
Stealthy Deactivation of Safety Filters

Daniel Arnström, André M.H. Teixeira

Abstract— Safety filters ensure that only safe control actions
are executed. We propose a simple and stealthy false-data
injection attack for deactivating such safety filters; in particular,
we focus on deactivating safety filters that are based on control-
barrier functions. The attack injects false sensor measurements
to bias state estimates to the interior of a safety region,
which makes the safety filter accept unsafe control actions. To
detect such attacks, we also propose a detector that detects
biases manufactured by the proposed attack policy, which
complements conventional detectors when safety filters are used.
The proposed attack policy and detector are illustrated on a
double integrator example.

I. INTRODUCTION

Cyber-physical systems (CPSs) integrate communication,
computation, and control technologies, which enable ad-
vanced control systems that are efficient, sustainable, and
resilient [1]. The cyber components of CPSs do, however,
also open up for new vulnerabilities since they enable cyber
attacks [2][3, §4.C]. To address these novel vulnerabilities,
several control-theoretic approaches that analyze and im-
prove the security of CPSs have been proposed [4]. Such
approaches are especially important for CPSs that are safety
critical, since successful attacks to such systems can have
severe, even fatal, consequences [3, §4.B].

In parallel with the development of the above-mentioned
work on security for CSPs, a promising framework has been
developed for safety of control systems through so-called
safety filters [5]–[8]. A safety filter takes in a desired control
action and the current state of the system, and outputs a
filtered control action that guarantees a safe behaviour of the
system. Such filters separate safety from performance, since
any controller can be used to produce the desired control
action; this allows for safety guarantees even when using
unpredictable controllers such as experimental data-driven
controllers [9].

In this paper we consider a cyber attack that injects false
data on the communication channel from sensor measure-
ments to a state observer, as illustrated in Figure 1. The
goal of the attack is to produce synthetic measurements ya

that “deactivate” the safety filter, which in turn allows for
dangerous control actions to be applied to the plant. Our
specific focus in this paper is on safety filters that are based
on control-barrier functions (CBFs), but the main idea applies
to other types of safety filters (see, e.g., [5] for a recent
survey on safety filters).

D. Arnström and A. Teixeira are with the Division of Systems and Con-
trol, Depratment of Information Technology, Uppsala University, Sweden
{daniel.arnstrom,andre.teixeira}@it.uu.se This
work is supported by the Swedish Foundation for Strategic Research.

I Detector

s Primary
Controller

è Safety
Filter

� Plant

O Observer

´

ya

udes

uact

y

x̂

r E

Fig. 1: Overview of the system architecture considered in this
paper. The safety filter produces a safe control action uact given a
desired control udes and the current estimated state x̂. An adversary
tries to deactivate this filter through false-data injections on the
communication channel between the sensors and the observer by
replacing the true measurement y with a synthetic measurement ya.

A common protection against false-data injections is
anomaly detectors [10], which raise an alarm if the obtained
measurement is too far from the expected measurement. Here
we specifically consider stealthy attacks, which are designed
to circumvent such anomaly detectors [2].

The proposed stealthy false-data injection attack biases
the state estimates toward the center of a safe set, making
the safety filter accept unsafe control actions. An important
difference with the proposed attack and classical false-data
injection attacks (see, e.g., [11]) is that the adversary does
not need direct access to a dynamical model of the system
under attack, which is due to the attack being tailored to
deactivate safety filters. The contributions of this work can
be interpreted as extending some of the work on adversarial
examples from a static setting [12] to a dynamic setting.

In addition to an attack that biases state estimates towards
the center of a safe set, we also propose a way of detecting
such biases. To this end, we proposed a detector that cor-
relates the difference of expected and actual measurements
with directions towards the interior of the safe set.

To summarize, the main contributions of the paper are:
1) A stealthy false-data injection attack that biases state

estimates to deactivate CBF-based safety filters.
2) An anomaly detector that detects measurement residu-

als that are biased toward the interior of the safe set.

A. Definitions and notation

The gradient of a function f(x) is denoted ∇f(x) ≜ ∂f
∂x

and is represented as a column vector. The ith element of a
vector v is denoted [v]i. The boundary of a set S is denoted
∂S. A continuous function α : (−a, b) → R, with a, b > 0,
is said to be extended class K (α ∈ Ke) if it is strictly
increasing and α(0) = 0.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3070

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider dynamical systems of the form

ẋ = f(x, u), (1)

with state x ∈ Rnx and control u ⊆ Rnu . The dynamics of
the system is given by f : Rnx × Rnu → Rnx . Moreover,
the system generates measurements y ∈ Rny according to

y = h(x) + e, (2)

with the measurement function h : Rnx → Rny and
measurement noise e (for our purpose, we make no particular
assumptions on e.)

An estimate x̂ ∈ X of the system state x is obtained by
an observer of the form

˙̂x = f(x̂, u) +K(y − h(x̂)), (3)

where the observer gain K ∈ Rnx×ny might be time- and
state-dependent. In addition to correcting the state estimate,
the innovation y − h(x̂) from the observer is used as the
residual r in an anomaly detector; in particular, an anomaly
is flagged if ∥y−h(x̂)∥ > δ, where δ > 0 is a user-specified
threshold that trades off sensitivity and false-detections.

A. Safety and Invariance

In this paper we are interested in the safety of system (1),
defined through admissible states and control actions.

Definition 1 (Safety): Given a set of admissible states
X ⊆ Rnx and a set of admissible controls U ⊆ Rnu , the
system in (1) is said to be safe if

x(t) ∈ X and u(t) ∈ U for all t ≥ 0. (4)
A common way to ensure safety is to find a forward

invariant subset of the admissible states. To define forward
invariance, let κ : X → U be a control policy, which results
in the closed-loop (autonomous) system

ẋ = f(x, κ(x)). (5)

For an autonomous system of the form (5) we define forward
invariance in the following way.

Definition 2 (Forward invariance): A set S ⊆ Rnx is
forward invariant for the closed-loop system (5) if x(0) ∈ S
implies that x(t) ∈ S for all t ≥ 0.

Next, we make the connection between forward invariant
sets and safety of (1) explicit.

Lemma 1 (Forward invariance → safety): The system in
(1) is safe if there exists a control policy κ : X → U and
a set S ⊆ X such that S is forward invariant for the closed
loop system (5).

Proof: From the range of κ we directly have that u(t) ∈
U for all t ≥ 0 since u(t) = κ(x). Moreover, we have from
the forward invariance of S that x(t) ∈ S for all t ≥ 0, but
since S ⊆ X we also have that x(t) ∈ X for all t ≥ 0.

We will call invariant sets such that S ⊆ X safe sets;
additionally, we assume that safe sets can be characterized
with a continuously differentiable function hS : X → R as

S = {x ∈ Rnx : hS(x) ≥ 0}. (6)

B. Safety filters

In the previous subsection we established the connection
between the safety of (1) and the existence of a forward
invariant set. To be able to use this in practice, however,
a more pragmatic characterization of forward invariance is
necessary. Most safety filters build on the following classical
characterization of forward invariance:

Theorem 1 (Nagumo’s theorem [13]): Let S ⊆ X be de-
fined as S ≜ {x ∈ Rnx |hS(x) ≥ 0}, where hS is contin-
uously differentiable. Moreover, assume that the interior of
S is non-empty. Then S is forward invariant for (5) if and
only if

ḣS(x) = ∇hS(x)
T f(x, κ(x)) ≥ 0 (7)

for any x ∈ ∂S.
Intuitively, Theorem 1 states that forward invariance of

S is equivalent to the system state changing towards the
interior of S when it is at the boundary ∂S. The condition
(7) is, however, not practical since it is only enforced on
the boundary ∂S, which has measure zero. One motivation
behind introducing control-barrier functions (CBFs) is to
obtain a Nagumo-like condition that holds on the entire S. In
particular, this is done through adding a strengthening term
in the form of an extended class K function to the right-hand
side of (7).

Definition 3 (Control Barrier Function): The function
hS is a control-barrier function for (1) if there exists α ∈ Ke

such that

sup
u∈U
∇hS(x)

T f(x, u) ≥ −α(hS(x)). (8)

for any x ∈ S.
A key relationship between CBFs and forward invariance

is stated in the following theorem.
Theorem 2 (CBF → forward invariance [7]): Let S ⊆

X be defined as S ≜ {x ∈ Rnx |hS(x) ≥ 0}, where hS

is a continuously differentiable CBF. Moreover, assume that
∇hS(x) ̸= 0 for any x ∈ ∂S. Then any Lipschitz continuous
control policy κ : X → U such that κ(x) ∈ ŨS(x) makes S
forward invariant for the closed-loop system (5).

We introduce notation for the corresponding set of control
actions ŨS(x) that ensure forward invariance of S given the
state x; that is,

ŨS(x) ≜ {u ∈ U : ∇hS(x)
T f(x, u) ≥ −α(hS(x))}. (9)

A safety filter that is based on CBFs is the Active Set
Invariance Filter (ASIF) [7] that filters control actions ac-
cording to the policy

κASIF(x, udes) = argmin
u∈U

∥u− udes∥2

∇hS(x)
T f(x, u) ≥ −α(hS(x)),

(10)

where udes ∈ Rnu is a desired control action. If the set
of admissible control actions U is a polyhedron and the
dynamics f is control affine, the resulting optimization
problem in (10) is a quadratic program (QP). The ASIF is
said to be minimally invasive, since it finds a safe control
action that is as close as possible to the desired control action

3071

udes. In the rest of the paper, we will consider how safety
filters of the form (10) can be “deactivated”.

C. Formulation of adversarial problem
The overarching objective of the adversary is to make the

system unsafe; that is, to get x /∈ X . Since we assume that
control actions applied to the system are filtered through a
safety filter of the form (10), which ensures that x ∈ X , an
attacker cannot make the system unsafe as long as the state x
is estimated correctly. To this end, the adversary need to alter
the measurement y to bias the state estimate x̂ such that the
safety filter becomes “deactivated”. We define deactivation
of a CBF (and the corresponding ASIF given by that CBF)
in the following way.

Definition 4 (Deactivation): The CBF is said to be deac-
tivated by the state estimate x̂ at time t if ∃u ∈ Ũ(x̂(t)) such
that u /∈ Ũ(x(t)).

In other words, a state estimate x̂ deactivates a safety filter
if there exist a control action that is deemed safe for x̂ but
unsafe for the true state x. When a safety filter is deactivated,
there might exist a control signal that breaks the forward
invariance of S and, consequently, makes the system (1)
unsafe. A delimitation we make in this paper is, however,
that we are only interested in deactivating safety filters, not
producing unsafe control actions, as stated in the following
remark.

Remark 1: In this paper our focus is not on producing a
control signal u(·) that makes the system unsafe, but rather
to deactivate the safety filter such that unsafe control actions
could be passed to the plant. Deactivation of the safety filter
is a necessary first step in a two-pronged attack, where the
second step would be to modify udes to make x /∈ X .

To deactivate the safety filter, we assume that the adversary
has access to the following information:

Assumption 1: The adversary can freely modify y ← ya.
Assumption 2: The adversary knows the observer gain K,

the measurement function h, and the detector threshold δ.
Assumption 3: The adversary can evaluate the function hS

at the current state estimate x̂.
Assumption 4: The adversary knows the current state es-

timate x̂.
For satisfying Assumption 4, the adversary can either have

direct access to the output of the observer, or run its own
identical filter in parallel. In the latter case the adversary
would need to know the dynamics of the system (i.e., f) and
the initial state, in addition to K and h from Assumption 2.

In summary, the problem that the adversary is interested
in solving is formalized as follows:

Problem 1 (Problem formulation for adversary): Under
Assumptions 1–4, inject false measurements ya such that x̂
deactivates the ASIF defined in (10), without being detected
by the anomaly detector.

In the rest of the paper we consider a specific heuristic
attack policy to tackle Problem 1.

III. STEALTHY DEACTIVATION OF SAFETY FILTER

The main idea behind the proposed attack policy is to
inject false measurements ya to bias the state estimate x̂

such that the safety filter gets a false sense of safety. To
this end, the adversary injects measurements ya to increase
the value of hS(x̂) (recall the hS defines the safe set S in
(6)), which can be interpreted as increasing the perceived
safety margin to the boundary of S. As a result, since the
safety margin is perceived to be larger than it actually is,
the safety filter might erroneously accept dangerous control
actions being applied to the plant.

To be more concrete, by increasing hS(x̂) the set ŨS(x̂) of
control actions that are perceived to be safe becomes larger
since the right-hand-side of the inequality constraint in (9)
becomes smaller. This incites deactivation of the safety filter.

For the adversary to remain stealthy, the injected measure-
ment ya needs to be kept close to the expected measurement
h(x̂) to remain undetected by the anomaly detector; specifi-
cally, ∥ya − h(x̂)∥ ≤ δ.

A. Formalization of the attack

We formalize increasing the safety margin hS subject to
a stealth constraint as finding y that solves

ya(x̂) = argmax
y

ḣS(x̂)

subject to ∥y − h(x̂)∥ ≤ δ

and the dynamics in (3).

(11)

The following theorem makes the adversary’s attack policy
based on (11) more explicit.

Theorem 3: Solving (11) is equivalent to solving

ya(x̂) = argmax
y

∇hS(x̂)
TKy

subject to ∥y − h(x̂)∥ ≤ δ.
(12)

Proof: Expanding ḣS(x̂) and using (3) yields

ḣS(x̂) = ∇hS(x̂)
T ˙̂x

= ∇hS(x̂)
T (f(x̂, u) +K(y − h(x̂))) .

(13)

Since the only term that contains the decision variable y is
∇hS(x̂)

TKy, we can use that term instead of ḣS(x̂) in the
objective function and still get the same optimizer.

An interpretation of the objective in (12) is that Ky is
the change to the state due to the measurement y. Hence,
∇hS(x)

TKy is a measure of how much the change in x
aligns with the gradient of the safety margin hS .

The attack policy obtained through the optimization prob-
lem in (12) does, in fact, take a closed form when the stealth
constraint is expressed in terms of the 2- or ∞-norm.

Corollary 1 (Closed-form attack policy for 2-norm): If
the stealth constraint in (12) is posed in terms of the 2-norm
and ∥KT∇hS(x̂)∥ ̸= 0, the solution ya(x̂) takes the closed
form

ya(x̂) = h(x̂) + δ
KT∇hS(x̂)

∥KT∇hS(x̂)∥2
. (14)

Proof: A proof is provided in Appendix A.
Corollary 2 (Closed-form attack policy for ∞-norm):

If the stealth constraint in (12) is posed in terms of the
∞-norm, the solution ya(x̂) takes the closed form

ya(x̂) = h(x̂) + δ sgn(KT∇hS(x̂)), (15)

3072

where sgn is evaluated element-wise.
Proof: A proof is provided in Appendix B.

Both Corollary 1 and 2 make it straightforward for the
adversary to select a false measurement ya. No matter the
norm, however, one can show that the resulting false-data
injection results in a positive bias for ḣ, this is the main
motivation behind the proposed attack.

Theorem 4: Let ∥·∥∗ denote the dual norm of ∥·∥, defined
as ∥z∥∗ = max∥x∥≤1 z

Tx (see, e.g., [14, §A.1.6] for details.)
If the attack policy y = ya(x̂) is used, the change in the
safety margin hS is given by

ḣS(x̂)
∣∣
y=ya(x̂)

= ∇hS(x̂)
T f(x̂, u) + δ∥KT∇hS(x̂)∥∗.

(16)
Proof: A proof is provided in Appendix C.

From Theorem 4, we see that the attack policy result
in a nonnegative bias δ∥KT∇hS(x̂)∥ to ḣS(x̂), which is
accordance with the objective of the adversary to make the
safety margin hS(x̂) larger (which in turn makes the set
ŨS(x̂) larger.)

An approach for the attacker to remain as covert as
possible, and performing attacks with high impact, is to only
perform an attack if the system is operating close to the edge
of the safe set. For example, an attack can be initiated if
the attack condition hS(x) < γ is satisfied for some user-
specified threshold γ.

We summarize the proposed false-data injection attack in
Algorithm 1.

Algorithm 1 False-data injection attack to deactivate the
safety filter in (10).

Input: K, h(·), hS(·)
1: while attack condition is satisfied do
2: get x̂ (either directly access x̂ or run parallel filter)
3: ya ← formulate and solve (12)
4: inject ya to the system

B. Detections of attack
The anomaly detector that the attack policy in (12) circum-

vents considers only the magnitude of the of the residual
y − h(x̂). However, the attack policy builds on producing
measurements that are biased towards the interior of the
safe set S. As a result, the direction of the residuals will
“unnaturally” align with ∇hS . A possible counter-measure
to the attack is, hence, to detect if the residual aligns with
∇hS . A metric that measures such an alignment is

ρ(y, x̂) ≜
∇hS(x̂)

TK(y − h(x̂))

δ∥KT∇hS(x̂)∥
. (17)

The denominator of (17) is a normalization factor to ensure
that |ρ(y, x̂)| ≤ 1. A large value of ρ signifies that the change
in the state x due to the residual (K(y− h(x̂))) aligns with
∇hS , i.e., is biased towards the interior of S.

Corollary 3: For the attack policy y = ya(x̂), the corre-
lation measure ρ in (17) is

ρ(ya(x̂), x̂) =
∥KT∇hS(x̂)∥∗
∥KT∇hS(x̂)∥

. (18)

−1.5 −1 −0.5 0 0.5
0

0.5

1

x1

x
2

Actual Perceived

Fig. 2: The actual trajectory x(t) and the perceived trajectory
x̂(t) when the false-data injection attack defined by (12) is
performed.

Proof: This is a direct biproduct of the proof of
Theorem 4. Specifically, see (30).

A detector based on (17) can, for example, be implemented
by thresholding a moving average of ρ as

1

T

∫ t

t−T

ρ(y(τ), x̂(τ))dτ > ν, (19)

with the horizon T and threshold ν.

IV. NUMERICAL EXPERIMENTS

To illustrate the proposed false-data injection attack given
in Algorithm 1, we consider the double integrator example
in [15]. Code for all reported experiments is available at
https://github.com/darnstrom/ecc24-sf.

The dynamics of the double integrator system is

f(x, u) =

(
x2

u

)
. (20)

For safety, the admissible states are X = {x ∈ R2 : x1 ≤ 0},
and admissible control actions are U = {u ∈ R : |u| ≤ 1}.

We consider the control invariant set S defined as the zero-
superlevel set of hS(x) = −2x1−x2

2. With the extended class
K function α(x) = 2x, the function hS is a control-barrier
function with the corresponding set of safe control actions

ŨS(x) = {u ∈ U : −2x2(1 + u) ≥ 4x1 + 2x2
2}. (21)

For the observer, the gain K is selected as the stationary
Kalman gain (obtained by using the process noise Q = (1 0

0 1)
and measurement noise R = (0.001 0

0 0.001).) Two scenarios of
measurement functions h are consider: either both x1 and
x2 are measured (i.e., h(x) = (x1

x2
)), or only x1 is measured

(i.e., h(x) = x1). In the detector the 2-norm is used, and its
threshold is set to δ = 0.001.

To activate the safety filter, the desired control action is
constantly saturated at udes = 1, which drives x1(t)→∞ as
t→∞ if there would be no safety filter.

For the implementation of the safety filter, the quadratic
programming solver DAQP [16] is used to solve optimization
problems of the form (12).

The attack is active for the entire duration of the simula-
tion. Since the 2-norm is used in the detector we have that

3073

0 0.5 1 1.5 2 2.5 3

0

2

Time [s]

h
S

Random
Actual (h(x) = x1)
Actual (h(x) = (x1

x2
))

(a) Safety margin

−1.5 −1 −0.5 0 0.5
0

0.5

1

x1

x
2

(b) Trajectories

Fig. 3: The safety margin and resulting state trajectories when an attack with random directions according to (22) is occurring,
and when an adversary performs false-data injection attacks according to (12) with h(x) = x1 and h(x) = (x1

x2
), respectively.

y(t) = h(x̂(t)) + δ KT∇hS(x̂(t))
∥KT∇hS(x̂(t))∥2

for all t ≥ 0 from the
closed-form expression in Corollary 1.

First we consider an attack when both states are measured.
The system is started in x(0) =

(−1.75
0

)
and is simulated

for 3 seconds. Figure 2 illustrates the resulting perceived
trajectory (i.e., x̂(t)) and the actual trajectory of the system
(i.e., x(t)). The green region is the safe set S and the red
region marks the inadmissible states. As can be seen, the
false-data injection makes the observer believe that the states
remain within the safe set, while in actuality they leave it and
pass over to the inadmissible states; the adversary’s objective
of making the system unsafe is, hence, achieved.

Next, we consider the same setup except that only the first
state is measured (i.e., h(x) = x1). The resulting trajectory
x(t) is shown in Figure 3b together with the trajectory from
the first scenario and for when a stealthy attack with random
directions of the form

y = h(x̂) + δ
e

∥e∥2
, e ∼ N (0, 1), (22)

is performed. The corresponding safety margin over the
simulation is shown in Figure 3a. The results illustrate that
the safety filter remains active when a naive random attack
of the form (22) is performed. In contrast, the attack in (12)
deactivates the safety filter, and the safe set is exited quicker
when both states are measured, which is expected since then
the adversary is given more degrees of freedom in the attack.

Finally, we illustrate how the correlation measure ρ(y, x̂)
in (17) can expose the proposed attack. Figure 4a shows ρ
from the first scenario when both states are measured and the
attack is active throughout the entire simulation. In addition,
Figure 4a shows ρ for when an attack with random directions
according to (22) is performed. Note that, in both instances,
the attacks are stealthy w.r.t. the residual y−h(x̂). In contrast
to a random attack, ρ is constantly 1 for the attack from (12)
(as is expected from Corollary 3 since the dual norm of the 2-
norm is also the 2-norm.) Figure 4b shows a corresponding
moving average of ρ according to (19) (with a horizon of
T = 0.25 seconds) for the two attacks. For a threshold of,
e.g., ν = 0.9, an attack that biases state estimates toward the
interior of S is correctly detected when the attack in (12) is
active, while the random attack correctly remains undetected.

Random y = ya(x̂) from (12)

0 1 2 3

−1

0

1

Time [s]

(a) Correlation ρ(y, x̂)

0 1 2 3

0

0.5

1

Time [s]

(b) Moving average (T = 0.25)

Fig. 4: The correlation measure ρ defined in (17) and a mov-
ing average according to (19) under two different attacks: a
stealthy false-data injection attack with random directions
according to (22), and a stealthy false-data injection attack
according to (12). An example threshold (ν = 0.9) for a
detector of the form (19) is shown as a dashed line, which
would detect the attack in (12) after about 0.2 seconds.

V. CONCLUSION

We have proposed a simple and stealthy false-data injec-
tion attack for deactivating CBF-based safety filters. The
attack injects false sensor measurements to bias state esti-
mates to the interior of a safety region, which makes the
safety filter accept unsafe control actions. We have also
proposed a detector that detects biases manufactured by
the proposed attack policy, which complements conventional
detectors when safety filters are used. We have illustrated
that an adversary can successfully make a system unsafe
by performing the proposed false-data injection attack on
a double integrator system. Moreover, we have shown with
the same example that the proposed detector can be used to
detect when such a false-data injection attack is happening.

Future work includes considering similar attacks but with
less information required by the adversary; for example by
considering that only the observations y are available to the
adversary. We will also explore if a receding horizon attack
can be more effective that the attack considered herein.

3074

REFERENCES

[1] S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K. H.
Johansson, and A. Chakrabortty, “A systems and control perspective
of CPS security,” Annual reviews in control, vol. 47, pp. 394–411,
2019.

[2] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A se-
cure control framework for resource-limited adversaries,” Automatica,
vol. 51, pp. 135–148, 2015.

[3] A. Annaswamy, K. Johansson, and G. Pappas, Control for Societal-
scale Challenges: Road Map 2030. IEEE Control Systems Society,
May 2023.

[4] M. S. Chong, H. Sandberg, and A. M. Teixeira, “A tutorial introduction
to security and privacy for cyber-physical systems,” in 2019 18th
European Control Conference (ECC). IEEE, 2019, pp. 968–978.

[5] K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tom-
lin, A. D. Ames, and M. N. Zeilinger, “Data-driven safety filters:
Hamilton-jacobi reachability, control barrier functions, and predictive
methods for uncertain systems,” IEEE Control Systems Magazine,
vol. 43, no. 5, pp. 137–177, 2023.

[6] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational
techniques for the verification of hybrid systems,” Proceedings of the
IEEE, vol. 91, no. 7, pp. 986–1001, 2003.

[7] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[8] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 7130–7135.

[9] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive
control: In the shallows of the DeePC,” in 2019 18th European Control
Conference (ECC). IEEE, 2019, pp. 307–312.

[10] C. Murguia and J. Ruths, “On model-based detectors for linear time-
invariant stochastic systems under sensor attacks,” IET Control Theory
& Applications, vol. 13, no. 8, pp. 1051–1061, 2019.

[11] Y. Mo and B. Sinopoli, “False data injection attacks in control
systems,” in Preprints of the 1st workshop on Secure Control Systems,
vol. 1, 2010.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6572

[13] M. Nagumo, “Über die lage der integralkurven gewöhnlicher differ-
entialgleichungen,” Proceedings of the Physico-Mathematical Society
of Japan. 3rd Series, vol. 24, pp. 551–559, 1942.

[14] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[15] K. L. Hobbs, M. L. Mote, M. C. Abate, S. D. Coogan, and E. M.
Feron, “Runtime assurance for safety-critical systems: An introduction
to safety filtering approaches for complex control systems,” IEEE
Control Systems Magazine, vol. 43, no. 2, pp. 28–65, 2023.

[16] D. Arnström, A. Bemporad, and D. Axehill, “A dual active-set solver
for embedded quadratic programming using recursive LDLT updates,”
IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 4362–
4369, 2022.

APPENDIX

A. Proof of Corollary 1

Proof: First, note that the constraint ∥y − h(x̂)∥2 ≤ δ
can be equivalently stated in the differentiable form
∥y − h(x̂)∥22 ≤ δ2. The KKT-conditions for (12) with the 2-
norm constraint are then given by

KT∇hS(x̂) + λ(y∗ − h(x̂)) = 0 (23a)
∥y∗ − h(x̂)∥2 ≤ δ (23b)

λ ≥ 0 (23c)
λ(δ − ∥y∗ − h(x̂)∥2) = 0 (23d)

If KT∇hS(x̂) ̸= 0 we have that λ ̸= 0 from the stationarity
condition (23a). Hence, we can rewrite (23a) as

y∗ − h(x̂) =
KT∇hS(x̂)

λ
. (24)

Since λ ̸= 0, the complementarity condition (23d) implies
that ∥y∗ − h(x̂)∥2 = δ. Taking the 2-norm of both sides of
(24) therefore gives

δ =
∥KT∇hS(x̂)∥2

λ
⇔ λ =

∥KT∇hS(x̂)∥2
δ

. (25)

Inserting (25) into (24) gives

y∗ = h(x̂) + δ
KT∇hS(x̂)

∥KT∇hS(x̂)∥2
. (26)

B. Proof of Corollary 2
Proof: First, note that the constraint ∥y− h(x̂)∥∞ ≤ δ

can be split into the linear inequalities y − h(x̂) ≤ δ and
−y + h(x̂) ≤ δ. The KKT-conditions for (12) with the ∞-
norm constraint are then given by

KT∇hS(x̂) = −λ+ + λ−, (27a)
y − h(x̂) ≤ δ, −y + h(x̂) ≤ δ (27b)

λ+ ≥ 0, λ− ≥ 0 (27c)
[λ+]i[δ − h(x̂) + y]i = 0, [λ−]i[−δ + h(x̂)− y]i. (27d)

If [KT∇hS(x̂)]i > 0, we have that [λ+]i > 0 for the station-
arity condition in (27a) to hold. Similarly, [KT∇hS(x̂)]i < 0
requires [λ−] > 0. This together with the complementary
conditions (27d) gives

[y]i =

{
h(x̂) + δ, if [KT∇hS(x̂)]i > 0,

h(x̂)− δ, if [KT∇hS(x̂)]i < 0,
(28)

which can be compactly written as

y = h(x̂) + δ sgn(KT∇hS(x̂)). (29)

C. Proof of Theorem 4
Proof: First we expand the expression for ḣ(x̂) and

insert y = ya(x̂) from (15), which gives

ḣS(x̂) = ∇hS(x̂) ˙̂x

= ∇hS(x̂)
T (f(x̂, u) +K (ya(x̂)− h(x̂)))

= ∇hS(x̂)
T f(x̂, u) +∇hS(x̂)

TK (ya(x̂)− h(x̂)) .

Next, we intend to rewrite the second term
∇hS(x̂)

TK (ya(x̂)− h(x̂)). From the definition of ya(x̂)
in (12) we have

∇hS(x̂)
TKya(x̂) = max

y:∥y−h(x̂)∥≤δ
∇hS(x̂)

TKy

= max
ỹ:∥ỹ∥≤1

∇hS(x̂)
TK(δỹ − h(x̂))

= max
ỹ:∥ỹ∥≤1

δ∇hT
SKỹ −∇hT

SKh(x̂)

= ∥δKT∇hS(x̂)∥∗ −∇hS(x̂)
TKh(x̂),

where the variable change ỹ = 1
δ (y − h(x̂)) has been made

in the second equality and the definition of ∥ · ∥∗ has been
used in the last equality. Equivalently, we then have

∇hS(x̂)
TK(ya(x̂)− h(x̂)) = ∥δKT∇hS(x̂)∥∗. (30)

Inserting this in the expression of ḣS(x̂) gives the desired
result.

3075

