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Abstract— This paper investigates the problem of designing
robust iterative learning control laws for discrete-time batch
processes with norm-bounded parameter uncertainties. A law
of proportional-differential type is designed to achieve robust
convergence of the tracking error in the batch-to-batch direc-
tion. It is shown that the design problem can be written as
a two-dimensional system. Then, the recently developed non-
conservative conditions for (structural) stability analysis for a
linear Roesser model are used. The conditions for the existence
and computation of the required control law matrices are linear
matrix inequality-based. Finally, comparative simulation results
show the effectiveness of the new design.

I. INTRODUCTION

Iterative learning control (ILC) applies to systems or pro-
cesses that perform the same finite-duration task repeatedly.
The aim is to improve the accuracy by using data from
previous executions to update the control action for the next
one. Early literature is covered in, e.g., [1], [2].

A literature review indicates that ILC has attracted consid-
erable research attention since it has been used for improving
the control performance in many practical problems such
as industrial robotics, see, e.g., [3] and wafer stage motion
systems, see, for example, [4]. Additionally, see, e.g., [5], [6],
ILC can be directly applied in the chemical process industries
and, in particular, batch processes.

The application to industrial batch processes is, in the
main, based on the lifting technique for discrete-time ILC [1],
[2] where a common problem is how to design for batch
domain convergence. However, robustness analysis concen-
trated on the models obtained with the lifting technique
may fail to work in practical applications because of the
drawback that the tracking error may grow quite large in
the early stages of learning. Thus, the feedback controller
is commonly employed along with the ILC law to ensure
closed-loop stability. In this situation, the ILC laws designed
for robustness against the original plant uncertainty may fail
to compensate for the uncertainty of the controlled system.
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An alternative approach to ILC design is to use the two-
dimensional (2D) structure of the dynamics [7], [8]. This
approach allows us to consider the interaction between the
batch-to-batch error and transient response along the batches.
Unfortunately, a direct application of 2D system models and
their stability conditions are computationally cumbersome;
sufficient but not necessary conditions are often required to
compute the control law, see [7].

This paper aims to use some known less conservative sta-
bility and stabilization conditions for 2D Roesser models [9],
[10], [11]. These results lead to linear matrix inequality
(LMI)-based conditions for ILC control law design applied
to discrete-time linear batch processes. In particular, in this
paper, procedures for ILC law are developed using the fact
that the structural stability of the 2D Roesser model imposes
tracking error convergence of the resulting ILC law. This
paper extends the considerations presented in [12], where
the focus was on developing LMI-based design conditions
for PD-type ILC laws for nominal linear batch processes,
by taking into account the existence of a process with norm-
bounded parameter uncertainties. A similar problem was also
considered by the authors in [13], but with the application
of linear repetitive process stability theory. The new and
less conservative conditions are established by utilization of
the results on the stability of a Roesser model with state
feedback to guarantee robust stability of the resulting ILC
system along both the time and batch directions.

The new design can reduce conservatism and hence im-
prove the applicability of developed results. A numerical
example illustrates the approach’s benefits and demonstrates
that the new LMI conditions are less conservative than
currently available. Also, the tracking performance of the
controlled dynamics is compared with some known results
to indicate the potential interest in this paper’s outcomes.

Throughout this paper, the null and identity matrices with
compatible dimensions are denoted by 0 and I, respectively,
and the notation [ ]n,0 (respectively [ ]0,n) denotes an empty
matrix with n rows and 0 columns (respectively n columns
and 0 rows). For a real matrix P , the notation of P ≻ 0
(P ≺ 0) means that P = PT and that P is positive (negative)
definite. In addition, ρ(P ) denotes the spectral radius of
P . Furthermore sym{P} denotes P +P ∗ where P ∗ is the
transpose conjugate of a matrix P , lC denotes lC ∪ {∞}
where lC is the set of complex numbers. Finally, for a matrix

S and block matrix Ŝ =

[
S11 S12

S21 S22

]
with compatible

dimensions, S ⋆ Ŝ = S22 + S21S(I − S11S)
−1S12 denotes

for the linear fractional transformation (LF) of Ŝ with respect
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to S, and ⊗ denotes the matrix Kronecker product.
The proofs of the results in this paper make use of the

following result.
Lemma 1: [14] Given matrices X , Y , Z = ZT , δ(t) of

compatible dimensions, then

Z + sym{X δ(t)Y} ≺ 0

for all δ(t) satisfying δT (t)δ(t) ⪯ I if and only if there
exists a positive scalar ε such that

Z + εXX T + ε−1YTY ≺ 0.

II. PRELIMINARIES

Let t ∈ [0, N − 1] be the discrete-time index where N is
the fixed number of time steps for each batch and k ≥ 1 is
the batch number. Then, the class of uncertain discrete-time
batch processes considered over this interval is described by
the state-space model

xk(t+ 1) =(A+∆A(t))xk(t) + (B +∆B(t))uk(t),

yk(t) =Cxk(t),

xk(0) =x0,

(1)

where xk(t) ∈ Rnx is the state vector, yk(t) ∈ Rny

is the output vector, uk(t) ∈ Rnu is the control input
vector. {A,B,C} are the nominal batch process matrices
with compatible dimensions. The time-varying uncertainties
associated with the process dynamics are modeled as additive
perturbations and assumed to be of norm-bounded form

∆A(t) = Eδ(t)F1, ∆B(t) = Eδ(t)F2, (2)

where E, F1, and F2 are known real constant matrices of
compatible dimensions, and δ(t) is an unknown and time-
varying perturbation satisfying δT (t)δ(t) ⪯ I, ∀t ∈ [0, N −
1]. Regarding the batch process model of (1), the following
assumptions are made.

Assumption 1: After each batch, the process resets to the
same initial value x0, and there is no loss of generality in
assuming that x0 = 0.

Assumption 2: The matrix pair (A,B) is assumed to be
controllable and det (CB) ̸= 0.

Remark 1: It is assumed that the matrix C in (1) contains
no parameter uncertainty. Otherwise, there will be coupling
between uncertain matrices, and hence, LMI-based formula-
tions are difficult to obtain.

Given the desired trajectory yd, the tracking error on batch
k, i.e., the difference between the desired and actual process
outputs, is

ek(t) = yd(t)− yk(t), t ∈ [0, N − 1].

The objective of this paper is to use the tracking error to
construct a control sequence {uk}k≥1 such that the uncertain
process output yk tracks the desired trajectory yd as precisely
as possible as the batch index k →∞. In this case, the track-
ing error in k converges to zero (or within some specified

tolerance), and the tracking performance in N is improved.
These requirements are represented mathematically as

lim
k→∞

∥ek(·)∥ = 0,

lim
k→∞

∥uk(·)− u∞(·)∥ = 0,

where ∥·∥ denotes the norm on the underlying function space
and u∞(·) is termed the learned control. To achieve the
robust convergence of the uncertain linear batch process (1),
an ILC law is used to compute the subsequent trial input as
the sum of the previous trial input plus a correction. The ILC
law, therefore, has the form

uk+1(t) = uk(t) + ∆uk(t), (3)

where the update ∆uk(t) is calculated using the previous
batch data.

Analysis in this paper uses incremental variables, i.e.,

xk+1(t) = xk+1(t)−xk(t),

uk+1(t) = uk+1(t)−uk(t),
(4)

giving the following description of the uncontrolled dynam-
ics

xk(t+ 1) =(A+∆A(t))xk(t)+(B +∆B(t))uk(t),

ek+1(t) =Cxk(t) + ek(t).
(5)

The control law is of the PD-type, i.e., the update term in
ILC law (3) takes the form

∆uk(t) =K1xk+1(t) +K2ek(t+ 1)

−K3(ek+1(t)−ek(t)),
(6)

where K1, K2, and K3 are gain matrices of compatible
dimensions to be designed.

Remark 2: The particular choice of the matrices in (6)
corresponds to different forms of ILC laws. In particular,
the following control laws result.

1) PD-type when K2 ̸= K3,
2) D-type when K2 = 0 and K2 ̸= K3,
3) P-type when K2 = K3.

III. EMBEDDING ILC INTO A 2D SYSTEMS SETTING

This paper uses 2D systems theory to design a control law
of the form given in the previous section. The two directions
of information propagation are batch to batch (trial to trial)
and within a batch. To write the dynamics as a 2D system
substitute (6) into (5) and let K2 = K2 − K3. Then, the
controlled dynamics are represented by the following model[

xk(t+1)
ek(t)

]
=A11

[
xk(t)

ek(t−1)

]
+A12ek(t),

ek+1(t) =A21

[
xk(t)

ek(t−1)

]
+A22ek(t),

(7)

where

A11 =(A11+∆A11), A12 = (A12+∆A12),

A21 =(A21+∆A21), A22 = (A22+∆A22)
(8)
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and

A11=

[
A+BK1 BK3

0 0

]
, A12=

[
BK2

I

]
,

A21=
[
−C(A+BK1)−CBK3

]
, A22=I−CBK2,

∆A11=

[
E
0

]
δ(t)

([
F1 0

]
+ F2

[
K1 K3

])
,

∆A12=

[
E
0

]
δ(t)F2K2, ∆A22= −CEδ(t)F2K2,

∆A21=− CEδ(t)
([

F1 0
]
+ F2

[
K1 K3

])
.

The state-space model (7) is a particular case of a linear
2D Roesser [15] model with parameter uncertainty. Hence, it
is termed the equivalent 2D model of the uncertain discrete-
time batch processes controlled by application of (6). The
matrices A12 and A21 in (7) describe the contributions of
the previous batch error to the current batch state and error,
respectively. This interaction is the source of the unique
batch process control problem and can result in oscillations
that increase in amplitude from batch to batch, i.e., with
increasing k.

Robust stability of the controlled dynamics is enforced by
(structural) stability of the 2D model (7). This property will
result in batch-to-batch error convergence for all admissible
uncertainties. Also, the design of ILC laws can be completed
with the 2D system formulation, as shown in the remainder
of this section and the next.

To simplify the presentation, the following notation is
introduced

K1 =
[
K1 K3

]
, C1=

[
CA 0

]
, F 1=

[
F1 0

]
,

E=

[
E
0

]
, B1=

[
0
I

]
, B=

[
B
0

]
, A=

[
A 0
0 0

]
.

(9)

Hence

A11=A+BK1, A21=−C1−CBK1,

A12=B1+BK2, A22=I−CBK2,

∆A11=Eδ(t)
(
F 1+F2K1

)
,∆A22= −CEδ(t)F2K2,

∆A21=−CEδ(t)
(
F 1+F2K1

)
,∆A12=Eδ(t)F2K2.

(10)

A. Robust structural stability of a linear 2D model

Robust structural stability of the Roesser model (7) is
characterized by the following lemma.

Lemma 2: (see [9], [10] and references therein) The 2D
Roesser model of the controlled ILC dynamics given in (7)
is robustly structurally stable if and only if the following
conditions hold

i) ∀λ ∈ lD, det(λI −A22) ̸= 0,
ii) ∀λ ∈ ∂ lD, det(G(λ)) ̸= 0,

for all admissible uncertainties and where lD ={
z ∈ lC , |z| ≥ 1

}
, ∂ lD =

{
z ∈ lC , |z| = 1

}
and

G(λ) = A21(λI −A11)A12 +A22.
Condition i) in this last result is relatively easily trans-

formed into a condition for the robust stability of a standard
(sometimes termed 1D in the 2D systems literature) system

that LMI conditions can efficiently check. The main difficulty
is the computational cost associated with the condition ii).
This condition requires computations for all ∀λ ∈ ∂ lD and
clearly, the number of computations increases without bound,
so the LMI-based formulation of condition ii) cannot be
easily provided. However, using results in [9] it follows
immediately that the conditions i) and ii) in Lemma 2 can
be replaced by the following inequalities[

A22

I

]T
(R⊗ P )

[
A22

I

]
≺ 0 (11)

and [
G(λ)
I

]∗
(R⊗ P (λ))

[
G(λ)
I

]
≺ 0, (12)

where R = diag{1,−1} and the matrices P and P (λ) satisfy
P ≻ 0 and P (λ) ≻ 0 ∀λ ∈ ∂ lD.

The inequality (11) implies that ρ(A22) ≤ 1 for all
admissible uncertainties and (12) can be transformed into
ρ(G(λ)) ≤ 1 ∀λ ∈ ∂ lD. Moreover, as G(λ) and P (λ) depend
on λ, then a sequence of transformations that leads to LMI
formulation of (12) is required. To proceed, note that the
existence of a matrix P (λ) ≻ 0 implies that there exists a
matrix Q(λ) satisfying P (λ) = sym{Q(λ)}. Consequently,
the inequality (12) can be written as

G(λ)∗(Q(λ) +Q∗(λ))G(λ)− (Q(λ) +Q∗(λ)) ≺ 0

or

[
M(λ)
I

]∗ 
0 I 0 0
I 0 0 0
0 0 0 −I
0 0 −I 0

[
M(λ)
I

]
≺ 0, (13)

where M(λ) = [G∗(λ)Q(λ) G∗(λ) Q∗(λ)]∗.
The remaining problem is the dependence of Q(λ) on

the parameter λ. This complex dependence prevents finding
the feasible solution to inequalities (12) and (13). Using
the results of [16], however, the following theorem can be
established.

Theorem 1: Assume that (12) has feasible
solution for some P (λ). This there exists α ∈[
0; b=

ny

2
((nx + ny)

2+(nx + ny)−2)
]

such that P (λ) can
be taken to have the form

P (λ)=sym

{
α∑

h=0

Qhλ
h

}
= Υ∗(λ)QΥ(λ),

with

Q=


sym{Q0} Q1 . . . Qα

Q∗
1
...

Q∗
α

0

 ,Υ(λ)=


λ0Inx+ny

λ1Inx+ny

...
λαInx+ny

 (14)

and Qh ∈ R(nx+ny)×(nx+ny), h = 0, . . . , α.

Proof: The proof of this theorem follows that of
Theorem 2 in [16].
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The task now is to convert the inequality (13) into the
LMI-based condition and compute ILC law matrices. Firstly,
it is evident that Q(λ) can be rewritten as

Q(λ) = λI ⋆

[
AΥ BΥ

CΥ DΥ

]
,

where the matrices AΥ, BΥ, CΥ and DΥ depend on the
parameter α ≥ 0. Setting α = 0 (the lowest computational
burden) yields[

AΥ BΥ

CΥ DΥ

]
=

[
[ ]0,0 [ ]0,m
[ ]m,0 Im

]
,

where m = nx + ny . Next, letting α > 0 (increasing the
computational burden), gives

AΥ=



0 1 0 . . . 0

0 0
. . .

. . .
...

... 0
. . . 1 0

...
... . . . 0 1

0 0 . . . 0 0


⊗Im, CΥ=


0m,αm 0 1

. .
.

1 0


α×α

⊗Im

 ,

BΥ=

[
0(α−1)m,m

Im

]
, DΥ=

[
Im

0αm,m

]
.

(15)

Moreover, it can be established that

M(λ) = λI ⋆

[
AM BM

CM DM

]
,

where

AM =

AΥ 0 BΥA12

0 AΥ 0
0 0 A22

 , BM =

BΥA11

BΥ

A22

 ,

CM =

[
CΥ 0 DΥA12

0 CΥ 0

]
, DM =

[
DΥA11

DΥ

]
.

The following result permits ILC law design by provid-
ing an equivalent formulation to conditions i) and ii) of
Lemma 2.

Theorem 2: Suppose that an ILC law (6) is applied to the
system (1). Then, the resulting ILC dynamics are described
as a 2D Roesser model of the form (7) is robustly structurally
stable, and hence batch-to-batch error convergence occurs
for all admissible uncertainties if and only if there exists
an integer α ∈

[
0; b=

ny

2
((nx + ny)

2+(nx + ny)−2)
]
,

Qh, h = 0, . . . , α, X ≻ 0 and Y ≻ 0 such that I 0
AM BM

CM DM

T[
R̂⊗X 0

0 R⊗Q

] I 0
AM BM

CM DM

≺0 (16)

and  I 0
AΥ BΥ

CΥ DΥ

T[
R̂⊗Y 0
0 −Q

] I 0
AΥ BΥ

CΥ DΥ

≺0 (17)

hold where R = diag{1,−1}, R̂ = diag{−1, 1}.

Proof: The proof is by employing the same steps to
prove the result for the 2D linear model in [17], [9]. Hence,
the details are omitted.

Theorem 2 is a relaxation of condition ii) of Lemma 2
through the S-procedure described in [18]. In what follows,
condition ii) of Lemma 2 is implied by condition (16).

Product terms exist between the matrix variables X , Y and
the control law matrices K1, K2 and K3 in the conditions
of Theorem 2 and hence the ILC law design procedures (the
conditions (16) and (17) are not LMIs). In the following,
decoupling matrix variables and ILC law matrices enable a
more easily tractable condition for ILC law design to be
established.

IV. MAIN RESULTS

This section aims to develop a new robust ILC scheme
design procedure for uncertain batch processes (1) for which
the following notation is used

Λ=



Iν 0 0 0 0 0
0 Iν 0 0 0 0
0 0 Iny

0 0 0
AΥ 0 0 0 0 BΥ

0 AΥ 0 BΥ 0 0
0 0 0 0 Iny

0
CΥ 0 0 0 0 DΥ

0 CΥ 0 DΥ 0 0


,A=


0 0
0 0
Iny −C1

B1 A1

−Iny 0
0 −Inx+ny

,

BT =
[
0 0 −(CB)T B

T
0 0

]
,

where ν (which appears as dimensions of some blocks in
Λ) must have the same dimensions the matrix AΥ defined
in (15). Furthermore, let us assume that the 2D system
of (7) is (structurally) stable, which means that the control
law (6) stabilizes the resulting dynamics. Also, let the scalar
parameters β1 and β2 be freely chosen from the set lD =
{z ∈ lC , |z| < 1} (i.e., inside of the open unit disc). This
choice immediately implies that the 2D system model xk(t+1)

ek(t)
ek+1(t)

=

[
β1Inx+ny 0

0 β2Iny

] xk(t)
ek(t− 1)
ek(t)

 (18)

is also (structurally) stable. Clearly, these 2D systems must
satisfy Theorem 2 and, according to the analysis in [16], they
must also share the same matrix P ≻ 0. Hence, it remains to
focus on (16) only - the condition (17) is not required, but
it may introduce a slight level of conservatism (and hence
the conditions will be the sufficient ones only). Moreover,
for known choice of scalars β1 and β2 (e.g. β1 = β2 = 0)
the following matrix can be defined

Lβ=

[
0 0 β2Iny 0 −Iny 0
0 0 0 β1Inx+ny 0 −Inx+ny

]
.

The following theorem is the significant new result of this
paper’s ILC design, based on the developed conditions for
robust stabilization of the equivalent 2D model.

Theorem 3: Consider an uncertain batch process de-
scribed by the version of (1) with uncertainty described
by (2). Furthermore, suppose that an ILC law (6) is applied
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to the system (1). Then the resulting ILC scheme described
as a 2D Roesser model of the form (7) is structurally
robustly stable, and hence batch-to-batch error convergence
occurs for all admissible uncertainties, if an integer α ∈[
0; b=

ny

2
((nx + ny)

2+(nx + ny)−2)
]

can be found such
that there exist matrices Qh, h = 0, . . . , α, P ≻ 0, M , S
and a positive scalar ϵ such that the following LMI Ω ϵE HT

ϵET −ϵI 0
H 0 −ϵI

 ≺ 0 (19)

is feasible and where the matrices R and R̂ are as in (16)-
(17) and

Ω =ΛT

[
R̂⊗ P 0

0 R⊗Q

]
Λ+sym {(AM+BS)Lβ} ,

ET =
[
0 0 −(CE)T E

T
0 0

]
,

H =
(
F2S + F 1

[
0nx+ny,ny Inx+ny

]
M

)
Lβ .

Moreover, if the LMI (19) is feasible, the required control
law matrices K1, K2 and K3 are computed as[

K2 K1 K3

]
= SM−1, K2 = K2 +K3. (20)

Proof: Suppose that the LMI (19) is feasible. Then,
application of Schur’s complement formula to (19) gives

Ω+ ϵEET + ϵ−1HTH ≺ 0.

Next, assign Z ← Ω, X ← E , Y ← H and by Lemma 1 the
last inequality is feasible if and only if

Ω+ sym {Eδ(t)H} ≺ 0.

The remaining part of the proof follows immediately from
the proof of Theorem 5 in [9] and hence the details are
omitted.

Remark 3: Since ILC law matrices K1, K2 and K3 must
be real, the matrix variables M and S must also be real,
which could theoretically induce a slight conservatism (Note
that the less conservative LMI-based results on stability 2D
system are originally formulated with Hermitian matrices).

V. NUMERICAL CASE STUDY

The example considers the linearized dynamics of the
injection molding process given in [6], [19]. This applica-
tion is a typical batch process where nozzle pressure is a
critical process variable to be controlled. When considering
the nozzle pressure response to the hydraulic control valve
opening, the following model was identified

yk(t) =
1.239(±5%)z−1 − 0.9282(±5%)z−2

1− 1.607(±5%)z−1 + 0.6086(±5%)z−2
uk(t),

where the percentages in parentheses indicate the parameter
perturbations in the worst case of cyclic operation. This
model can be rewritten in the form of (1) as

xk(t+ 1)=

([
1.607 1
−0.6086 0

]
+∆A(t)

)
xk(t)

+

([
1.239
−0.9282

]
+∆B(t)

)
uk(t),

yk(t) =
[
1 0

]
xk(t),

where

∆A(t) =

E︷ ︸︸ ︷[
1 0
0 1

] [
δ(t) 0
0 δ(t)

] F1︷ ︸︸ ︷[
0.0804 0
−0.0304 0

]

∆B(t) =

E︷ ︸︸ ︷[
1 0
0 1

] [
δ(t) 0
0 δ(t)

] F2︷ ︸︸ ︷[
0.062
−0.0462

]
In this case nx = 2 and ny = 1, and hence α ∈ [0, 5].

The chosen desired trajectory is

yd(t) =


200, 1 ≤ t < 100;

200 + 5(t− 100), 100 ≤ t < 120;

300, 120 ≤ t ≤ N = 200.

For practical implementation, the initial part of yd(t) is
pre-filtered by Gf = (z−1 + z−2)/(3 − z−1), where it is
essential to note that this step only applies to this application.
Furthermore, the Root Mean Square Error (RMSE) value of
the tracking error defined by

RMSE(ek) =

√√√√ 1

201

200∑
t=0

e2k(t)

plotted against k is adopted as a performance index to
evaluate the tracking performance. Also, it should be em-
phasized that there are many articles with control results
for this batch process. Still, none focused exclusively on
uncertainties (often, the design procedures were supported
by optimizing selected control indices, e.g., the H∞ norm),
so it is not easy to find examples for direct comparison. Here,
a comparison with the results in [19] is undertaken.

Applying Theorem 3 for β1 = 0.8, β2 = 0 and α = 4
gives ILC law matrices in (6) as

K1 = [−1.3068 − 0.8133], K2 = 0.7931, K3 = −0.0018.

It can be seen from Figure 1 that batch-to-batch error
convergence occurs. The effectiveness of the new ILC design
is apparent since the RMSE of the new design is lower
when compared with [19]. Additionally, Figure 2 shows

0 2 4 6 8 10 12 14 16 18 20

Batch number

101

102

R
M

S
E

Hao [2021]
Proposed

Fig. 1: RMSE(ek) values for the different designs.
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the corresponding spectral radius of the transfer function
G(λ) ∀λ ∈ ∂ lD. From this comparison of the two ILC law
designs in Figure 2, it is evident that the new design can
produce an ILC law with the lowest level for spectral radius
for extreme (min and max) values of the uncertainty and
hence can deliver faster batch-to-batch error convergence.
Consider the nominal case (no uncertainty). Then Figure 3
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Fig. 2: Plot of the spectral radius of G(λ) (uncertain process
case).

shows the corresponding spectral radius. Although for very
low frequencies, the result of [19] is better than the one
developed in this paper, the new design generates solutions
that maintain low gain (up to the error from the previous
batch) for the entire frequency spectrum, and therefore
achieve faster convergence.
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Fig. 3: Plot of the spectral radius of G(λ) (nominal process
case)

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, new results on the ILC law design problem
for a class of uncertain batch processes have been developed.
These results have been obtained by transforming the initial
problem into an equivalent one of designing robustly stabiliz-
ing state feedback gains for 2D linear systems described by
the Roesser model. Sufficient conditions for the existence of

a robustly convergent ILC law have been obtained in terms
of the corresponding LMIs. A simulation study based on
the nozzle velocity control system of an injection molding
process verifies the effectiveness of this design method.
Future work aims to extend results to continuous-time batch
processes and more complex control laws that use only
measured outputs.
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