most QP solvers exist as a single-thread CPU code).

B. ADMM Algorithm

For each SQP step, the corresponding QP can be solved
using any preferable solver. We decided to use the OSQP
solver as the iterations can be highly parallelized and the
underlying ADMM algorithm shown in [8] provided more
than the necessary details to implement the solver. The OSQP
solver is used to solve QP problems of the form [8]:

min
∆z

1

2
∆zTQ∆z+ FT∆z

s.t. l ≤ B∆z ≤ u,
(7)

which equals problem (6) by stating that,

B =

[
M
A

]
, l =

[
−∞
r

]
, u =

[
−s
r

]
. (8)

ADMM iteratively solves a QP problem by robust dual
decomposition of the primal variable. An iteration of the
algorithm is shown in Algorithm 1 [8].

Algorithm 1 ADMM, rephrased from [8, Alg. 1]
Input: Problem matrices as in (7)

1: while convergence criteria do
2: ∆z̃t+1 ←

(
Q+ σI + BTRB

)−1
(σ∆zt − FT +

BT (Rµt − λt)
3: µ̃t+1 ← B∆z̃t+1

4: ∆zt+1 ← α∆z̃t+1 + (1− α)∆zt

5: µt+1 ← αµ̃t+1 + (1− α)µt +R−1λt

6: µt+1
i ← min(max(µt+1

i , li), ui) ∀i = {0, . . . nd}
7: λt+1 ← λt +R

(
αµ̃t+1 + (1− α)µt − µt+1

)
8: end while

Return: ∆z

The ADMM algorithm discussed here applies a precondi-
tioning step using the Modified Ruiz Equilibration algorithm
[8, Alg. 2]. Furthermore,

(
Q+ σI + BTRB

)−1
only needs

to be (re)computed if R is changed, showing that most iter-
ations only consist of linear matrix operations and element-
wise clipping. Both of these operations can be extensively
parallelized.

III. GPU PROGRAMMING MODEL

In this section, we illustrate various programming abstrac-
tion layers of GPU architecture and Compute Unified Device
Architecture (CUDA).

A. GPU Architecture

Figure 2 illustrates a GPU’s multi-core architecture. The
parallel cores, as depicted in the figure, are organized as
an array of streaming multiprocessors (SMs). Arithmetic
and other instructions are executed by the SMs. Each SM
comprises several streaming processors (SPs), usually mul-
tiple of 32, schedulers, registers, and shared memory. The
shared memory is exclusively accessible by SPs within an
SM. In addition, GPUs also have DRAM, which is globally
accessible by all SMs and thus often referred to as global
memory. The capacity of this memory varies depending
on the GPU model but typically ranges in gigabytes. In
comparison to shared memory, it has lower bandwidth and
longer latency, yet the global memory bandwidth is as high
as 1550 GB/s on the A100 GPU.

2287

B. GPU Programming Abstractions and Mapping

GPUs were originally developed with a primary focus on
handling graphical tasks. However, considering its parallel
computing power makes it suitable for general-purpose appli-
cations as well. Hence, NVIDIA developed the CUDA plat-
form to streamline the utilization of GPUs for programmers.
In this section, the main concepts of GPU programming are
described.

Threads, warps, thread blocks, and grids are fundamental
abstract layers of GPU programming and play a vital role
in how tasks are organized and executed on the GPU. The
definitions of these four concepts are provided below:

1) Thread: Thread is the smallest execution unit on a
processor. Each thread has a unique thread ID to
access memory and synchronize with other threads.
Threads can communicate with each other using shared
memory. The concept of GPU threads is similar to
CPU although the number of threads in GPUs is much
more compared to CPUs. A thread is assigned to a
single SP.

2) Warp: A warp is a group of 32 consecutive threads that
execute in parallel on a single SM. The SPs in an SM
follow the Single Instruction Multiple Data (SIMD)
policy and run a wrap in parallel. Therefore, a warp
requires 32 SPs to be executed. An SM executes one
or more warps. To avoid waste of SPs, the SMs have
a number of SPs multiple of 32.

3) Thread Block: As its name implies, it is a group
of threads that is mapped to an SM. As described
before within each SM there are registers and shared
memory by which threads inside a thread block can
communicate. Multiple thread blocks can be mapped
to one SM.

4) Grid: Grid is a collection of thread blocks organized
as a two-dimensional array that may be executed by
one or more SMs.

Abstract programming layers and how they are mapped on
actual GPU resources are depicted in Fig. 2. For the given
GPU architecture, the maximum number of SPs implies the
highest level of parallelism achievable. In our case, we use
an NVIDIA RTX 3070 Ti, which has 6144 CUDA cores,
subdivided into 48 SMs, each partitioned into 4 blocks of 32
SPs (note that for our purpose, 1 SP ≈ 1 CUDA core).

C. CUDA Kernels

CUDA kernel is a function executed on GPU resources
using the programming abstraction layers. Host and Device
are two primary terms in CUDA programming and refer
to CPU and GPU, respectively. Executing a CUDA kernel
involves three essential steps, which are explained below:

1) Host-to-Device (h2d) Transfer: The process of copy-
ing input data from host to device.

2) Execute GPU Program: The GPU program is loaded
and is called by the host to be executed as per various
programming abstraction layers.

Fig. 2. CUDA Programming Layers and GPU Resources

3) Device-to-Host (d2h) Transfer: The process of copy-
ing the results from device to host.

For illustration, consider the following operation between
two 100 × 1 vectors, which can be implemented on CPU
and GPU by a function and kernel add, respectively,

c100×1 = a100×1 + b100×1. (9)

First of all, how function add, listed in Listing 1, is executed
on a CPU is explained to get a better understanding of how
tasks are executed differently on GPUs compared to CPUs.
The function add gets arrays a and b as the inputs and
stores the results in an array c. Line 3 of the function add
is executed sequentially n times by iterating in the loop.
void add(int *a, int *b, int *c, int n){

for(int i = 0; i < n; i++){
c[i] = a[i] + b[i];

}
}

Listing 1. Array Addition Function on CPU

The add function can be written as a CUDA kernel as
shown in Listing 2. This CUDA kernel runs on a device
(or GPU) when it is invoked by a host (or CPU) as shown
in Listing 3. The host uses two parameters blkcnt and
threadspblk to determine the number of blocks and
threads per block, respectively, that the kernel will be mapped
on. Here, d a, d b, and d c are the arrays that are stored on
the GPU’s global memory. In the remainder of this section,
how threads and blocks are mapped and executed on the
GPU resources is explained.

2288

__global__ void add(int *a, int *b, int *c, int n){
int tid = blockIdx.x*blockDim.x+threadIdx.x;
if (tid < n){

c[tid] = a[tid] + b[tid];
}

}

Listing 2. Array Addition Kernel on GPU

int blkcnt = 2;
int threadspblk = 50;
add<<<blkcnt, threadspblk>>>(d_a, d_b, d_c, 100);

Listing 3. Calling CUDA Kernel from Host

In Listing 2, each addition operation is assigned to a thread
and is executed in parallel. Each thread is assigned to an SP.
For the CUDA kernel shown in Listing 2, we need at least
n threads to run all the addition operations in parallel. All
the threads are divided into several blocks, blkcnt. Hence,
in each block, there are threadspblk threads. Therefore,
we need

blkcnt× threadspblk ≥ n.

Each block is assigned to an SM to be executed. An SM fol-
lows the Single Instruction Multiple Data (SIMD) policy and
runs 32 operations in parallel. Therefore, threadspblk
threads in the block are divided into groups of 32 threads
(called warp). The number of warps in the corresponding
SM (where the block is assigned to) is given by,

#warps = ceil

(
threadspblk

32

)
.

SMs schedule the execution of warps. The choice of the
parameters blkcnt and threadspblk implies different
GPU resource mapping.

These concepts are used to deploy multilevel parallelism
for the PS-SQP problem and show the limiting factors
that have to be considered when designing such a GPU
implementation.

IV. MULTILEVEL PARALLEL SQP SOLVER ON A GPU

In this section, we illustrate the idea of executing multiple
QP solvers concurrently on a GPU. First, we introduce how
to parallelize QPs on the GPU and then how the solution of
each QP is computed using parallel steps. Here we elaborate
on two levels of parallelism, first, in Section IV-A, we
illustrate how to compute QPs in parallel, also referred to
as function parallelism. Then, in Section IV-B, independent
data operations are executed inside each QP in parallel as
well, which is known as data parallelism.

A. Function Parallel QP solving

To refer back to Section II, by using a parallel shooting
method, we can accelerate convergence by increasing the
odds of having an initial trajectory closer to the optimal
trajectory. Therefore, we now illustrate how to compute
the corresponding QPs in parallel. As per Equation 7, the
ADMM solver takes Q, F , B, l and u as inputs and
gives ∆z as output. The ADMM solver is deployed as
ADMMSolver() (CUDA) kernel. To solve m QPs in paral-
lel, we invoke ADMMSolver() kernel m times. Each kernel

Fig. 3. Paralellism in a single Parallel Shooting SQP step

solves a QP with different values of input parameters. For
example, Q[0] in Listing 4 is an input for the first instance
of the ADMMSolver() kernel. Furthermore, the inputs for
each QP are stored in GPU global memory and are used by
the kernel. Each kernel is executed on a single thread in a
block with blkcnt=1 and threadspblk=1 as shown in
Listing 4.

cudaStream_t kernel_id[m];
for (int i = 0; i < m; i++){

ADMMSolver<<<1,1,0,kernel_id[i]>>>(Q[i], f[i],
B[i], l[i], u[i], z[i], lam[i], nPrim, nDual);

}
cudaDeviceSynchronize();

Listing 4. m ADMMSolver() kernels in parallel

Listing 4 shows the invocation of m ADMMSolver()
kernels on the GPU. This is deployed by defining m
cudaStream t objects and the kernels are invoked in a
for loop and are synchronized by the command in Line 5 in
Listing 4. There are four configuration arguments passed to
the kernel. The first two configuration arguments (blkcnt
and threadspblk) are the number of blocks and the
number of threads per block as explained in Section III.
Since this kernel is the main code of the ADMM and should
be executed mostly sequentially, the kernel is executed as a
single thread. Then, the third configuration argument defines
the amount of shared memory that needs to be allocated,
but this is kept at zero as we use global memory. The last
configuration argument is the index of the kernel ID. The
degree of parallelism in the PS-SQP method is dictated by
the number of m, increasing numbers of m implies a higher
degree of parallelism, but it is further restricted by the degree
of data parallelism, which can be linked to the problem
size (i.e., smaller problem require less threads for parallel
computing). In Figure 3, the function parallelism is displayed
by the multiple light green blocks, each a different ADMM

2289

kernel, but executed in parallel on a GPU.

B. Data Parallel QP solver kernel

Running the ADMMSolver() kernel on a single thread
implies sequential execution of the ADMM algorithm, which
is time–inefficient. Therefore, we aim to parallelize basic lin-
ear matrix operations within a single QP solver by invoking
child kernels from the parent kernel – the ADMMSolver()
kernel. Such kernel hierarchy allows for efficient manage-
ment and allocation of the global memory. This is also
illustrated in Figure 3, where inside each ADMM iteration
of the ADMM CUDA Kernel, a child kernel is illustrated
as a yellow block, executed by many threads. The child
kernels are defined by the two parameters, blkcnt and
threadspblk, as explained in Section III and shown in
Listing 6. The choice of these parameters should be matched
to the size of the QP problem or can be linked to the
hardware limits of the GPU used, in relation to the amount
of parallel QPs that are desired to be executed.

Consider Listing 5, which is a child kernel invoked by the
ADMMSolver() kernel as shown in Listing 6 that computes
Line 4 in Algorithm 1:

__global__ void update_z(double *z, double *zh, int
nPrim, double alpha){

int tid = blockIdx.x*blockDim.x + threadIdx.x;
int step = blockDim.x*gridDim.x;
for(int i = tid; i < nPrim; i+=step) {

z[i] = alpha * zh[i] + (1 - alpha) * z[i];
}

}

Listing 5. Kernel to update z

update_z<<<32,64>>>(z, zh, nPrim, alpha);

Listing 6. Calling child kernel to update z

The operation of this function is the addition of two column
vectors ∆z̃ =zh and ∆z =z, whilst multiplying each with a
scalar α. This operation is row-independent and can thus be
executed in parallel. The parallelism is achieved by executing
each thread to compute just one row of the resulting column
vector. Let us consider the QP problem size to be 2000 (i.e.,
z ∈ R2000), which implies that we need at least 2000 threads
to completely parallelize the operation. As explained in Sec-
tion III the number of threads must be selected as a multiple
of 32. For this problem, this can be achieved by setting
blkcnt=32 and threadspblk=64 as shown in Listing
6. Alternatively, blkcnt=16 and threadspblk=128,
however, the NVIDIA Ampère architecture only allows for
64 threads per block. Furthermore, as also shown in Listing
5, if the number of threads is less than the number of
elements in ∆z, (some) threads will compute more than one
value, increasing the execution time. The product of these
two parameters is therefore a configuration knob to design
the degree of data parallelism.

V. ILLUSTRATIVE EXAMPLE

To demonstrate the workings of the GPU implementation,
we considered the control of an inverted pendulum using

NMPC. This problem, with all the chosen control and system
parameters, is equal to the problem presented in [14].

Consider the following continuous time dynamics [15]:

ẋ1 = x2

ẋ2 =
u cosx1 − (M +m)g sinx1 +ml(cosx1 sinx1)x

2
2

ml cos2 x1 − (M +m)l

ẋ3 = x4

ẋ4 =
u+ml sinx1x

2
2 −mg cosx1sinx1

M +m−m cos2 x1
(10)

where x1 is the pendulum angle, with x1 = 0 corresponding
to the upright position, x2 is the angular velocity, x3 is
the position of the cart, x4 is the cart velocity. The model
in (10) is discretized using backwards Euler with a sam-
pling period of Ts = 0.02s. However, in the simulation,
the system response is computed using an ode45 solver
for the continuous time dynamics. The cart’s position is
constrained by −10 ≤ x1 ≤ 10, and the input force is
constrained to −500 ≤ u ≤ 500. The control objective
is to center the cart from a starting position of x0 =[
π 0 −5 0

]T
while swinging the pendulum upright (and

keeping it there). For this, we construct a standard quadratic
cost function over a prediction horizon of N = 25, with
weights Q = diag(100, 0.1, 500, 0.1), R = 0.001 and
QT = diag(1000, 10, 500, 10). We assume that the full state
is measurable. The pendulum starts initially in the downward
position. Considering the state dimension and the prediction
horizon, the corresponding NMPC problem size becomes:

∆z ∈ R129, µ ∈ R204, and λ ∈ R204. (11)

For the PS-SQP algorithm, we used 16 parallel QPs (i.e.,
m = 16). Each QP is then solved with blkcnt=16 and
threadspblk=32, which is sufficient to ensure full data
parallelism. The simulation is executed on a workstation with
an NVIDIA RTX 3070 Ti GPU, which has 6144 CUDA
Cores and a boost clock frequency of 1.77GHz. The results
of the NMPC closed–loop response are shown in Fig. 4.
Here we observe that the PS-SQP algorithm achieved the
desired control goal. Furthermore, the non–smooth behavior
of the input visible when the system is almost settled is likely
caused by the low tolerances of the SQP algorithm, chosen
to favor fast convergence.

A. QP-level parallelism

See Figure 5 for the results of the QP kernel execution
time for different numbers of parallel QPs (m as explained
in Subsection II-A), in comparison to a sequential QP kernel
execution. We configured the QP solver kernel with blkcnt
= 16 and threadspblk = 32, which provided the prob-
lem size in (11) enables full data parallelism. Figure 5 also
shows the time needed for host-to-device and device-to-host
communication, where the latter is negligible compared to
the kernel execution time. Indeed, as the entire problem
has to be passed to the GPU during the host-to-device
communication, this takes noticeably longer and exceeds the
execution time for a single QP for increasing m. Between a

2290

Fig. 4. NMPC closed loop response

single QP and 150 parallel QPs, the execution time increases
by a factor of about 11 (considering the blkcnt=16 graph
in Fig. 5).

Fig. 5. GPU time per number of parallel QPs solved (threadspblk=32)

B. Parallelism at a QP kernel

To play with the degree of parallelism, we have two
parameters, blkcnt and threadspblk. Next, we test the
effect on the computation time when considering different
values for blkcnt, while fixing threadspblk=32 (i.e.,
one warp) for all cases. Here we see that the execution
is indeed parallel, noticeable by the lack of time increase
between 5 and 50 parallel QPs. Figure 5 also shows a
couple of odd jumps. While uncertain of the cause, it can
result from the slow global memory management in relation
to the occupancy of the warps on the GPU. Although the
timing differences between blkcnt=4 and blkcnt=16
are minor, using blkcnt=1 shows a significant execution
time increase. Furthermore, while blkcnt=1 uses only one
thread block for data parallelism, it shows no comparable
improvement when a large number of parallel QPs are
employed.

VI. CONCLUSIONS AND FUTURE WORK

We presented an implementation with multilevel paral-
lelism for solving many QPs on a GPU. Our implementation
shows that parallelism greatly improves the timing efficiency
and scalability, compared to running the same QPs sequen-
tially. The presented GPU implementation considers global
memory access for simplicity, which is time–inefficient. In
our future work, we aim to introduce advanced memory
management exploiting different levels of cache to improve
the efficiency of a single QP execution.

REFERENCES

[1] Y. Wang, V. Puig, and G. Cembrano, “Non–linear economic model
predictive control of water distribution networks,” Journal of Process
Control, vol. 56, pp. 23–34, 2017.

[2] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient Numerical
Methods for Nonlinear MPC and Moving Horizon Estimation,” Int.
Workshop on Assess. and Future Directions of NMPC, 2008.

[3] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York: Springer Series in Op. Res. and Fin. Eng., 2006.

[4] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: bridging the gap via the real-time iteration,”
Int. Journal of Control, vol. 93, pp. 1–19, 2016.

[5] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An Operator Splitting Solver for Quadratic Programs,”
arXiv:1711.08013, 2020.

[6] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: a parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[7] E. Smith, J. Gondzio, and J. A. J. Hall, “Gpu acceleration of
the matrix-free interior point method,” School of Mathematics and
Maxwell Institute for Mathematical Sciences, The University of Ed-
inburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom, Tech.
Rep. Technical Report ERGO-11-008†, May 2011.

[8] M. Schubiger, G. Banjac, and J. Lygeros, “Gpu acceleration of
admm for large-scale quadratic programming,” Journal of Parallel and
Distributed Computing, vol. 144, pp. 55–67, 2020.

[9] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic pro-
gramming method for dynamic optimization problems,” Mathematical
Programming Computation, vol. 7, pp. 289–329, 2015.

[10] X. Hu, C. C. Douglas, R. Lumley, and M. Seo, “Gpu acceler-
ated sequential quadratic programming,” in 2017 16th International
Symposium on Distributed Computing and Applications to Business,
Engineering and Science (DCABES), 2017, pp. 3–6.

[11] M. Brand, V. Shilpiekandula, C. Yao, S. A. Bortoff, T. Nishiyama,
S. Yoshikawa, and T. Iwasaki, “A parallel quadratic programming
algorithm for model predictive control,” IFAC Proceedings Volumes,
vol. 44, pp. 1031–1039, January 1 2011.

[12] J. L. Jerez, G. A. Constantinides, E. C. Kerrigan, and K.-V. Ling,
“Parallel mpc for real-time fpga-based implementation,” IFAC Pro-
ceedings Volumes, vol. 44, no. 1, pp. 1338–1343, 2011, 18th IFAC
World Congress.

[13] Y. Huang, K. V. Ling, and S. See, “Solving quadratic programming
problems on graphics processing unit,” ASEAN Eng. Journal, pp. 76–
86, 12 2010.

[14] P. C. N. Verheijen, M. Haghi, M. Lazar, and D. Goswami, “Parallel
Shooting Sequential Quadratic Programming for Nonlinear MPC Prob-
lems,” 2023 IEEE Conference on Control Technology and Applications
(CCTA), pp. 605–611, 2023.

[15] L. Prasad, B. Tyagi, and H. Gupta, “Optimal control of nonlinear
inverted pendulum system using pid controller and lqr: Performance
analysis without and with disturbance input,” Int. J. Autom. Comput,
vol. 11, p. 661–670, 2014.

2291

