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Abstract— Urban traffic congestion remains a pressing chal-
lenge in our rapidly expanding cities, despite the abundance of
available data and the efforts of policymakers. By leveraging
behavioral system theory and data-driven control, this paper
exploits the Data-enabled Predictive Control (DeePC) algorithm
in the context of urban traffic control performed via dynamic
traffic lights. To validate our approach, we consider a high-
fidelity case study using the state-of-the-art simulation software
package Simulation of Urban MObility (SUMO). Preliminary
results indicate that DeePC outperforms existing approaches
across various key metrics, including travel time and CO2

emissions, demonstrating its potential for effective traffic man-
agement.

I. INTRODUCTION

In the ever-growing urban landscapes of our times, the
need for efficient and effective traffic congestion manage-
ment systems has never been more pressing. Recent studies
indicate that, on average, commuters in major American
cities spend approximately 54 hours each year stuck in
traffic jams [1]. The economic and environmental toll of
traffic congestion is staggering [2]. As the world continues to
urbanize, these figures are projected to increase significantly
unless novel solutions for traffic congestion are developed.

In the era of digital transformation, data serves as a critical
asset in this respect, revealing complex patterns of urban
traffic and supporting data-informed decision-making [3]. In
this context, the emergence of data-driven traffic control
algorithms promises to revolutionize how we tackle the
problem of urban traffic congestion [4]. With these premises,
this paper addresses the urban traffic control problem using
the DeePC algorithm [5].

Related work: In the past decades, the problem of urban
traffic control has attracted the interest of many researchers.
Early solutions focus on controlling traffic only in the
proximity of traffic lights and intersections [6] and small
traffic networks [7]. Over the years results have been de-
veloped for larger networks and have often considered as
the main objective of the reduction the total system travel
time or the emissions. The authors in [8] propose two
different macroscopic models of urban traffic to design a
Model Predictive Control (MPC) algorithm able to compute a
structured network-wide traffic controller. Control strategies
that focus particularly on reducing emissions can be found
in [9]–[12] and references therein.
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Due to the unprecedented data collection, storage, and
computation capabilities, there has been a resurgence of
interest in the control community in “direct” control ap-
proaches (see, e.g., the recent survey [13]). Leveraging
behavioral system theory [14], these approaches infer optimal
decisions directly from data. A particularly successful direct
data-driven algorithm is DeePC [5], which has been applied
in a wide array of practical case studies [5], [15], [16].
DeePC has been applied in the context of traffic control,
e.g., to solve control problems related to the coordination
of Connected Autonomous Vehicles (CAVs) [17], to vehicle
rebalancing in mobility-on-demand systems [18]. However,
to the best of our knowledge, DeePC has not been applied
in the context of urban traffic congestion control due to the
large-scale nature of the problem. Motivated and inspired
by [19], [20], we propose a tractable formulation using an
aggregate description of the urban traffic dynamics which
mitigates these issues and the effect of unpredictable events.

Contributions: The main contributions of the paper are
threefold. (i) We show that the DeePC algorithm, although
fundamentally linear, excels in handling mildly nonlinear
systems. Adopting the DeePC algorithm avoids the use of
complex nonlinear models, but rather it generates optimal
decisions directly from data. Instead, being able to generate
control laws for traffic lights that do not directly regulate the
flow among regions is extremely difficult via a traditional
MPC based approach. (ii) We show that the building blocks
necessary to deploy DeePC are simple to create after the
partitioning of the city in homogenous regions, which should
be performed only once as in [19]. This allows practitioners
to bypass the identification of model parameters and, in case
the infrastructure changes, new data can be collected and
automatically updated in the algorithm. (iii) We show that the
data-driven approach outperforms model-based approaches
in terms of travel time and emission reduction via SUMO
microscopic simulations.

The notation used in the paper is borrowed from [21], [22].

II. PRELIMINARIES

1) Sequences and Hankel matrices: We consider finite
and infinite sequences in (Rq)

T and (Rq)
N, respectively.

By a convenient abuse of notation, we often identify each
finite sequence w ∈ (Rq)

T with the corresponding vector
col(w(1), . . . , w(T )) ∈ RqT . We use the terms sequence and
trajectory interchangeably.

The Hankel matrix of depth L ∈ T associated with the
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finite sequence w ∈ (Rq)
T is defined as

HL(w)=


w(1) w(2) · · · w(T − L+ 1)
w(2) w(3) · · · w(T − L+ 2)

...
...

. . .
...

w(L) w(L+ 1) · · · w(T )

.
2) Dynamical systems: A dynamical system (or, briefly,

system) is a triple Σ = (T,W,B) [14], where T is the time
set, W is the signal set, and B ⊆ (W)T is the behavior of
the system. We exclusively focus on discrete-time systems,
with T = N and W = Rq .

A system Σ is linear if the corresponding behavior B is
a linear subspace, time-invariant if B is shift-invariant, i.e.,
if w ∈ B implies σw ∈ B, and complete if B is closed in
the topology of pointwise convergence [14, Proposition 4].
The model class of all complete Linear Time-Invariant (LTI)
systems is denoted by Lq . By a convenient abuse of notation,
we write B ∈ Lq .

The structure of an LTI system is characterized by a set
of integer invariants known as structure indices [14]. The
most important ones are the number of inputs m, number of
outputs p, the lag ℓ, and the order n, see, [14, Section 7]
for definitions. Every finite-dimensional LTI system admits a
minimal representation and can be described by the equations

σx = Ax+Bu, y = Cx+Du, (1)

where
[
A B
C D

]
∈ R(n+p)×(n+m) and m, n, and p are the

number of inputs, the order, and the number of outputs,
respectively.

3) Data-driven representations of dynamical systems:
Given a trajectory wd ∈ RqT of a system B ∈ Lq , it is pos-
sible to derive a non-parametric representation of its finite-
horizon behavior using raw data. We summarize a version
of this principle known as the fundamental lemma [23].

Lemma 1: [24, Corollary 19] Consider a system B ∈ Lq

with lag ℓ ∈ N and a trajectory of the system wd ∈ B|[1,T ].
Assume L > ℓ. Then B|[1,L] = imHL(wd) if and only if

rankHL(wd) = mL+ n, (2)

where n and m are the order and the number of inputs of
the system, respectively.

Lemma 1 is a key result in data-driven control [13]. It
characterizes all trajectories of given length of an LTI system
in terms of the image of a Hankel matrix. This foundational
principle can be adapted in various ways, see the recent sur-
vey [13]. Remarkably, non-parametric representations have
found practical use in data-driven control even when dealing
with nonlinear systems [22], [25].

The rank condition (2) is known as the generalized per-
sistency of excitation condition [24]. Note that upper bounds
on the structure indices of B are necessary to check this
condition from data.

III. METHODOLOGY

A. Urban traffic: sensing and dynamics
The transportation network of a city is composed of a

collection of roads, highways, intersections, and points of in-
terest such as bus stops. As in [19], the city can be partitioned

in p ∈ N regions leveraging the concept of Macroscopic
Fundamental Diagram (MFD). Partitioning a city into regions
can be achieved through diverse methods, among which is
the snake algorithm [26]. A forthcoming publication will
provide comprehensive insights into the application of this
method for city partitioning. These regions are identified such
that the aggregate drivers’ behavior traveling through it is as
homogeneous as possible. The set of all regions is denoted by
p := {1, · · · , p}. Modern cities can choose among different
types of sensors to assess traffic conditions. Among these,
the most common (and reliable) are Eulerian sensors, such
as single-loop detectors [27]. They can measure the number
of vehicles that cross them during a fixed period and the
occupancy, that is, the fraction of time during the same
period that the sensor detected a vehicle above it [28]. Similar
data can also be retrieved from other types of sensors, such
as Lagrangian (or mobile) sensors. This includes vehicles
equipped with transponders and GPS traveling through the
city. For simplicity, however, we consider only Eulerian
sensors throughout the paper.

We denote the number of sensors in each region i ∈ p
as si ∈ N and the set of all sensors in the region is si :=
{1, · · · , si}. From each sensor j ∈ si, we can attain, from
the occupancy and number of vehicles, the traffic density
ρj(t) [veh/km] and flow ϕj(t) [veh/h] during the time interval
indexed by t ∈ N of length ∆ ∈ R+. We denote the density
and flows measured in region i ∈ p during t by

ρi(t) := col((ρ1(t)), · · · , ρsi(t))) ∈ Rsi (3a)
ϕi(t) := col((ϕ1(t), · · · , ϕsi(t))) ∈ Rsi . (3b)

Similarly, the aggregate vectors of all densities and flows in
the city during t are, respectively,

ρ(t) := col((ρi(t))i∈p) ∈ Rs (4a)
ϕ(t) := col((ϕi(t))i∈p) ∈ Rs, (4b)

where s =
∑

i∈p si.
The evolution of traffic within the city depends on the

number of commuters entering the system during every time
interval within each region. We call this flow of vehicles
demand. The flow of vehicles starting their trip in region
i ∈ p at time t and aiming to end the trip in region j ∈ p is
denoted by dij(t) [veh/h], while dii(t) [veh/h] is the internal
trip completion flow [19], which describes the flow of
vehicles whose final destination is region i. The aggregate
vector of demands associated with region i is denoted by
di(t) := col((dij(t))j∈p) ∈ Rp while the vector of all the
demands among all regions is d(t) := col((di(t))i∈p) ∈ Rp2

.
Hereafter, we consider the nominal value of d(t) as an
exogenous and known quantity.

Policymakers throughout the years have designed a
plethora of interventions to reduce urban traffic conges-
tion [29]. Among dynamic policies is the installation of
controllable traffic lights [30]. By strategically controlling
the flow of vehicles traveling through an intersection, it
is possible to indirectly influence ϕi(t) and ρi(t) in each
region. Given two regions i, j ∈ p, if one (or multiple)
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Fig. 1: The city is divided into p regions (the hexagons) based
on their MFD and the demand d among them. The qualitative
detail of how sensors sj (blue diamonds) and traffic lights
l (green circles) might be positioned within a region j ∈ p.
The top part illustrates how the control input λℓ influences
the duty cycle of a traffic light ℓ ∈ l.

intersection used by drivers to move from i to j allows
for a smaller flow to pass through, then the vehicles will
accumulate increasing the density in i and decreasing the
flow from i to j. The flow of vehicles that can travel through
a intersection can be controlled by varying the ratio between
green time λ(t) and duty cycle period ∆dc ∈ N, see Fig. 1.
Therefore, the control input λℓ(t) ∈ [λℓ, λℓ] ⊆ [0, 1] where
λℓ(t) = 1 means that the traffic light is always green and
λℓ(t) = 0 red for the whole duty cycle. The vector of all
input associated with the l controlled traffic lights is denoted
by λ(t) = col((λℓ(t))ℓ∈l), where l := {1, · · · , l}.

We model the nonlinear dynamics associated with the
density evolution measured by the sensors as

ρ(t+ 1) = f(ρ(t),λ(t),d(t)), (5)

where f : Rs+l+p2 → Rs is not known. In this preliminary
study, we simplify the analysis by exclusively modelling the
density dynamics. This choice mitigates the curse of dimen-
sionality associated with the proposed data-driven approach.
However, preliminary results suggest that considering the
intrinsic link between flow and density evident in the MFDs
may enhance performance. This will be elaborated upon in
a future publication.

As discussed in [31], aggregating data from the sensor
within a region helps reduce the variability and capture the
macroscopic variation in density. An aggregating function
has the role of mapping the sensors’ measured densities to
the associated region density. So, the average density of
region i is attained as ρi(t) = hi(ρi(t)), where hi : Rsi → R
is the aggregating function of region i ∈ p. Consequently,
we define the complete aggregation function as h : Rs → Rp

ρ(t) = h(ρ(t)) := col
(
(hi(ρi(t)))i∈p

)
. (6)

Using the density dynamics of the city regions in (5)–(6) and
the definition in Section II, we now introduce the behavior

Bc that describes the associated dynamical system

Bc = {(λ,d,ρ) ∈ Rm+p : ∃ρ ∈ Rs s.t (5)–(6) hold}, (7)

where m = l + p2 and u = (λ,d) ∈ Rm is the input, divided
in controllable and exogenous, and ρ the output.

B. The DeePC algorithm

1) Setup and assumptions: Consider a (possibly un-
known) LTI system B ∈ Lm+p, with m inputs and p out-
puts. Assume that data recorded offline from system B
are available. Specifically, assume that an input sequence
ud = col(ud(1), · · · , ud(T )) ∈ RmT of given length T ∈
N is applied to the system B and that the corresponding
output sequence is yd = col(yd(1), · · · , yd(T )) ∈ RpT . The
subscript “d” is used to indicate that these are sequences
of data samples collected offline. Finally, let Tini ∈ N and
Tf ∈ N, with Tini + Tf ≤ T, and assume that the sequence
wd ∈ R(m+p)T , defined as wd(t) = col(ud(t), yd(t)) for
t ∈ T, satisfies the generalized persistency of excitation
condition (2), where L = Tini + Tf and n is the order (or
an upper bound on the order) of the system.

2) Data organization: Next, we partition the input/output
data into two parts which we call past data and future data.
Formally, given the time horizons Tini ∈ N and Tf ∈ N
associated with the past data and the future data, we define(

Up

Uf

)
= HTini+Tf(ud),

(
Yp
Yf

)
= HTini+Tf(yd), (8)

where Up ∈ R(mTini)×(T−Tini+1) consists of the first
Tini block-rows of the matrix HTini+Tf(ud) and
Uf ∈ R(mTf)×(T−Tf+1) consists of the last Tf block-
rows of the matrix HTini+Tf(ud) (similarly for Yp and
Yf ), respectively. In the sequel, past data denoted by the
subscript “p” is used to estimate the initial condition of the
underlying state, whereas the future data denoted by the
subscript “f” is used to predict the future trajectories.

3) State estimation and trajectory prediction: By the
fundamental lemma, any trajectory of the finite-horizon be-
havior B|[1,Tini+Tf] can be constructed using the data collected
offline. Under the assumptions of Lemma 1, a trajectory
col(uini, yini, u, y) belongs to B|[1,Tini+Tf] if and only if there
exists g ∈ RT−Tini−Tf+1 such that

Up

Yp
Uf

Yf

 g =


uini
yini
u
y

 . (9)

For Tini ≥ ℓ, the lag of the system, the output y is uniquely
determined [13]. Intuitively, the trajectory col(uini, yini) spec-
ifies the underlying initial state from which the trajectory
col(u, y) evolves. This allows one to predict future trajec-
tories based on a given initial trajectory col(uini, yini) ∈
B|[1,Tini], and the precollected data in Up, Uf , Yp, and Yf .
Indeed, given an initial trajectory col(uini, yini) ∈ B|[1,Tini] of
length Tini ≥ ℓ and a sequence of future inputs u ∈ RmTf ,
the first three block equations of (9) can be solved for g.
The sequence of future outputs is then given by y = Yfg.
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Conversely, given a desired reference output y an associated
control input u can be calculated.

4) DeePC algorithm: Given the future time hori-
zon Tf ∈ N, a reference trajectory for the output ŷ =
(ŷ0, ŷ1, · · · ) ∈ (Rp)N and input û = (û0, û1, · · · ) ∈ (Rm)N,
past input/output data wini = col(uini, yini) ∈ B|[1,Tini], input
constraint set U ⊆ RmTf , output constraint set Y ⊆ RpTf ,
output cost matrix Q ∈ Rp×p, control cost matrix R ∈
Rm×m, regularization function ψ : RT−Tini−Tf+1 → R, and
parameter λy ∈ R, the DeePC algorithm relies on the solution
of the optimization problem:

min
u,y,g,σy

Tf∑
k=1

∥y(k)− ŷ(t+ k)∥2Q + ∥u(k)− û(t+ k)∥2R

+ ψ(g) + λy ∥σy∥1

s.t.


Up

Yp
Uf

Yf

 g =


uini
yini
u
y

+


0
σy
0
0

 , (10)

u ∈ U , y ∈ Y.

We are now ready to present the DeePC algorithm.

Algorithm 1 DeePC

Input: Data trajectories wd = col(ud, yd) ∈ R(m+p)T ,
most recent input/output measurements
wini = col(uini, yini) ∈ R(m+p)Tini , a reference trajectories
ŷ = (ŷ0, ŷ1, · · · ) ∈ (Rp)N, û = (û0, û1, · · · ) ∈ (Rm)N,
input constraint set U ⊆ RmTf , output constraint set
Y ⊆ RpTf , output cost matrix Q ∈ Rp×p, control cost matrix
R ∈ Rm×m, regularization function ψ : RT−Tini−Tf+1 → R
and parameter λy ∈ R.

1: Solve (10) for g⋆.
2: Compute optimal input sequence u⋆ = Ufg

⋆.
3: Apply optimal input sequence (ut, · · · , ut+j−1) =

(u⋆1, · · · , u⋆j ) for some j ≤ Tf.
4: Set t to t + j and update uini and yini to the Tini most

recent input/output measurements.
5: Return to 1.

C. DeePC for urban traffic control

We are now ready to introduce DeePC for the dynamical
system Bc describing the evolution of urban traffic.

1) Behavioral representation and constraints:
The data matrix in (9) can be constructed using
historical data. For t ∈ T the collection of input
and output data used are respectively defined as
ud(t) := col(λ(t), d(t)), yd(t) := col(ρ(t)) . Using these
sequences, we can construct the matrices in (8) as discussed
in Section III-B.2. The data are collected offline and thus
can be chosen among many different traffic scenarios
that excited the dynamical system Bc in different ways
capturing a wide variety of the behaviors of the system. To
construct uini and yini for the current time interval t ∈ N,
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Fig. 2: The MFD for the region i ∈ p, the historical measured
data ρi,ϕi ∈ Rsi by the sensors si (light gray dots). The
associated MFD for region i ∈ p (solid green line) displaying
the relation between ρi and ϕi. The critical density ρcr,i is
the density maximizing the flow in the region ϕi.

we simply collect the previous Tini values of the input and
outputs, uini := col(λ(t− Tini), d(t− Tini), · · · ,λ(t), d(t)),
yini := col(ρ(t− Tini), · · · ,ρ(t)) .

The control input has to satisfy the box constraints λ(k) ∈
[λ,λ] ⊆ Rl, where λ = col(λ1, · · · , λl) and λ is defined
similarly. Moreover, the green ratio cannot be changed during
a duty cycle but only at the end of it, hence every ∆dc time
intervals of length ∆. This translates into the following linear
constraint Mu = 0 on the variable u where M ∈ RmTf×mTf

is used to impose for every ℓ ∈ l and k ≤ Tf multiple of
∆dc the constraint λℓ(k + 1) = λℓ(k + 2) = · · · = λℓ(k +
∆dc) . On the contrary, the demand d is assumed to be a
known, fixed exogenous input. Equal to the known demand
d = col((d(t), · · · ,d(t + Tf))) ∈ Rp2Tf over the prediction
horizon, i.e., Du = d with D ∈ RmTf×p2Tf being a suitable
matrix. Therefore, the set of constraints for the inputs over
the whole prediction horizon reads as

U =
{
u ∈

(
[λ,λ]× Rp2

+

)Tf |Mu = 0, Du = d
}
. (11)

The box constraints on the output ensure that the density
in the region remains below the grid-lock density ρmax ∈
Rp
+ (the density corresponding to zero flow), hence y(t) ∈

[0,ρmax] and Y := [0, ρmax]
Tf .

Finally, we apply to the system the first ∆dc optimal input
λ⋆ values computed via Algorithm 1 and used to control the
actuated traffic lights during the next duty-cycle.

2) Reference trajectory and cost function: Motivated and
inspired by [20], we take advantage of the concept of MFD
to estimate the optimal density for each region, ŷ used in
Algorithm 1. The concept of MFD formalizes the relation
between the flow ϕi and density ρi within a region i ∈ p.
As shown in Fig. 2, we can use the MFD to identify each
region’s ρcr,i that corresponds to the density ensuring the
maximum flow within the region, thus ρcr = col((ρcr,i)i∈p)
and ŷ = (ρcr,ρcr, · · · ). In (10), we minimize the distance
between the regions’ densities and the critical ones. In a
congested scenario, this implies maximizing the flow within
the region.
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100m

Fig. 3: The network is partitioned into the outer region 0
(solid magenta line) and in region 1 (dashed green line).
Black dots represent the controlled traffic lights.

The reference value of the inputs û is composed of the one
associated with λ, and the one for the exogenous output. The
former is constant and represents the ratio between green and
red used by the traffic lights when no control is applied. The
latter is exogenous and set equal to d according to (11).

In the cost function in (10), the matrices R and Q
are chosen positive definite. Note that the components of
∥u− û∥R associated with d are always equal to zero due to
the chosen reference and the constraints on u. Finally, the
regularization term ψ is chosen as in [5].

IV. SIMULATIONS

In this section, we compare the DeePC algorithm against
the MPC formulated in [32]. We study the behavior of DeePC
and MPC in a congested and an uncongested scenario.
The main difference between the two is the demand in the
network. Both scenarios are modeled using the state-of-the-
art simulation software package SUMO [33]. The emission
model used in the simulations is HBEFA v2.1-based [34].
All simulations are conducted on a 3.6 GHz AMD Rizen 7
4000 Series processor.

We consider a lattice network whose topology is shown
in Fig. 3. The network is composed of 208 roads (each
one equipped with a sensor) connected by 64 intersections,
of which 12 act as actuators. The duty cycle of the traffic
lights has a duration of ∆dc = 1.5 [min]. All vehicles are
assumed to be cars. The simulation spans one hour. Perimeter
control requires the network to be partitioned into regions,
composed of roads that are similar in terms of average
density producing a low scattered MFD. Fig. 3 shows the
partitioning used, where we define two regions region 0
(solid magenta lines) and region 1 (dashed green lines).

The demand in the network is directional, all trips gener-
ated move from region 0 to region 1. This simulates the flow
of vehicles traveling during the morning peak hours from the
outskirts of a city to the city center, i.e., from region 0 to 1.
The demand has a triangular shape, peaking at t =30 [min]
with a base of length 13 [min]. The maximum flow is 180
[veh/h] in the uncongested setting and 1080 [veh/h] in the
congested scenario. We compare the controllers also to the
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Fig. 4: Density (a) and flow (b) in region 1 in uncongested
(left column) and congested (right column) scenarios.

No Control baseline (No Control), hence a simulation where
the actuators’ input λ is constant and equal to the default
ratio used by SUMO. The average travel time of No Control
in the uncongested scenario is 9.3 [min] of which 6.7 [min]
is waiting time due to traffic congestion. In the congested
case, the average travel time rises to 20.6 [min] with 18.4
[min] of waiting time.

TABLE I: Performance and emissions of DeePC, MPC, and
No Contol (NoC.) in uncongested and congested scenarios.

UNCONGESTED CONGESTED
DeePC MPC NoC. DeePC MPC NoC.

TT (min) 5.84 6.56 9.33 18.4 20.6 20.6
WT (min) 2.89 3.51 6.74 15.6 18.4 18.4
CO (10−2kg) 3.9 4.6 7.6 16.8 19.2 19.2
CO2 (10−2kg) 95.8 108 150 289 324 325
HC (10−4kg) 2.03 2.38 3.84 8.35 9.50 9.54
PMx (10−4kg) 0.20 0.23 0.34 0.70 0.79 0.79
NOx (10−4kg) 4.16 4.69 6.68 13.1 14.7 14.8

TT: Average travel time, WT: Average waiting time.

Table I shows that DeePC outperforms No Control and
MPC both in terms of average travel time and CO2 emissions
reduction. DeePC also decreases the average travel time in
the uncongested case by 37.4% over No Control, compared
with the 29.6% obtained by MPC. Fig.4a highlights that
DeePC maintains the density closer ρcr, which in turn max-
imizes the flow Fig. 4b leading to the lower travel time.
By taking the average time saved and CO2 emissions and
multiplying them by the number of vehicles, we get the
total travel time and CO2 that have been saved, respectively
151 [h] and 1411 [kg] for DeePC. In the congested case,
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DeePC reduces the travel time by 10,7%, while MPC does
not perform significantly better than the No Control baseline.
This is because DeePC prevents a gridlock state, as shown in
Fig. 4b, and achieves substantially higher flows after t =40
[min]. The total travel time and CO2 emissions saved in this
scenario by using the DeePC are 318 [h] and 3113 [kg].

We applied the proposed control scheme to the more com-
plex microsimulation of the city of Zürich. The preliminary
results attained are omitted due to space limitations and
can be found in [35]. An in-depth analysis of this complex
scenario will be the topic of future research.

V. CONCLUSION

As urban areas continue to expand, exacerbating traffic
congestion and emissions, data-driven traffic management
strategies offer effective solutions to reduce congestion and
emissions. This paper has leveraged the data-driven control
algorithm DeePC to address the urban traffic control prob-
lem. Our preliminary results, based on a case study using
the high-fidelity SUMO simulation software, suggests the
great promise of the data-driven approach exemplified by
DeePC in outperforming existing methods, particularly in
key metrics such as travel time and CO2 emissions. Future
research should explore the engineering relevance of this
approach with a real-world case study.
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