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Abstract— We consider a constrained Markov decision
process with uncertain transition probabilities, where the
uncertainty is driven by a single parameter which belongs
to an interval. We model it using a robust optimization
framework and show that it is equivalent to a bilinear
programming problem. We propose a linear programming-
based algorithm to compute its global optimal solution.
The numerical experiments are performed on a well-known
class of Markov decision problems called Garnets using our
algorithm as well as Gurobi bilinear solver. We observe that
for the case of dense transition probabilities, our algorithm
outperforms Gurobi bilinear solver.

I. INTRODUCTION

A Markov decision process (MDP) is a framework to
model the decision-making of a dynamic system that
has a predefined set of states and a set of available
actions. At each time, the system is at some state, and
an action is chosen by a decision maker; accordingly, a
cost is incurred, and the system moves to the next state
according to a controlled Markov chain. This process
repeats over an infinite horizon. The decision maker
aims to minimize the overall expected cost incurred.
For an MDP problem with a finite number of states
and actions, with known stationary costs and transition
probabilities, a stationary deterministic optimal policy
can be computed using various algorithms, such as value
iteration, policy iteration, and linear programming (LP)
methods ([13]). In many scenarios, multiple costs are
incurred whenever a state is visited, and an action is
chosen. Such cases are modelled using a constrained
Markov decision process (CMDP) framework where the
decision maker aims to minimize one type of overall
cost subject to constraints on all other overall costs.
For a CMDP problem with a finite number of states
and actions, with known stationary costs and transition
probabilities, a stationary randomized optimal policy can
be computed by solving an LP problem [1].
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However, the values of the model parameters, namely,
the costs and the transition probabilities, are typically
obtained via observation and historical data. Hence, the
assumption in MDP/CMDP problems that their values
are exactly known is erroneous and may result in policies
that is not optimal in practice [9]. Thus, it is better
to model them as uncertain parameters. Although a
number of works have studied MDPs in this context,
including, [15], [12], [5], [19], the studies on CMDPs
with uncertain parameters are limited. In [7], a CMDP
problem with known transition probabilities and uncer-
tain cost vectors belonging to an interval uncertainty set
is considered, and the resulting robust CMDP problem is
shown to be equivalent to an LP problem. This result is
extended in [17] to other convex uncertainty sets, and in
each case, the resulting robust CMDP problem is shown
to be equivalent to a convex optimization problem. On
the other hand, in [18], the costs are defined using
random vectors, and the CMDP problem is modelled
as a joint chance constraint programming problem. This
problem is then approximated using two second-order
cone programming problems which give upper and lower
bounds on the optimal value of the original problem. To
the best of our knowledge, a reformulation of the CMDP
problem under uncertain transition probabilities has not
been considered in the literature.

In this paper, we consider a CMDP problem under
a discounted cost criterion, with known costs and un-
certain transition probabilities. Such a problem can be
applied to a machine replacement problem where the
transition probabilities need not be exactly known and
are realized as the system progresses. We assume the un-
certainty stems from a single parameter that belongs to
an interval. We formulate it as a robust CMDP problem
and show that it is equivalent to a bilinear programming
(BP) problem when the policies are restricted to the
stationary class. We construct an LP-based algorithm
to compute the optimal policy of the robust CMDP
problem by finding the global optimal solution of the BP
problem. The numerical experiments are performed on
randomly generated instances on a well-known class of
MDP problems called Garnets ([2], [3]) using LP-based
algorithm and existing Gurobi bilinear solver. In many
instances, LP-based algorithm performs better than the
Gurobi bilinear solver.
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The structure of the paper is as follows. Section II
contains a CMDP model. In Section III, we present a BP
formulation of a robust CMDP model and an LP-based
algorithm to compute its optimal policy. Section IV
contains numerical experiments on random CMDPs, and
we conclude the paper in Section V.

II. CONSTRAINED MARKOV DECISION PROCESS

We consider a discrete-time infinite-horizon CMDP
model under a discounted cost criterion. Let S and A(s)
denote a finite set of states and actions available at
each state s ∈ S, respectively. Let the set of all state-
action pairs be denoted by K, i.e., K = {(s, a) | s ∈
S, a ∈ A(s)}; |K| is the cardinality of K. At time
t = 0, suppose the system is at s0 with probability
γ(s0) > 0, at which an action a0 is taken by the decision
maker. As a consequence, costs c(s0, a0), dk(s0, a0),
k ∈ K = {1, 2, . . . ,K}, are incurred. At t = 1, the
system moves to a state s1 with probability p(s1|s0, a0)
and the same procedure repeats infinitely. We assume
γ(s) > 0 for all s ∈ S, and the costs c(s, a), dk(s, a),
k ∈ K and the transition probabilities p(s′|s, a) are
stationary, i.e., they are time-invariant. The choice of an
action at time t defined by a decision rule may depend
on the history ht = (s0, a0, s1, a1, . . . , st−1, at−1, st) at
time t. Whenever a history ht is observed, an action at
is taken at st according to a decision rule fh

t = ft(ht) ∈
℘(A(st)), where ℘(A(st)) denotes the set of probability
distributions over the action set A(st). Such a decision
rule is called a history-dependent decision rule and a
sequence fh = (fh

t )
∞
t=0 is called a history-dependent

policy. A policy is called stationary if there exists a
decision rule f such that fh

t = f for all t. We denote
a stationary policy, with some abuse in notations, by f
and according to f , whenever the Markov chain visits
a state s, an action a ∈ A(s) is taken with probability
f(s, a). Let FS be the set of all stationary policies. An
optimal policy of a CMDP problem exists in the class
of stationary policies [1]. In this paper, we restrict our
attention to these stationary policies for simplicity. The
cost vector

(
c(s, a)

)
(s,a)∈K corresponds to the objective

function and the cost vectors
(
dk(s, a)

)
(s,a)∈K, k ∈ K,

constitute the costs on which constraints are imposed.
The policy f and the initial distribution γ define a prob-
ability measure Pf

γ over the state and action trajectories
(for details, see Section 2.1.6 of [13]), and Ef

γ denotes
the expectation operator corresponding to Pf

γ . We denote
a random state-action pair at time t by (Xt,At). For a
given f ∈ FS , γ, and a discount factor α ∈ (0, 1), the
expected discounted costs corresponding to the objective
function and constraints are given by

Cα(γ, f) = (1− α)

∞∑
t=0

αtEf
γ

(
c(Xt,At)

)
, (1)

Dk
α(γ, f) = (1− α)

∞∑
t=0

αtEf
γ

(
dk(Xt,At)

)
, ∀ k ∈ K,

(2)
where 1 − α denotes the normalization constant that
ensures the above costs do not become large when
α ≈ 1. Let ξ =

(
ξk
)
k∈K be the upper bounds on the

expected discounted costs given by (2). Then, an optimal
policy for a CMDP problem can be obtained by solving
the following optimization problem

min
f∈FS

Cα(γ, f)

s.t. Dk
α(γ, f) ≤ ξk, ∀ k ∈ K. (3)

It follows from the proof of Theorem 3.1 of [1] that the
costs in (1), (2) can be written in matrix form as

Cα(γ, f) = (1− α)γT(I − αPf

)−1
cf , (4)

Dk
α(γ, f) = (1− α)γT(I − αPf

)−1
dkf , ∀ k ∈ K, (5)

where cf =
(
cf (s)

)
s∈S , cf (s) =

∑
a∈A(s)

f(s, a)c(s, a),

dkf =
(
dkf (s)

)
s∈S , dkf (s) =

∑
a∈A(s)

f(s, a)dk(s, a),

k ∈ K; T denotes the transposition. Furthermore,
Pf =

(
Pf (s

′|s)
)
s,s′

∈ R|S|×|S| is the transition
probability matrix induced by f , such that Pf (s

′|s) =∑
a∈A(s)

f(s, a)p(s′|s, a), and I ∈ R|S|×|S| is the identity

matrix. Since the costs defined by (4), (5) are nonlinear
functions of f , it is difficult to solve (3) in terms of
f . It follows from [1] that the expected discounted costs
can be written as linear functions of occupation measure
gα(γ, f) =

{
gα(γ, f ; s, a)

}
(s,a)∈K defined by,

gα(γ, f ; s, a) =
(
(1− α)γT

(
I − αPf

)−1)
s
f(s, a),

(6)

where
(
(1 − α)γT

(
I − αPf

)−1)
s

denotes the sth-
component of the vector (1−α)γT

(
I−αPf

)−1
. It fol-

lows from Theorem 3.2 of [1] that the set of occupation
measures defined for stationary policies is equal to the
set Qα(γ) defined by

Qα(γ) =
{
ρ ∈ R|K||

∑
(s,a)∈K

ρ(s, a)
(
δ(s′, s)−αp(s′|s, a)

)
= (1− α)γ(s′), ∀ s′ ∈ S, ρ(s, a) ≥ 0,∀ (s, a) ∈ K

}
,

(7)

where δ(s′, s) is the Kronecker delta, i.e., δ(s′, s) =
1 if s′ = s, and 0, otherwise. As a result, ρ(s, a) =
gα(γ, f ; s, a), for all (s, a) ∈ K, s′ ∈ S and (3) can be
equivalently written as the following LP problem

min
ρ∈R|K|

∑
(s,a)∈K

ρ(s, a)c(s, a)

2997



s.t.
∑

(s,a)∈K

ρ(s, a)dk(s, a) ≤ ξk, ∀ k ∈ K, ρ ∈ Qα(γ).

If ρ∗ is the optimal solution of the above LP problem,
the optimal stationary policy f∗ of (3) is given by

f∗(s, a) =
ρ∗(s, a)∑

a∈A(s)

ρ∗(s, a)
, for all (s, a) ∈ K. Since

we assume γ(s) > 0, for all s ∈ S, it follows from (7)
that every vector ρ ∈ Qα(γ) satisfies

∑
a∈A(s)

ρ(s, a) > 0,

for all s ∈ S. Thus, the policy f∗ is well-defined.

III. ROBUST CMDP MODEL

We consider a CMDP problem with known costs
and uncertain transition probabilities defined by a single
uncertain parameter, u which belongs to an interval
[
¯
u, ū]. The expected discounted costs depend on u, and

we denote them by Cu
α(γ, f), D

k,u
α (γ, f), for all k ∈ K.

The corresponding robust CMDP problem restricted to
the class of stationary policies is defined as

min
f∈FS

max
u∈[

¯
u,ū]

Cu
α(γ, f)

s.t. max
u∈[

¯
u,ū]

Dk,u
α (γ, f) ≤ ξk, ∀ k ∈ K. (8)

Similar to (4) and (5), we can write

Cu
α(γ, f) = (1− α)γT(I − αPu

f

)−1
cf ,

Dk,u
α (γ, f) = (1− α)γT(I − αPu

f

)−1
dkf , ∀ k ∈ K,

where Pu
f is the transition probability matrix, under

u, induced by f , whose (s, s′)th entry is defined by,
Pu
f (s
′|s) =

∑
a∈A(s)

f(s, a)pu(s′|s, a). For each (s, a) ∈

K, s′ ∈ S, pu(s′|s, a) denotes the uncertain transition
probability of moving to a state s′ from a state s when
an action a ∈ A(s) is taken. We propose two specific
uncertainty structures for the transition probabilities.
(S1) There exists an uncertain state, ŝ, such that the tran-

sition probabilities to all the states from all state-
action pairs (ŝ, a), a ∈ A(ŝ), are uncertain while
other transition probabilities are deterministic. For
all (s, a) ∈ K, s′ ∈ S, they are given by

pu(s′|s, a) =

{
p(s′|s, a) + um(s′|s, a); s = ŝ,

p(s′|s, a); otherwise,

where m(s′|ŝ, a) are known scalars such that∑
s′∈S

m(s′|ŝ, a) = 0, for all a ∈ A(ŝ).

(S2) Transition probabilities corresponding to all state-
action pairs are uncertain such that for all (s, a) ∈
K, s′ ∈ S, pu(s′|s, a) = p(s′|s, a) + uβ(s)m(s′),
where β(s) and m(s′) are known scalars such that∑
s′∈S

m(s′) = 0.

Under (S1) and (S2), for each (s, a) ∈ K, s′ ∈ S,
p(s′|s, a) is the observed transition probability while
m(s′|s, a), m(s′), and β(s) are known scalars. We
assume that the uncertain parameter, u and the known
scalars are such that pu(s′|s, a) ≥ 0, (s, a) ∈ K, s′ ∈ S,
i.e., they define transition probabilities. Thus, we can
represent Pu

f in matrix form by Pu
f = Pf + uMf , and

under both (S1) and (S2), the rank of the matrix Mf is
1. Therefore, the matrix

(
I − αPu

f

)
can be viewed as

a sum of a full rank matrix,
(
I − αP ¯

u
f

)
and a rank 1

matrix, α(
¯
u − u)Mf . The inverse of such a matrix is

given by the following Lemma 1.

Lemma 1. ([11]) For given non-singular matrices G

and G+H , where H is a matrix of rank 1,
(
G+H

)−1
=

G−1 − G−1HG−1

1 + Tr(HG−1)
, where Tr(HG−1) denotes the

trace of the matrix, HG−1 such that 1+Tr(HG−1) ̸= 0.

Let Qu
f =

(
I −αPu

f

)−1
. The matrices G = I −αP ¯

u
f

and H = α(
¯
u−u)Mf satisfy the conditions of Lemma 1

and Qu
f =

(
G+H

)−1
. Thus,

Qu
f = Q¯

u
f +

α(u−
¯
u)

1− α(u−
¯
u)Tr

(
MfQ¯

u
f

)Q¯
u
fMfQ¯

u
f .

Lemma 2. For a given f ∈ FS , the function g :

[
¯
u, ū] → R defined as g(u) =

u−
¯
u

1− α(u−
¯
u)Tr

(
MfQ¯

u
f

) ,

is strictly increasing in u.

Proof. This follows from the first-order derivative of g,

g′(u) =
1(

1− α(u−
¯
u)Tr

(
MfQ¯

u
f

))2 > 0.

It follows from Lemma 2 that depending on the
sign of the terms γTQ¯

u
fMfQ¯

u
f cf and γTQ¯

u
fMfQ¯

u
fd

k
f ,

k ∈ K, the optimal solution of each inner optimization
problem in (8) occurs at either endpoint of the interval
[
¯
u, ū]. We define z = max

u∈{
¯
u,ū}

Cu
α(γ, f) and equivalently

write (8) as

min
z,f∈FS

z

s.t. (1− α)γTQu
f cf ≤ z, ∀ u ∈ {

¯
u, ū},

(1− α)γTQu
fd

k
f ≤ ξk, ∀ k ∈ K, u ∈ {

¯
u, ū}. (9)

A. Bilinear programming formulation

Using the occupation measure corresponding to sta-
tionary policies, we show that (9) is equivalent to a BP
problem.

Theorem 3. The optimization problem (9) is equivalent
to the following BP problem

min
z, ρ

¯
u,ρū∈R|K|

z
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s.t.
∑

(s,a)∈K

ρ
¯
u(s, a)c(s, a) ≤ z, ρ

¯
u ∈ Q¯

u
α(γ), (10a)

∑
(s,a)∈K

ρ
¯
u(s, a)d

k(s, a) ≤ ξk, ∀ k ∈ K, (10b)

∑
(s,a)∈K

ρū(s, a)c(s, a) ≤ z, ρū ∈ Qū
α(γ), (10c)

∑
(s,a)∈K

ρū(s, a)d
k(s, a) ≤ ξk, ∀ k ∈ K, (10d)

ρ
¯
u(s, a)

( ∑
a∈A(s)

ρū(s, a)

)
= ρū(s, a)

( ∑
a∈A(s)

ρ
¯
u(s, a)

)
,

∀ (s, a) ∈ K, (10e)

where Qu
α(γ), is defined as in (7), with p(s′|s, a) re-

placed by pu(s′|s, a), for u ∈ {
¯
u, ū}.

Proof. Let (z, f) be a feasible vector of (9). For
each (s, a) ∈ K, u ∈ {

¯
u, ū}, define ρu(s, a) =

gα(γ, f, u; s, a), where gα(γ, f, u; s, a) is defined by
(6) using the transition probability matrix Pu

f . Since
γ(s) > 0, for all s ∈ S, it follows from (6) that∑
a∈A(s)

gα(γ, f, u; s, a) > 0, for all s ∈ S. It follows

from Theorem 3.2 of [1] that ρ
¯
u and ρū satisfy (10a-b)

and (10c-d), respectively, and for each (s, a) ∈ K, u ∈
{
¯
u, ū}, f satisfies f(s, a) =

ρu(s, a)∑
a∈A(s)

ρu(s, a)
. Hence,

ρu, u ∈ {
¯
u, ū}, satisfies (10e). Therefore, (z, ρ

¯
u, ρū)

is a feasible vector of (10). Conversely, let (z, ρ
¯
u, ρū)

be a feasible vector of (10). Since γ(s) > 0, for all
s ∈ S, equality constraints in (10a) and (10c) imply that∑
a∈A(s)

ρu(s, a) > 0, for all s ∈ S, u ∈ {
¯
u, ū}. From

(10e), define for each (s, a) ∈ K, u ∈ {
¯
u, ū}, f(s, a) =

ρu(s, a)∑
a∈A(s)

ρu(s, a)
. Furthermore, since ρ

¯
u and ρū satisfy

(10a-b) and (10c-d), respectively, it follows from the
proof of Theorem 3.2 of [1] that,

{
ρu(s, a)

}
(s,a)∈K ={

gα(γ, f, u; s, a)
}
(s,a)∈K, u ∈ {

¯
u, ū}. Therefore, (z, f)

is a feasible vector of (9).

Theorem 3 shows that the reformulation of (9) using
occupation measures is a BP problem with bilinear terms
limited to (10e). It is well known that a bilinear equal-
ity constraint can be approximated by a McCormick
envelope ([10], [4]). In Section III-B, we propose an
algorithm to solve (10), based on solving a sequence of
LP problems. At every iteration of the algorithm, the
McCormick envelope gets finer and produces a tighter
lower bound. The algorithm eventually converges to a
global optimal solution of (10).

B. LP-based algorithm

For notational simplicity, let ρu(s) =
∑

a∈A(s)

ρu(s, a),

for all s ∈ S, u ∈ {
¯
u, ū}. The constraints (10e) can be

equivalently written as

w
¯
u(s, a) = wū(s, a), w

¯
u(s, a) = ρ

¯
u(s, a)ρū(s),

wū(s, a) = ρū(s, a)ρ
¯
u(s), ∀ (s, a) ∈ K. (11)

In order to approximate the bilinear constraints of (11),
we construct lower and upper bounds for each term used
in the product. From the proof of Theorem 3, for a
given ρu, u ∈ {

¯
u, ū}, there exists an f ∈ FS such that

ρu(s, a) = gα(γ, f, u; s, a), for all (s, a) ∈ K. Hence,
from (6) we have ρu(s) =

(
(1−α)γTQu

f

)
s
, for all s ∈

S. Define an |S| × |S| matrix, Pu
min =

(
pumin(s

′|s)
)
s,s′

,
where pumin(s

′|s) = min
a∈A(s)

pu(s′|s, a), for all s, s′ ∈ S.

Thus, Pu
f ⪰ Pu

min, for all f ∈ FS , where ⪰ denotes
componentwise inequality. Moreover, since

(
I − αPu

f

)
and

(
I−αPu

min

)
are M-matrices, it follows from Theo-

rem 1.8 of [6] that, Qu
f ⪰

(
I−αPu

min

)−1
. Thus, a lower

bound to ρu(s), is given by

ρLu (s) =
(
(1− α)γT

(
I − αPu

min

)−1)
s
. (12)

Since
∑
s∈S

ρu(s) = 1, an upper bound to ρu(s) is given

by
ρUu (s) = 1−

∑
s′ ̸=s

ρLu (s
′), ∀ s ∈ S. (13)

Therefore, for each s ∈ S, ρu(s) ∈ [ρLu (s), ρ
U
u (s)], and

thus, for each (s, a) ∈ K, ρu(s, a) ∈ [0, ρUu (s)]. We
approximate (11) by the following McCormick envelope

w
¯
u(s, a) = wū(s, a), w

¯
u(s, a) ≤ ρUū (s)ρ

¯
u(s, a),

w
¯
u(s, a) ≤ ρLū (s)ρ

¯
u(s, a) + ρU

¯
u (s)ρū(s)− ρU

¯
u (s)ρ

L
ū (s),

w
¯
u(s, a) ≥ ρLū (s)ρ

¯
u(s, a), wū(s, a) ≤ ρU

¯
u (s)ρū(s, a),

w
¯
u(s, a) ≥ ρUū (s)ρ

¯
u(s, a) + ρU

¯
u (s)ρū(s)− ρU

¯
u (s)ρ

U
ū (s),

wū(s, a) ≤ ρL
¯
u (s)ρū(s, a) + ρUū (s)ρ

¯
u(s)− ρUū (s)ρ

L

¯
u (s),

wū(s, a) ≥ ρU
¯
u (s)ρū(s, a) + ρUū (s)ρ

¯
u(s)− ρUū (s)ρ

U

¯
u (s),

wū(s, a) ≥ ρL
¯
u (s)ρū(s, a), ∀ (s, a) ∈ K. (14)

Therefore, an LP approximation of (10) is given by

min
z, ρ

¯
u,ρū,w

¯
u,wū

z

s.t. (10a− d), (14). (15)

The optimal value of (15) is a lower bound to the optimal
value of (10). If an optimal solution of (15) satisfies (11),
it is also an optimal solution of (10). This motivates us
to consider the following stopping criterion,

max
(s,a)∈K

|ρ
¯
u(s, a)ρū(s)− ρū(s, a)ρ

¯
u(s)| ≤ ϵ, (16)
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Algorithm 1 : LP-based algorithm
Input : All known parameters of (10), ϵ
Output : Optimal solution of (10)

1: initialization : Fix ρL

¯
u , ρU

¯
u , ρL

ū , ρU
ū from (12) and (13), j = 0, Bj ={

[ρL
u , ρU

u ]
}
u∈{

¯
u,ū}, B̄j = {}

2: solve (15)Bj
and get (z∗, ρ∗

¯
u, ρ

∗
ū)

▷ (15)Bj
: LP problem (15) where (14) is constructed using bounds of Bj

3: while (16) is false for (ρ∗

¯
u, ρ

∗
ū) do

4: find s′ that satisfies (17)
5: solve (15)SR1(Bj)

6: solve (15)SR2(Bj)

7: solve (15)SR3(Bj)

8: solve (15)SR4(Bj)

▷ (15)SRi(Bj)
: LP problem (15) where (14) is constructed using

bounds of SRi(Bj); SRi(Bj) is obtained by splitting Bj as in (SRi),
i = 1, 2, 3, 4

9: R =
{
{SRi(Bj)}4i=1, B̄j

}
10: Bj+1 ∈ argmin

R∈R
z
∗((15)R

)
▷ z∗((15)R

)
: optimal value, z∗ of

(15)R
11: B̄j+1 = R\Bj+1

12: j ← j + 1
13: ρ∗

¯
u ← ρ∗

¯
u

(
(15)Bj

)
▷ ρ∗

¯
u

(
(15)Bj

)
: optimal solution, ρ∗

¯
u of (15)Bj

14: ρ∗
ū ← ρ∗

ū

(
(15)Bj

)
▷ ρ∗

ū

(
(15)Bj

)
: optimal solution, ρ∗

ū of (15)Bj

15: end while

for some pre-fixed small ϵ > 0, for the algorithm
based on solving a sequence of LPs given by (15).
For a sufficiently small ϵ, if an optimal solution
(z∗, ρ∗

¯
u, ρ
∗
ū, w

∗
¯
u, w

∗
ū) of (15) satisfies (16), we declare it

to be an optimal solution of (10). However, if (16) is
not satisfied, we split the feasible region of (10) at the
decision variables ([14], [16]). For splitting, we select
the state index, s′, that contradicts the equality by the
largest absolute value, i.e.,

s′ ∈ argmax
(s,a)∈K

|ρ∗
¯
u(s, a)ρ

∗
ū(s)− ρ∗ū(s, a)ρ

∗
¯
u(s)| (17)

and split ρu(s
′) at the midpoint of the interval

[ρLu (s
′), ρUu (s

′)], u ∈ {
¯
u, ū}. This is one of the standard

points for splitting ([4]). This gives four sub-regions,
(SRi), i = 1, 2, 3, 4. We intersect (10) with each sub-
region, update the lower and upper bounds correspond-
ing to state s′, which satisfies (17) and keep the bounds
other other states the same. We approximate each sub-
problem by generating finer McCormick envelopes ([4])
using the updated lower and upper bounds. The optimal
value of the LP approximation of ith, i = 1, 2, 3, 4, sub-
problem gives a lower bound to the optimal value of
(10) in the sub-region (SRi). If the optimal solution
of the LP approximation of a sub-problem with the
lowest optimal value satisfies (16), we stop and declare
the optimal solution of the sub-problem as an optimal
solution of (10). Otherwise, we split the feasible sub-
region, corresponding to the lowest optimal value of (10)
into four sub-regions and repeat the procedure. Selecting
the sub-region with the lowest optimal value among all
the sub-regions, for further splitting guarantees that we
do not lose the global optimal solution of (10). We
summarize the procedure in Algorithm 1.

IV. NUMERICAL EXPERIMENTS

We perform numerical experiments, using Algo-
rithm 1, on a class of CMDPs, motivated from Garnets
([3], [18]). The experiments are performed in MATLAB
using Yalmip toolbox ([8]) with Gurobi solver on an
Intel(R) 64-bit Core(TM) i5-8250U CPU @ 1.60GHz
with 8.0 GB RAM machine. We fix α = 0.7 and γ to
be a randomly generated probability distribution.

We fix the parameter tuple (|S|, |A|, |BF |), where |A|
is the number of actions (we assume that same actions
are available at each state), and |BF | is the number of
states reachable from every state-action pair. From each
(s, a) ∈ K, we choose |BF | states and denote them
by B

(s,a)
F =

{
siBF

}|BF |
i=1

. For each (s, a), we randomly

generate |BF |−1 values and denote them by
(
qi
)|BF |−1
i=1

.
Following Section 4.2 of [18], the transition probabilities
obtained via observation history are defined as

p(s′|s, a) =

{
qi − qi−1; s′ = siBF , i = 1, 2, . . . , |BF |,
0; otherwise,

where q0 = 0 and q|BF | = 1.
We assume that the observed transition probabili-

ties are uncertain and follow the uncertainty structure
(S1). We randomly pick a state ŝ ∈ S and for each
action a ∈ A(ŝ), we choose 0.25|BF | states from
B

(ŝ,a)
F such that the transition probability to these

states from ŝ is more than the transition probability
for rest of the states of B

(ŝ,a)
F . Let these states be

denoted by B
(ŝ,a)
0.25F . We generate the weights for (S1)

as: m(s′|ŝ, a) ∈
[
− min

s′
p(s′|ŝ, a),min

s′
p(s′|ŝ, a)

]
if

s′ ∈ B
(ŝ,a)
0.25F , and m(s′|ŝ, a) = 0, otherwise, such that∑

s′∈B(ŝ,a)
0.25F

m(s′|ŝ, a) = 0. We assume u ∈ [−1, 1]. We

fix |S| = 500, |A|, |K| = 10. We randomly generate the
components of c ∈ R5000 from (50, 500), dk ∈ R5000

from (50, 200), and ξ ∈ R10 from (100, 150). We
consider two values of |BF |: (i) 100 (20% reachable
states) and (ii) 400 (80% reachable states). For the above
data, we solve (10) using the existing bilinear solver
and Algorithm 1 with ϵ = 10−7. For Algorithm 1,
we terminate the execution of the while loop after a
wall-clock time of 14400 seconds. We summarize the
results in Figure 1. We conclude that the bilinear solver
and Algorithm 1 give the same optimal value in each
instance. In the instances marked with ‘∗’, the Algo-
rithm 1 exceeded the fixed time and was terminated for
|BF | = 100. In the figure, we summarize the CPU time
taken till the termination of execution for these cases. In
terms of the CPU time taken, we observe that the bilinear
solver performs better in 15 instances with |BF | = 100,
while Algorithm 1 performs better in 19 instances with
|BF | = 400. In addition, the bilinear solver takes less
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Fig. 1. Random CMDPs.

time to solve the problems with |BF | = 100 than with
|BF | = 400 in each instance, thereby indicating that it
depends on the problem size. In contrast, Algorithm 1
takes less time to solve problems with |BF | = 400 than
with |BF | = 100 in 16 instances. This may be because
a larger value of |BF |, forces the components of m in
a smaller interval. Hence, starting from a tight bound of
the decision variables in the bilinear equality constraints
and splitting solves the problem in relatively less time.

V. CONCLUSION

We consider a CMDP problem with uncertain tran-
sition probabilities defined by a single uncertain pa-
rameter. Under a stationary class of policies, the robust
CMDP problem is equivalent to a BP problem. We pro-
pose an algorithm to compute its global optimal solution
and compare the performance of our algorithm with
the Gurobi bilinear solver on random CMDPs. In most
cases, our algorithm performs better than Gurobi bilinear
solver as the density of the transition probability matrix
increases. For a dense matrix, the interval of uncertainty
becomes small. Thus, starting from tight lower bounds,
our algorithm converges faster compared to Gurobi bi-
linear solver, which is designed for general BP problems.
The CMDP formulation in this paper considers the case
where uncertainty in transition probabilities is driven by
a single uncertain parameter. However, in many realistic
situations, there could be multiple uncertain parameters.
We plan to explore this direction in our future research.
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