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Abstract— This paper considers a variant of the classical
cyclic pursuit problem where a multi-agent system (MAS)
interacts over a directed cycle on n nodes. The edge weights of
the directed cycle are considered to be positive, non-identical
real numbers. However, instead of considering a simple directed
cycle with these n edges alone, we admit the possibility of self-
loops, which renders the resulting cycle digraph non-simple.
Within this set-up, we show the effect of self-loops having
positive and negative weights on the stability (or lack thereof) of
the resulting system dynamics. Since this problem is relevant
to the Taylor’s model of opinion dynamics, where a positive
self-loop weight corresponds to ‘stubbornness’, we draw an
analogy between the two paradigms.Finally, we consider the un-
weighted version of the directed (non-simple) cycle and present
an empirical study related to the effect of positive weighted self-
loops in mitigating noise. Simulations are presented to support
our results.

I. INTRODUCTION

The cyclic pursuit problem has been widely investigated
in the context of consensus of multi-agent systems. Under
this paradigm, agent i pursues agent i+ 1 (modulo n), and
owing to its simplicity, this problem was studied in the
context of the ‘n-bugs problem’ [1] and other applications
[2]. In several variants of cyclic pursuit [3], researchers have
explored the possibility of heterogeneous edge weights with
one of the weights being possibly negative. This antagonistic
interaction was shown to be beneficial in expanding the
set of points where agents may achieve consensus. Though
the dynamics of agents under consideration ranged from
single integrators to double integrators [4], all these models
considered interactions over a simple directed cycle, with no
self-loops.

There is a plethora of results available on the coordination
of single and double integrators in continuous time, over
more general undirected and directed graphs [5], [6], from
various perspectives such as network synthesis [7], noise
propagation [8] the effect of antagonistic interactions [9],
[10], etc. However, one consistent feature of all these inter-
action topologies has been the fact that the underlying graph
was always considered to be simple (with no self-loops). But
graphs with self-loops do find their applications in natural
sciences and engineering [11]–[14]. While several models of
opinion dynamics exist (see [15]–[19]) to model interactions
among individuals, the Taylor’s model of opinion dynamics
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[20] has recently been investigated by some researchers
from several perspectives [21], [22] and it turns out that the
‘stubbornness’ of an agent can be captured through a self-
loop with positive edge weight. Though negative self-loop
weights had not been considered in the classical Taylor’s
model, such a consideration may be justified to model self-
doubting individuals.

In this context, the set-up considered in the present paper
may be viewed as a way to study the possibility of consensus
in the presence of stable and unstable first order linear
agents or as a means to analyze the evolution of opinion
dynamics according to Taylor’s model in the presence of both
stubborn and self-doubting individuals over a directed cycle.
We consider a directed weighted cycle (with edges having
positive real weights) that also has self loops whose weights
can be both positive or negative. Under such conditions, we
investigate how agreement or consensus can be achieved
under varying levels of ‘stubbornness’ and ‘self-doubt’ in
agents, captured through the magnitudes of positive and neg-
ative weights on self-loops. To be precise, we provide bounds
on the self-loop edge weights (both negative and positive)
for agreement/consensus to result. The specific topology
considered here (directed cycle) may capture phenomenon
such as propagation of information over the course of a
telephone game. While negative edge weights have been
previously considered for modelling antagonistic interactions
within the consensus protocol [10], such results involved
simple graphs with no self-loops, unlike this paper.

We study the effect of positive self-loops (stubborn agents)
when there is noise in the network. For this problem, the
edge weights of cyce graph as well as the self-loop weights
are considered to be unity. Such investigations pertaining
to noise have been carried out for the consensus protocol
[8], [9] in the past, but in each of these cases, the graph
under consideration was a simple graph, with no self-loops.
Towards that end, this paper paves the way for answering
important open questions pertaining to consensus over non-
simple graphs.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations and definitions

∥ · ∥k is the k- norm (e.g. k = 2, . . . ,∞), R is set of
real numbers, and Rn is the n-dimensional Euclidean space.
Diag(γi) ∈ Rn×n is a diagonal matrix with γi being the
ith diagonal entry. For a matrix A ∈ Rn×n, [A]i j is the
(i, j)th element and Det(A) is the determinant, respectively.
A weighted graph, G = (V ,E ,W ), is a triplet, with V
being the set of n nodes given by V = {v1,v2, . . . ,vn}, a
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set of edges E ∈ V × V given by E = {E1,E2, . . . ,E|E |},
and corresponding weights given by W : E → R|E |. With a
slight abuse of notation, the edges and their weights may be
also denoted by a double subscript to signify the indices of
the nodes which they connect. Node vq is a neighbour to
node vr if Ei ≜ Erq = (vr,vq) ∈ E for some i and wi ≜ wrq
is the weight assigned to the adjacent of node vq and node
vr, i.e., weight associated with edge Ei. A graph is called
simple if there are no self-loops, i.e., (vr,vr) ̸∈ E for any r
and no edge Ei appears multiple times in E . L ∈ R|V |×|V |

is the graph Laplacian and the entries [L ]i j = li j = −wi j
and [L ]ii = lii = ∑

n
i=1,i̸= j wi j. The Laplacian, L̂ , of the

non-simple directed graph Ĝ , with self loops, changes to
L̂ =L +Γ, where Γ = Diag(γi) is a diagonal matrix and γi
is the weight of self-loop on node vi. We refer the reader to
[8], [23] for further details on algebraic graph theory.

III. STABILIZABILITY OVER DIRECTED CYCLE
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Fig. 1: Agents over a directed cycle with two self-loops (One
with self-loop weight α ≥ 0 and other with self-loop weight
β ≤ 0)

Consider n agents with 1st order dynamics interacting over
a directed graph G , whose individual dynamics are given by

ẋi =−γixi +ui, (1)

such that γi ∈ R, with the linear coordination law, ui given
by

ui =
n

∑
j=1

wi j(x j − xi) (2)

Therefore the linear dynamics of the system written in state-
space form is

Ẋ =−(L +Γ)X =−L̂ X , (3)

where X ∈ Rn is the n-tuple representing states of all the
agents, L is the Laplacian of underlying graph, G , and
Γ = Diag(γi). The dynamics in (3) can be modelled as an
agent interaction over a directed graph containing self-loops
on each agent with weight γi. In such a setting, L̂ is the
Laplacian of the non-simple graph Ĝ . In this paper, the
interaction topology considered is a directed cycle with self-
loops where γ1 = α , γ j = β with γi = 0 for any i /∈ {1, j},
and resulting non-simple graph, Ĝ , with two self-loops, one
at node 1 with α > 0 and the other with β < 0 at node j is
shown in Fig.(1). The Laplacian of the corresponding simple

directed cycle is L = Diag(wi)−
[

0n−1 Diag(w̄i)
wn 0⊤n−1

]
, with

wi > 0 ∀i = 1 : n being the weights associated with edges

of the cycle digraph and w̄i = wi∀i ∈ {1,2, . . . ,n−1}, while
Γ = Diag(γi), with the entries γi = 0 ∀i /∈ {1, j}, γ1 = α ,
and γ j = β . In other words, L is the Laplacian of the
simple directed cycle (when considering α = β = 0) and the
characteristic polynomial of −L is hence given by

φ0(s) =
n

∏
i=1

(s+wi)−
n

∏
i=1

wi (4)

Furthermore, for wi > 0∀i, φ0(s) has exactly one root at 0
with the remaining roots in the open left half of the complex
plane [3]. In the presence of a negative self-loop, to analyse
the stability of (3), we consider the characteristic polynomial
φ(s) = Det(sI + L̂ ) given by

φ(s) = (s+w1 +α)(s+w j +β )
n

∏
i ̸=1, j

(s+wi)−
n

∏
i=1

wi (5)

The polynomial in (5) can be readily derived through
Laplace’s expansion of the determinant along the first column
of (sI + L̂ ). Furthermore, φ(s) may be written as the sum
of two polynomials, φ1(s) and φ̂ j(s), or φ2(s) and ϕ j(s) as
follows

φ(s) = φ1(s)+β φ̂ j(s) = φ2(s)+αϕ j(s) (6)

φ1(s) = (s+w1 +α)
n

∏
i̸=1

(s+wi)−
n

∏
i=1

wi (7)

φ̂ j(s) = (s+w1 +α)
n

∏
i̸=1, j

(s+wi) (8)

φ2(s) = (s+w j +β )
n

∏
i ̸= j

(s+wi)−
n

∏
i=1

wi (9)

ϕ j(s) = (s+w j +β )
n

∏
i̸=1, j

(s+wi) (10)

where φ1(s) is the characteristic polynomial of the directed
cycle with one self-loop (α > 0, β = 0). Since the Laplacian
of the graph with two self-loops is a rank- 1 update to the
Laplacian of a graph with a single self-loop, equation (6)
can be derived using the formula for rank-one update of
determinants (see Lemma 1.1 in [24]). We now state the
following result without proof in the interests of space.

Lemma 1. Let L̂ be the Laplacian of a directed cycle with
two arbitrary self-loops at nodes v1 and v j, having weights
α ≥ 0 and β ≤ 0, respectively. Then the following hold:

1) −L̂ is non Hurwitz if α = 0,β < 0, and
2) −L̂ is Hurwitz if α > 0,β = 0.

Lemma 1 establishes that in the presence of an agent
having a single self-loop with positive weight, the dynamics
given in (3) will be stable, while in the presence of a single
agent with negative self-loop weight, the dynamics will be
unstable. Next, we will study the effects on the dynamics
given in (3) in the presence of an agent of each type, that
is one with a positive self-loop weight and another with a
negative self-loop weight.
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A. Destabilization problem:

This subsection will study how the presence of a self-
loop with a negative weight (i.e., self-loop on node j with a
negative weight β < 0) may cause (3) to lose its stability.

Theorem 1. Suppose a group of agents evolve over a
directed cycle according to (3). Further, suppose there is
one agent with positive self-weight with α (weight on self-
loop), say agent 1, and an unstable agent, say agent j, with
a self-loop of weight β < 0. The dynamics given in (3) will
be stable if and only if β >− αw j

w1+α
.

Proof: The proof will involve the following steps. First,
we shall evaluate the critical value of β < 0, given some fixed
positive value of α , for which φ(s) in (6) has a root at 0. As
a second step we shall show that for negative values of β

greater than the value obtained in step 1, φ(s) cannot have
any root in the open RHP. These two steps will then lead us
to conclude that the value of β obtained in step 1 is indeed
the critical value for stability.

Step 1: The determinant of the Laplacian is

φ(0) = Det(L̂ ) = (w1 +α)(w j +β )
n

∏
i̸=1, j

wi −
n

∏
i=1

wi. (11)

From (11) it follows that solving for Det(L̂ ) = 0 leads to
α ∏

n
i̸=1 wi +β (α +w1)∏

n
i̸=1, j wi = 0, implying

β =−
αw j

α +w1
(12)

For the value of β given in (12) of step 1, −L̂ is singular.
Our interest is to determine the variation of the roots of the
polynomial φ(s) for variation of parameter β < 0 for a fixed
α > 0. This problem is posed as a complementary root locus
problem for the transfer function G̃(s) := φ̂ j(s)

φ1(s)
, obtained by

equation (6) to zero. Clearly, the n roots of φ1(s) are open-
loop poles of G̃(s), and the n− 1 roots of φ̂ j(s) are open-
loop zeros of G̃(s) and they all belong to the LHP for α > 0
(follows from Lemma 1). Consequently, the relative degree
for G̃(s) is 1, implying one branch of the complementary
root locus will go to +∞, passing through the origin, since
the origin satisfies the angle criteria for the complementary
root locus. In step 1, we have already evaluated this critical
value of β at which this crossover happens.

Step 2: As the second step of this proof we shall now show
that for 0 > β >− αw j

α+w1
, no other branch of the complemen-

tary root locus can exist on the imaginary axis. Equivalently,
this would imply that crossing over of any branch to the RHP
through any part of the imaginary axis, other than through
the origin, is ruled out. This is important to verify since
although only one branch of the complementary root locus
can remain permanently in the RHP for β < − αw j

α+w1
, there

is a possibility that other branches of the complementary
root locus might cross from LHP to RHP and subsequently
return to LHP at some value of β > − αw j

α+w1
. It stands to

reason that if such an event does occur, then the critical
value of β obtained in step 1, given by (12), will not be
the only crossover value of β . Hence, we need to rule

out this possibility. As a preliminary investigation, let us
therefore probe the possibility of imaginary roots of φ(s)
at β = − αw j

α+w1
. Thereafter, we will endeavour to ascertain

the possibility of such imaginary roots for β >− αw j
α+w1

.

Assume φ(s) has some imaginary root when β =− αw j
α+w1

given by s1. Thus, s1 must satisfy equation (5). Now, β +
w j =

−αw j
α+w j

+w j =
w1w j
α+w j

and

(s1 +w1 +α)

(
s1 +

w1w j

α +w j

) n

∏
i ̸=1, j

(s1 +wi)−
n

∏
i=1

wi = 0 (13)

=⇒ (s1 +w1 +α)

(
s1 +

w1w j

α +w j

) n

∏
i̸=1, j

(s1 +wi) =
n

∏
i=1

wi

(14)

Since the quantities on either side of equation (14) can be
viewed as complex numbers, they must agree in both their
magnitudes and arguments. Equating their magnitudes, we
have ∥∥∥∥∥∥

(s1 +w1 +α)
(

s1 +
w1w j
α+w j

)
∏

n
i ̸=1, j(s1 +wi)

∏
n
i=1 wi

∥∥∥∥∥∥= 1 (15)

=⇒

∥∥∥∥∥ (s1 +w1 +α)(s1 +
w1w j
α+w j

)

w1w j

∥∥∥∥∥︸ ︷︷ ︸
m1

.

∥∥∥∥∥ n

∏
i ̸=1, j

(s1 +wi)

wi

∥∥∥∥∥︸ ︷︷ ︸
m2

= 1 (16)

Observe that (15) is written as the product m1m2 in (16)
and this is the magnitude criteria related to the root locus.
Moreover, s1 +wi represents a vector joining points s1 on
the imaginary axis and −wi on the negative real axis, while
|s1 +wi| is the length of this vector. Fig. (2) shows the case
where the point s1 = jδ is on the imaginary axis. From
triangle inequality in Fig.(2) it follows that ∥wi∥< ∥ jδ +wi∥.
Moreover, for point s1 in RHP also, we will have ∥wi∥ <
∥s1 +wi∥. Considering s1 = jδ in (16) we have∥∥∥∥∥ ( jδ +w1 +α)( jδ +

w1w j
α+w j

)

w1w j

∥∥∥∥∥︸ ︷︷ ︸
m1

.

∥∥∥∥∥ n

∏
i̸=1, j

( jδ +wi)

wi

∥∥∥∥∥︸ ︷︷ ︸
m2

= 1. (17)

In (16) and (17), we clearly have m2 > 1. Further, it follows

jω

σ

wj + βw1 + α

|s
1
+
w

j
+
β
|

|s1
+

w
1
+

α| S
1

=
j
δ

o

Fig. 2: Magnitude criteria in complex plane
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that

m1( jδ ) =
(δ 2 +(w1 +α)2)

(
δ 2 +

(
w1w j
α+w j

)2
)

w2
1w2

j

= 1+
δ 4 +δ 2(w1 +α)2 +δ 2 w2

1w2
j

(w1+α)2

w2
1w2

j︸ ︷︷ ︸
f (δ 2)

> 1

Hence m1 > 1 because f (δ 2)> 0,∀δ ∈ R. Since m2 > 1,
as established earlier, equality cannot hold for (16). Hence no
root of φ(s) can exist in RHP or on the imaginary axis with
β given in (12) and 0 is the only root of φ(s) at β =− αw j

α+w1
.

For any other β >− αw j
α+w1

, the point w j+β will move further
to the left on the real axis as shown in Fig.(2), which in turn
will lead to |s1+w j+β | and subsequently m1 only increasing
further, whereas m2 remains unchanged. This means that no
imaginary axis crossover can occur for β > − αw j

α+w1
either,

as the magnitude criteria of root locus, given in (16), fails.
Hence, β = − αw j

α+w1
is indeed the critical value for loss of

stability of the dynamics given in (3).

B. Stabilization problem

We now answer the following question: Is it possible
to stabilize the dynamics in (3) through introduction of a
positively weighted self-loop in the group, given that the
dynamics was initially unstable due to the presence of a
negatively weighted self-loop?

Theorem 2. Suppose a group of agents evolve over a
directed cycle. Further, suppose there is one unstable agent
(self-loop with negative weight), say agent j, with an edge
weight of β < 0 on its self-loop, and an agent, say agent 1,
with positive self-loop weight α > 0. The dynamics given in
(3) can be stabilized if only if β >−w j, and α >− βw1

w j+β
.

IV. APPLICATION TO TAYLOR’S MODEL FOR OPINION
DYNAMICS

The evolution of ith agent’s opinion, according to Taylor’s
model [20], is given by

ẋi =

{
−∑ j wi j(xi − x j), if i ̸∈ Vs ,

−∑ j wi j(xi − x j)− γi(xi −ui), if i ∈ Vs.
(18)

where xi ∈ R depicts opinion of agent i, γi is the confi-
dence/stubbornness (for γi > 0) or lack of confidence/self-
doubt of agent i (for γi < 0), Vs = {vi ∈ V |γi ∈ R \ {0}}
is the set of self-confident or self-doubting agents and wi j
represents the weight given by agent i to the opinion of
agent j. Further, ui is either the external influence, or ui =
xi(0), the initial opinion of ith agent. For ui = xi(0), γi > 0
represents the tendency of agent i to adhere to its initial
opinion due to confidence or stubbornness, during the course
of opinion evolution. Though Taylor’s model conventionally
does not consider γi < 0, one may consider a lack of self-
confidence to be captured by negative values of γi, which
subsequently drives an agent’s opinion away from its own

initial conviction. The evolution of opinions in (18) can be
captured using a non-simple graph with self-loops having
weight γi. Eqn. (18) can then be written in the following
manner:

Ẋ =−(L +Γ)X +ΓU, (19)

where X ∈ Rn is the vector of agents’ opinions, L is the
Laplacian of the digraph without self-loops, U ∈ Rn, with
ui = 0 if i ̸∈ Vs and equal to a constant otherwise, while
Γ captures stubbornness/self-confidence of agents. Further-
more, if the underlying interaction topology is a directed
cycle, it may be conceived of as exchange of opinion during
the course of a telephone game with self loop weights
representing stubborn (γi > 0) or self-doubting agents (γi <
0). In the presence of one self-doubting agent (γi < 0 for
some i), and one stubborn agent, the stabilization of the
opinion dynamics is possible under the conditions derived
in the previous section.

V. EFFECTIVENESS UNDER NOISY ENVIRONMENT

Multi-agent systems are susceptible to the effects of
undesirable noises, and a way to characterize a network’s
resilience to such noises is through the H2 norm. In [8] such
analyses have been carried out for undirected graphs, where
closed form solutions were obtained for relevant Riccati
equations by exploiting the symmetric nature of interactions
in undirected graphs. An empirical study is presented here,
which culminates in a few conjectures, arrived at through
extensive simulations. Here, we consider an unweighted
directed cycle graph, i.e., all the edge weights, including
self-loops, are considered unity. The input has been set to
zero (U = 0) in (19), and the only external signal present
is in the form of noises at the nodes. Thus, the resulting
dynamics turns out to be

Ẋ =−(L +Γ)X + IV and Y = E⊤X , (20)

with V ∈ Rn being the noise vector, where the entry Vi is
the noise on node i. The noise is considered to be 0 mean
Gaussian, satisfying E(VV⊤) = σ2

v In. E is the incidence
matrix. The norm ∥Y∥2 is used as a measure to study
the effect of noise. The computation of ∥Y∥2 [25] for the
system Ẋ = AX +BU and Y =CX requires the solution of
the Lyapunov equation AP+PA⊤ =−BB⊤ or AQ+QA⊤ =
−C⊤C and ∥Y∥2 = Trace(BPB⊤) = Trace(C⊤QC). For the
system in (20), the associated Lyapunov equation is thus:

−(L +Γ)P−P(L +Γ)⊤ =−In. (21)

The effect of noise on opinions in (20) are characterized by

||Y ||22 = Trace(E⊤PE) = Trace(L P). (22)

We proceed to solve (22) numerically. If there are multiple
self-loops, the locations of these self-loops also affect the
performance against noise. This problem is equivalent to
finding a 0,1 diagonal matrix Γ with a given number of
entries being 1 so as to minimize ∥Y∥2. Note that the matrix
L +Γ will be singular if Γ = 0. We use an edge perspective,
as proposed for general digraphs in [26], to evaluate the

2790



H2 performance of the simple graph so as to compare it
with the case when one or more confident agents, modelled
by self-loops, are present.The performance with and without
any self-loop is tabulated in the Table I for a directed cycle
graph with the number of nodes being chosen as n = 7, 10,
51, 100, 501, 1000. One may observe that without any self-
loop, ∥Y∥2 = n−1 in each case.

(n) 7 10 51 100 501 1000
|Vs|= 1 5.725 8.587 48.366 96.452 493.503 989.559
|Vs|= 0 6 9 50 99 500 999

TABLE I: ∥Y∥2 without and with one positive self-loop agent

From Table (I), it follows that the addition of a self-loop
mitigates the effect of noise.

Conjecture 1. Interactive dynamics within a group of agents
in cyclic pursuit is more resilient to noise when at least one
self-loop is present, compared with the situation when no
self-loop is present.

Similarly, the effect on the minimum and maximum values
of ∥Y∥2, while two self-loops are placed at different locations
in the directed cycle are tabulated in Table II.

(n) 7 10 51 100 501 1000
Min. 5.154 7.914 47.081 94.780 490.185 985.020
Max. 5.227 8.036 47.564 95.517 492.016 987.665

TABLE II: Range of ∥Y∥2 with two positive self-loops

From Table (II), we notice that addition of a 2nd self-loop
ensures a further reduction of ∥Y∥2 when compared with the
case of a single self-loop, leading to another conjecture.

Conjecture 2. The more the number of self-loops in a group
of agents following cyclic pursuit, the more resilient is the
overall dynamics to noise.

Fig. 3a shows the variation of ∥Y∥2 norm with the per
unit distance D

n , where D is the Edge distance between self
loops in the directed cycle. Cycle digraphs with 51 and 52
nodes are considered for the simulation. We note that the
best performance is achieved at D/n = 0.5, implying the
two self loops are at a maximum distance along the graph.
Performance thus improves with an increase in distance
between the confident agents. Furthermore, while the number
of nodes is odd, i.e. in the case of 51, one of the stubborn
agents fixed at node 1, the second one at 25 or 26 will have
the same minimum ∥Y∥2. With n = 50, the minimum ∥Y∥2
was achieved when the second self-loop was on node 26
(distance between self-loops was 25). This trend continued
in general across several simulations.

Next, we considered a directed cycle over n = 21 nodes
and varied the number of self-loops. For each different choice
of a number of self-loops, we calculated the maximum and
minimum values of ∥Y∥2 across different placements of
self-loops. Fig 3b reveals that for a given number of self-
loops, a minimization of ∥Y∥2 resulted from placing the self-
loops in an evenly spaced fashion over the cycle while the
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Fig. 3: Performance against noise a ) with varying distance
between self-loops and b) varying number of positive self-
loops.

‘worst’/maximum value of ∥Y∥2 resulted from placing self-
loops adjacent to one another.

Conjecture 3. For a group of n agents in cyclic pursuit,
for a fixed number of self-loops, the maximum resilience
of the collective dynamics against noise results from evenly
distributing the self-loops across the directed cycle..

VI. SIMULATIONS

A directed cycle graph on 6 nodes and edge weights w1 =
1, w2 = 1.2, w3 = 0.8, w4 = 0.7, w5 = 1.5, w6 = 0.6 is con-
sidered with initial conditions X(0) = [−3,−1,−2,2,1,3]T .
Fig.4 shows the responses with different values of negative
self-loop edge-weight on node 3, (say β ) while the weight
on the self-loop at position one α = 0.5. As our calculations
indicate, the system is on the brink of instability at the critical
value of self-loop weight equal to −0.2667. On the other
hand, Fig.5 depicts the situation with a negative edge weight
at node 3, given by β = −0.5, and a self-confident agent
1 with self-loop weight α > 0. The simulations shows that
the dynamics are stable only if α > 1.667, as expected from
our analyses. Moreover, the complementary root locus for
the variation in β < 0 with α = 0.5, and the root locus for
varying α > 0 with β =−0.5 validate these bounds.

VII. CONCLUSIONS

In this paper, a cyclic pursuit problem over a non-simple
directed cycle, containing self-loops, was considered. The
effects of positive and negative edge weights on these self
loops were investigated with respect to the stability of the re-
sulting multi-agent system dynamics. The negative self-loops
captured models of unstable agents, whereas the positive self-
loops modelled a stable agent. We presented conditions for
stability of the dynamics, depending on the values of self-
loop weights and edge weights. As an application to opinion
dynamics, in situations similar to a telephone game, it has
also been shown that Taylor’s opinion model can achieve
consensus in the presence of a single stubborn agent. Finally,
a numerical study has been presented to investigate the
effectiveness of self-loops and their locations in the directed
cycle with all the weights being unity, in mitigating noise.
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Fig. 4: Dynamics with α = 0.5 and different choices of β
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Fig. 5: Dynamics with β =−0.5 and different choices of α
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of social power in social networks with dynamic topology,” IEEE
transactions on automatic control, vol. 63, no. 11, pp. 3793–3808,
2018.

[18] G. De Pasquale and M. E. Valcher, “A bandwagon bias based model
for opinion dynamics: Intertwining between homophily and influence
mechanisms,” European Journal of Control, vol. 68, p. 100675, 2022.

[19] C. Ancona, F. L. Iudice, F. Garofalo, and P. De Lellis, “A model-based
opinion dynamics approach to tackle vaccine hesitancy,” Scientific
Reports, vol. 12, no. 1, p. 11835, 2022.

[20] M. Taylor, “Towards a mathematical theory of influence and attitude
change,” Human Relations, vol. 21, no. 2, pp. 121–139, 1968.

[21] F. Baumann, I. M. Sokolov, and M. Tyloo, “A laplacian approach
to stubborn agents and their role in opinion formation on influence
networks,” Physica A: Statistical Mechanics and its Applications, vol.
557, p. 124869, 2020.

[22] G. Fedele, E. Bozzo, and L. D’Alfonso, “On the impact of agents
with influenced opinions in the swarm social behavior,” IEEE Control
Systems Letters, 2023.

[23] C. Godsil and G. F. Royle, Algebraic graph theory. Springer Science
& Business Media, 2001, vol. 207.

[24] J. Ding and A. Zhou, “Eigenvalues of rank-one updated matrices with
some applications,” Applied Mathematics Letters, vol. 20, no. 12, pp.
1223–1226, 2007.

[25] G. E. Dullerud and F. Paganini, A course in robust control theory: a
convex approach. Springer Science & Business Media, 2013, vol. 36.

[26] D. Mukherjee and D. Zelazo, “Robustness of consensus over weighted
digraphs,” IEEE Transactions on Network Science and Engineering,
vol. 6, no. 4, pp. 657–670, 2019.

2792


