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Abstract— Redundant robotic systems allow for the simulta-
neous execution of multiple tasks. It is often desirable to have
priority between these tasks, such that lower priority tasks do
not interfere with higher priority tasks. Many existing methods
for task-priority control, while providing stability and strict
priority between tasks, do not take into account the overall
performance of the closed-loop system. This paper presents an
optimization-based framework for dynamic task-priority con-
trol of redundant robotic systems, providing strict priority be-
tween tasks while improving the performance of the closed-
loop system relative to a user-defined performance metric. The
method is based on using a nominal dynamic task-priority con-
trol law together with a hierarchical control Lyapunov function
based model-predictive control method. The proposed method
is validated in simulation on a redundant robotic system, where
it is shown to provide improved performance over existing dy-
namic task-priority control methods.

I. INTRODUCTION

Many robotic systems, including all vehicle-manipulator
systems, are redundant systems. Robotic systems are said to
be redundant if they have more degrees of freedom than what
is minimally required to achieve an objective. Redundancy
can be exploited in order to satisfy multiple objectives simul-
taneously. Objectives, or tasks, are often divided into groups
according to their priority, such as safety-critical, mission-
related or optimization tasks. Clearly, an optimization task
should not interfere with the execution of a higher-priority
mission-related task. As a consequence, the redundancy res-
olution algorithm must ensure strict prioritization between
different sets of tasks.

Redundancy resolution algorithms ensuring strict-priority
between tasks are known as task-priority controllers. Intro-
duced in [1], improved in [2] and generalized to an arbi-
trary number of tasks in [3], task-priority control has been
widely studied. While these task-priority methods decouple
the system, generating velocity or acceleration references to
be tracked by a dynamic controller, the operational space
formulation, introduced in [4], and further developed and ex-
tended in [5]–[7], directly assigns generalized joint torques
solving the redundancy resolution. Through the use of null-
space operators [8], [9], these methods achieve prioritization
between tasks such that lower-priority tasks do not interfere
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with higher-priority tasks. At the kinematic level, this ensures
that lower-priority tasks do not generate task-velocities in
higher-priority tasks. And at the dynamic level, this ensures
that lower-priority tasks do not generate task-accelerations,
or generalized task-forces, in the task-space of higher-priority
tasks. This property is of particular importance in cases
where some tasks are safety-critical while others are not.

Developed in works such as [10], [11], the Control Lya-
punov Function (CLF) has become a successful generaliza-
tion of the more than a century-old method of Lyapunov.
While a systematic way of finding CLFs does not exist, the
knowledge of one enables the design stabilizing controllers
for nonlinear systems by choosing controllers that satisfy cer-
tain conditions on the time derivative of the CLF. One such
controller, the pointwise min-norm controller, can be found
by pointwise selecting the value that minimizes the norm of
the control input [12]. The design of this controller can be
seen as an optimization problem where the cost is the norm
of the control input together with a constraint on the time
derivative of the CLF. A closed-form solution for this opti-
mization problem exists [12]. There also exist closed-form
solutions of extensions of this problem where the cost is also
a function of the state, satisfying certain properties [13].

When constructed as an optimization problem, constraints
on the time derivative of multiple CLFs can be added to solve
multiple tasks simultaneously [14], but without any priority
between tasks. If strict priority between tasks is required,
the method proposed in [15] achieves strict priority between
tasks by solving a hierarchy of quadratic programs where the
solution for the optimal control input is incrementally refined
to solve multiple tasks while constraining the solutions to
not interfere with higher-priority tasks.

The CLF-based methods can choose between a large num-
ber of feasible control inputs, but typically one is chosen by
minimizing a cost function pointwise in time. However, this
choice of control input might not be optimal when we con-
sider the same cost function integrated over a time horizon.
Receding horizon control, or model predictive control, em-
ploys a model of the system to predict the future behaviour
of the closed-loop system, both to achieve stability, and im-
prove performance. The method proposed by [13] combines
model predictive control, to yield improved performance with
respect to a cost function over a time horizon, with CLFs to
guarantee stability.

In this paper we present a framework for dynamic task-
priority control of redundant robotic systems based on CLFs
and model predictive control. This framework allows for an
arbitrary number of tasks spread over an arbitrary number of
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priority levels, with strict priority between tasks at different
priority levels. Moreover, it uses ideas from model predic-
tive control to improve the performance of the closed-loop
system.

This paper is organized as follows. Section II presents
relevant background material. Section III presents the main
contributions of the paper. Section IV presents the design of
a nominal task-priority control law required in the method
proposed in Section III. Section V presents our results from a
simulation study where we apply the method to a redundant
robotic system. Finally, Section VI presents our conclusions.

II. BACKGROUND MATERIAL

This section presents background material relevant to the
remaining parts of the paper. We start by presenting con-
trol Lyapunov functions (CLFs) and corresponding pointwise
min-norm control laws. We then give a brief overview of the
receding horizon CLF-based method from [13], that com-
bines CLFs with ideas from optimal control to improve the
performance of a nominal control law. Finally, we present the
hierarchical dynamic task-prioritization method using CLFs
from [15] that solves redundancy resolution, dynamic control
and control allocation simultaneously.

A. Control Lyapunov Functions

Consider a nonlinear control affine system

ẋ = f(x) + g(x)u (1)

where f, g are locally Lipschitz, x ∈ D ⊂ Rn, u ∈ U ⊂
Rp is the set of admissable control inputs, and D and U
are closed. We define a control Lyapunov function similarly
to [16] as a continously differentiable candidate Lyapunov
function V (x) satisfying

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (2a)
inf
u∈U

[LfV (x) + LgV (x)u+ σ(x)] < 0, ∀x ̸= 0 (2b)

where α1 and α2 are K∞ functions, and σ is a continuous
positive definite function. That is, a CLF is a candidate Lya-
punov function for which the derivative can be made negative
pointwise by a choice of control input. Assuming we have a
CLF, solving the optimization problem

min
u∈U

uTu

s.t. LfV (x) + LgV (x)u+ σ(x) ≤ 0
(3)

yields a pointwise min-norm stabilizing controller. By defin-
ing

ψ0(x) := LfV (x) + σ(x) (4)

ψ1(x) := [LgV (x)]
T (5)

the optimization problem (3) can be solved [12], yielding the
min-norm controller

u(x) =

{
− ψ0(x)ψ1(x)

ψT
1 (x)ψ1(x)

when ψ0(x) > 0

0 when ψ0(x) ≤ 0
(6)

B. Receding Horizon Control using Control Lyapunov Func-
tions

Since, by definition, the min-norm control law (6) only
minimizes the cost pointwise, we might want to improve
the solution by solving an optimization problem over a time
horizon. One method building on this idea is proposed in
[13]. This method starts by simulating the system following
the min-norm control law forward in time over a time horizon
from t to t+T . Then, a receding horizon control problem is
solved to improve this solution. The receding horizon control
problem proposed by [13] is given by

inf
u(·)

∫ t+T

t

(
q(x(τ)) + u(τ)Tu(τ)

)
dτ

s.t. ẋ(τ) = f(x(τ)) + g(x(τ))u(τ),∀τ ∈ [t, t+ T ]

u(τ) ∈ U,∀τ ∈ [t, t+ T ]

LfV (x(t)) + LgV (x(t))u(t) + σ(x) ≤ 0

V (x(t+ T )) ≤ V (x∗(t+ T ))

(7)

where q(x) is a continuously differentiable and positive
semidefinite cost function, V (x(t+ T )) ≤ V (x∗(t+ T )) is
a terminal constraint on the value of the CLF at the end of
the time horizon, and x∗(·) is the state along the trajectory
generated by following the min-norm controller.

C. Task Prioritization through Control Lyapunov Functions

For the nonlinear control affine system in (1) we define a
task as a function

y = h(x) ∈ Rm (8)

that we want to drive to zero. The input-output dynamics for
such a task becomes

y(ρ) = Lρfh(x) + LgL
ρ−1
f h(x)u (9)

under the assumption that

LgL
k
fh(x) = 0, 0 ≤ k ≤ ρ− 2

LgL
ρ−1
f h(x) ̸= 0

(10)

Furthermore, by defining the transverse states η =
col

(
y, ẏ, . . . , y(ρ−1)

)
∈ X ⊂ Rρm, and the internal dynamic

states z ∈ Z ⊂ Rn−ρm the dynamics of the system (1) can
be expressed as

η̇ = f̄(η, z) + ḡ(η, z)u

ż = fz(η, z)
(11)

Assuming we have a CLF V (η) that satisfies

inf
u∈U

[LfV (η, z) + LgV (η, z)u+ σ(η)] < 0 (12)

for all (η, z) such that η ̸= 0, we can solve a similar opti-
mization problem to (3)

min
u∈U

uTu

s.t. Lf̄V (η, z) + LḡV (η, z)u+ σ(η) ≤ 0
(13)

to get a min-norm stabilizing controller for the system (11).
A method for task-priority control based on CLFs is found
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in [15]. It considers the case where we have a system on
the form (1) and Z =

∑k
i=1 Zi total tasks spread over

k priority levels with Zi tasks at each priority level i =
1, 2, . . . , k. Each task, defined as an output yi = hi(x) ∈
Rmi for i = 1, 2, . . . , Z that we want to regulate to zero,
has a corresponding CLF Vi. We define the priority index
p ∈ {1, 2, . . . , k}, and the number of tasks up to and in-
cluding the priority level p as Z̄p = Z1 + Z2 + . . . + Zp.
Given a priority level p, we define a set of indices of all the
tasks on all priority levels up to, and including, the current
priority level p as Ip = {1, 2, . . . , Z̄p}. We also define the
set of indices for the tasks at the next priority level p+1 as
Jp = {Z̄p+1, Z̄p+2, . . . , Z̄p+1}. The method starts by first
solving the optimization problem

min
u∈U

uTu+
∑
j∈J1

νjδ
2
j

s.t. Lf̄iVi(ηi, zi) + LḡiVi(ηi, zi)u+ σi(ηi) ≤ 0 ∀i ∈ I1
Lf̄jVj(ηj , zj) + LḡjVj(ηj , zj)u+ σj(ηj) ≤ δj ∀j ∈ J1

(14)
where δj > 0 are slack variables for the CLF constraints
for tasks at priority level p = 2, and νj > 0 are constant
weights for the slack variables. This optimization problem
solves for a min-norm stabilizing input that satisfies (12) for
the Z1 tasks at priority level p = 1, while attempting to solve
the tasks at the next priority level by including a slacked
version of the constraint. Assuming the system is redundant
with respect to the Zp tasks at priority level p, we can then
use the ideas from [15] to further refine the solution to also
consider the set of tasks at the next priority level. To do this
we, iteratively, for p = 2, 3, . . . , k−1, solve the optimization
problem

min
u∈U

uTu+
∑
j∈Jp

νjδ
2
j

s.t. LḡiViu ≤ LḡiViu
∗
p−1 ∀i ∈ Ip

Lf̄jVj + LḡiVju+ σj(ηj) ≤ δj ∀j ∈ Jp

(15)

where u∗p−1 is the optimal control input given by the opti-
mization problem for the previous priority level p− 1. This
effectively allows for strict prioritization between tasks at
different priority levels due to the constraint

LḡiViu ≤ LḡiViu
∗
p−1 ∀i ∈ Ip (16)

only allowing the tasks at priority level p to be solved if
it is possible without interfering with tasks at priority level
p − 1. It also allows for soft prioritization between tasks at
the same priority level through the weights {νj}j∈Jp on the
slack variables. See the original article [15] for more details.

III. MODEL PREDICTIVE DYNAMIC TASK-PRIORITY
CONTROL

This section presents the main results of the paper, a
model predictive control-based method for dynamic task-
priority control, building on the ideas behind the method
for receding horizon control using CLFs found in [13] and
the CLF-based task prioritization framework found in [15].

Assume we have a system model on the form (1) and a set of
Z tasks with corresponding CLFs distributed over k priority
levels as described in Section II-C. Additionally we define
the set of indices for all the tasks as T = {1, 2, . . . , Z}.
Assume the existence of a (potentially suboptimal) nominal
task-priority control law u = κ(x). At time t we use the
system model and the nominal control law to simulate
the system forward in time over the interval [t, t + T ],
where T > 0 is the prediction horizon. We then solve the
optimization problem

min
u(·)

∫ t+T

t

c1 (x(τ), u(τ)) + ∑
j∈Jp

νjδ
2
j (τ)

 dτ

s.t.
ẋ(τ) = f(x(τ)) + g(x(τ))u(τ),∀τ ∈ [t, t+ T ]

u(τ) ∈ U,∀τ ∈ [t, t+ T ]

Lf̄iVi (ηi(t), zi(t)) + LḡiVi (ηi(t), zi(t))u(t) + σi ≤ 0,∀i ∈ I1
Lf̄jVj (ηj(t), zj(t)) + LḡjVj (ηj(t), zj(t))u(t) + σj ≤ δj ,∀j ∈ J1
Vl (ηl(t+ T ), zl(t+ T )) ≤ Vl

(
η∗l,0(t+ T ), z∗l,0(t+ T )

)
,∀l ∈ T

(17)
where c1 (x, u) is a continuously differentiable and positive
semi-definite cost function, η∗l,0(t+T ) and z∗l,0(t+T ) are the
values of transverse and internal dynamic states for the task
with index l at time t+T following the nominal control law
u = κ(x) over the interval [t, t+T ]. Now, let u∗1(·) and x∗1(·)
be the control input and the state along the optimal trajec-
tory found by solving (17). We then, similarly to the method
from [15] presented in section II-C, try to further refine the
solution to also consider the set of tasks at the next priority
level. This is done by iteratively, for p = 2, 3, . . . , k − 1,
solving the optimization problem

min
u(·)

∫ t+T

t

cp (x(τ), u(τ)) + ∑
j∈Jp

νjδ
2
j (τ)

 dτ

s.t.
ẋ(τ) = f(x(τ)) + g(x(τ))u(τ),∀τ ∈ [t, t+ T ]

u(τ) ∈ U,∀τ ∈ [t, t+ T ]

LḡiVi (ηi(t), zi(t))u(t) ≤ LḡjVi (ηi(t), zi(t))u
∗
p−1(t) ∀i ∈ Ip

Lf̄jVj (ηj(t), zj(t)) + LḡjVj (ηj(t), zj(t))u(t) + σj ≤ δj ∀j ∈ Jp
Vl(ηl(t+ T ), zl(t+ T )) ≤ Vl(η

∗
l,p−1(t+ T ), z∗l,p−1(t+ T )) ∀l ∈ T

(18)
where cp (x, u) is a continuously differentiable and positive
semi-definite cost function, u∗p−1(·), η∗l,p−1(·) and z∗l,p−1(·)
now are the optimal control input, transverse and internal
dynamic states along the optimal trajectory found by solving
the previous optimization problem for priority level p − 1.
This scheme can be seen as a receding horizon variation of
the pointwise optimization problems (14)-(15), but with some
modifications: We are constraining the solution to satisfy the
CLF condition, but only for the first time step. Additionally,
a terminal constraint on the Lyapunov function value for each
task is added. This constrains the solutions to those where
the value of the Lyapunov function for each task at time
t + T is smaller what is would be following the nominal
control law u = κ(x). The proposed method is summarized
in Algorithm 1.
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Algorithm 1 Hierarchical Model Predictive Dynamic Task-
Priority Control using Control Lyapunov Functions
INPUT: t, T , x(t), κ(x), {cp(x, u)}p∈{1,...,k}, {νi}i∈T,
{Vi}i∈T
OUTPUT: u∗k−1

Simulate the system forward in time over [t, t+ T ] using
the nominal control law κ(x) to obtain {η∗l,0(t + T )}l∈T
and {z∗l,0(t+ T )}l∈T
Solve (17) to obtain u∗1, {η∗l,1(t + T )}l∈T and {z∗l,1(t +
T )}l∈T
for p = 2, 3, . . . , k − 1 do

Solve (18) to obtain u∗p, {η∗l,p(t+T )}l∈T and {z∗l,p(t+
T )}l∈T
end for
return u∗k−1

IV. CONSTRUCTING A NOMINAL TASK-PRIORITY
CONTROL LAW

In this section we construct a dynamic task-priority control
law, based on input-output feedback linearization and min-
norm controllers, for use as the nominal controller required
in the method proposed in Section III.

A. Dynamic Task-Priority Control

Many robotic systems can be modeled as a second-order
system on the form

ẋ1 = F (x1)x2 (19a)

ẋ2 =M(x1)
−1 (u− C(x1, x2)x2 −G(x1)) (19b)

with state variables x1 ∈ Rn1 , x2 ∈ Rn2 and control input
u ∈ Rp, where M(x1) is the inertia matrix, C(x1, x2) is the
Coriolis-centripetal matrix and G(x1) is a vector of gravita-
tional forces. For a task

yi = hi(x1) ∈ Rmi (20)

we define the task error as

ỹi = hi(x1)− hi,d ∈ Rmi (21)

where hi,d ∈ Rmi is the desired value for task yi. The task-
error derivative is

˙̃yi =
∂h(x1)

∂x1
ẋ1 (22)

=
∂h(x1)

∂x1
F (x1)︸ ︷︷ ︸

Ji(x1)

x2 (23)

and the task-error dynamics are given by

¨̃yi = Ji(x1)ẋ2 + J̇i(x1, x2)x2 (24)

For readability we omit function dependencies for the rest
of this Section. In the case where we have one task, y1, it is
clear that if we define u = JT1 F1, where F1 is a generalized
task force, we can rewrite the task-error dynamics as

Λ1
¨̃y1 + Λ1

(
J1M

−1 (Cx2 +G)− J̇1x2

)
= F1 (25)

where
Λ1 =

(
J1M

−1JT1
)−1 ∈ Rm1×m1 (26)

If the system (19) is redundant with respect to the task y1,
we can define a null-space operator

N = I − JT1 J̄
T
1 (27)

where J̄1 is a weighted pseudoinverse of J1 given by

J̄1 =M−1JT1
(
J1M

−1JT1
)−1 ∈ Rn2×m1 (28)

Importantly, it can be shown that N satisfies

J1M
−1N = 0 (29)

making it possible to solve an auxiliary task in the null-space
of y1 by using the input [4]

u = JT1 F1 +Nτ0 (30)

where τ0 is some input solving the auxiliary task. This
achieves strict priority between the tasks in the sense that
the auxiliary task never generates an acceleration in the task-
space of the first task, y1, due to the property (29).

B. Extension to k Tasks

The scheme presented above in Section IV-A can be ex-
tended to a set of k tasks [5] by defining null-space operators
Ni recursively as

N1 = I

Nk+1 =
(
I −NkJ

T
k J̄

T
k

)
Nk

(31)

where J̄k is a dynamically consistent pseudoinverse defined
as the weighted pseudoinverse

J̄i =M−1JTi Λi ∈ Rn×m (32)

and Λi is the task inertia matrix given by

Λi =
(
JiN

T
i M

−1NiJ
T
i

)−1

=
(
JiM

−1NiJ
T
i

)−1
(33)

This null-space operator can be shown to satisfy

JiM
−1Nj = 0 ∀i < j (34)

Thus, for a set of k tasks, using the control law

u =

k∑
j=1

NjJ
T
j τj

=
[
JT1 N2J

T
2 . . . NkJ

T
k

]︸ ︷︷ ︸
T (x1)


τ1
τ2
...
τk


︸ ︷︷ ︸
τ

= T (x1)τ

(35)

where τi ∈ Rmi is a generalized force in the task space
of task i, achieves priority between tasks in the sense that
generalized task forces do not generate accelerations in the
task-space of higher-priority tasks, due to property (34).
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C. Input-output Feedback Linearization for Task-Priority
Control

The dynamic task-priority method presented above is used
in [17] to design an input-output feedback linearizing control
law. Using the control law (35) the input-output dynamics of
the system are given by

¨̃y1
¨̃y2
...
¨̃yk


︸ ︷︷ ︸

¨̃y

=


J1M

−1T (x1)
J2M

−1T (x1)
...

JkM
−1T (x1)


︸ ︷︷ ︸

A(x1)

τ +


b1(x1, x2)
b2(x1, x2)

...
bk(x1, x2)


︸ ︷︷ ︸

b(x1,x2)

(36)

where

bi(x1, x2) = −JiM−1 (Cx2 +G) + J̇ix2 (37)

and

A(x1) =


J1M

−1JT1 0m1×m2
0m1×m3

. . . 0m1×mk

J2M
−1JT1 J2M

−1N2J
T
2 0m2×m3

. . . 0m2×mk

J3M
−1JT1 J3M

−1N2J
T
2 J3M

−1N3J
T
3

. . . 0m3×mk

...
...

...
. . .

...
JkM

−1JT1 JkM
−1N2J

T
2 JkM

−1N3J
T
3 . . . JkM

−1NkJ
T
k


(38)

due to the property of the null-space operator (31) that
JiM

−1Nk = 0 for i < k. Assuming [17, Theorem 1] is
satisfied, a feedback-linearizing control law given by

τ = A−1(x) (µ− b(x)) (39)

can then be used to transform the system to m =
∑k
i=1mi

fully linearized and independent single-input single-output
systems 

¨̃y1
¨̃y2
...
¨̃yk

 =


µ1

µ2

...
µk

 (40)

D. Nominal Min-Norm Control Law

Since all tasks are relative degree two, we define ηi =
col

(
ỹi, ˙̃yi

)
. Using the input-output feedback linearizing con-

trol law (39) to transform the system to the form (40), the
dynamics of ηi become

η̇i = Fiηi +Giµi (41)

with Fi and Gi given by

Fi =

[
0mi×mi

Imi×mi

0mi×mi
0mi×mi

]
, Gi =

[
0mi×mi

Imi×mi

]
(42)

We can then construct rapidly exponentially stabilizing con-
trol Lyapunov functions (RES-CLFs) following [18] to sta-
bilize each task at a rate ϵi by using the candidate control
Lyapunov function

Vϵi(ηi) = ηTi Pϵiηi (43)

where

Pϵi =

[
1
ϵi
I 0

0 I

]
Pi

[
1
ϵi
I 0

0 I

]
(44)

and Pi = PTi > 0 is the solution to the continuous time
algebraic Riccati equation

FTi Pi + PiFi − PiGiG
T
i Pi +Qi = 0 (45)

for some positive definite matrix Qi. We then choose the
function σi(ηi) for each task as

σi(ηi) =
γi
ϵi
Vi(ηi) (46)

where γi =
λmin(Qi)
λmax(Pi)

> 0. Using this, a min-norm controller
µi = κi(x) can be designed as in (6) for each task, where
κi(x) now is given by

κi(x) =

{
−ψi,0(x)ψi,1(x)

ψT
i,1(x)ψi,1(x)

when ψi,0(x) > 0

0 when ψi,0(x) ≤ 0
(47)

with
ψi,0(x) := Lf̄iVi (ηi) + σi(ηi)

ψi,1(x) := [LḡiVi (ηi)]
T (48)

where

Lf̄iVi = ηTi
(
FTi Pϵi + PϵiFi

)
ηi (49)

LḡiVi = 2ηTi PϵiGi (50)

The full nominal task-priority control law u = κ(x) is given
by

κ(x) = T (x1)A
−1(x)(µ− b(x)) (51)

which solves the task-priority control problem with strict pri-
ority between tasks at different priority levels.

V. CASE STUDY: TWO-LINK MANIPULATOR ON A CART

We will now consider a two-link manipulator on a cart,
where m0, m1 and m2 are the masses of the cart, first and
second link of the manipulator. Let I1, I2 be the moments of
inertia around the mass-center of each link, and l1, l2 be the
distance from the start of each link to the center of mass. Fi-
nally, L1, L2 are the total lengths of each link. We assume the
system is fully actuated such that the we can directly control
the force on the cart and the torques applied to the joints. Let
x1 = col(p, θ1, θ2), where p is the horizontal position of the
cart and θ1, θ2 are the angles from vertical of the first and
second link, respectively. Letting x2 = ẋ1, the dynamics of
the system are described by the nonlinear second-order dif-
ferential equation on the form (19) with F (x1) = I3×3 and

M(x1) =

 m0 +m1 +m2 (m1l1 +m2L1) cos θ1 m2l2 cos θ2
(m1l1 +m2L1) cos θ1 m1l

2
1 +m2L

2
1 + I1 m2L1l2 cos (θ1 − θ2)

m2l2 cos θ2 m2L1l2 cos (θ1 − θ2) m2l
2
2 + I2



C(x1, x2) =

0 − (m1l1 +m2L1) sin θ1θ̇1 −m2l2 sin θ2θ̇2
0 0 m2L1l2 sin (θ1 − θ2) θ̇2
0 −m2L1l2 sin (θ1 − θ2) θ̇1 0



G(x1) =

 0
− (m1l1 +m2L1) g sin θ1

−m2gl2 sin θ2


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It can also be expressed on the form (1) by defining x =
col(x1, x2) and

f(x) =

[
x2

−M−1(x1) (C(x1, x2)x2 +G(x1))

]
(52)

g(x) =

[
03×3

M−1(x1)

]
(53)

A. Tasks

The first task we will consider is the cart position defined
as

y1 = p (54)

The second task we will consider is the position of the end of
the second link, which we will call the end-effector, defined
by

y2 =

[
xee
yee

]
=

[
p+ L1 sin(θ1) + L2 sin(θ2)
hc + L1 cos(θ1) + L2 cos(θ2)

]
(55)

where hc is the vertical position of the center of the cart.
The last task we consider is the angle of the first joint

y3 = θ1 (56)

B. CLF Design

We now want to design the CLFs required in the optimiza-
tion problems (17)-(18). Since all tasks have relative degree
two, we can define ηi = col

(
ỹi, ˙̃yi

)
which is governed by

the differential equation

η̇i = Fiηi +Gi

(
JiM

−1 (u− Cx2 −G) + J̇ix2

)
(57)

where Fi and Gi are defined as in (42). We can then construct
RES-CLFs identically to (43), to stabilize each task at a rate
ϵi. Thus, for these CLFs we have

Lf̄iVi = ηTi
(
FTi Pϵi + PϵiFi

)
ηi

+ 2ηTi PϵiGi

(
−JiM−1 (Cx2 +G) + J̇ix2

)
LḡiVi = 2ηTi PϵiGiJiM

−1u

(58)

To solve the continuous time algebraic Riccati equation (45)
for Pi we chose Qi = I2mi×2mi

where mi is the dimension
of each task. We use the same functions σi(ηi) as in (46).
We choose the values

ϵ1 = 3, ϵ2 = 4, ϵ3 = 4 (59)

for the tasks y1, y2, y3 defined in Section V-A. We use the
same values ϵi for the CLFs defined here for the CLFs used
in the nominal controller designed in Section IV-D.

C. Model Predictive Task-Priority Control Law

We spread the three defined tasks on three priority levels
p = {1, 2, 3} such that

I1 = {1}, I2 = {1, 2} (60)

and
J1 = {2}, J2 = {3} (61)

in the optimization problems (17)-(18). As the nominal con-
trol law for Algorithm 1, we use the input-output feedback

linearizing task-priority control law (51). The cost functions
in (17)-(18) are chosen to be

cp(x, u) = φuTu+
∑

i∈Ip∪Jp

λiηi(x)
T ηi(x) (62)

for all priority levels p ∈ {1, 2, 3}, where φ > 0 and λi >
0 are constant weights. These quantities effectively penalize
tracking-errors and large control inputs, respectively, over the
prediction horizon. We choose φ = 0.1 and λi = 50 for all
i ∈ Ip ∪ Jp and all p ∈ {1, 2, 3}. We use a relatively short
prediction horizon of T = 0.5 s

D. Comparison with the Nominal Min-Norm Control Law

Here we compare the proposed method, using the con-
troller designed in Section IV-D as a nominal controller, with
only using the nominal min-norm controller from Section IV-
D. We set the desired value for each task over the simulation
as a series of steps ∆hi,d from the start value y(x(0)) for
each task. These steps are chosen to be

t 0 50 100
∆h1,d 1.1 0 −1
∆h2,d [1, 0]T [0, 0.1]T [−1,−0.1]T

∆h3,d 0 0 0

(63)

and the initial state x(0) of the system is initialized to

x(0) =

 0m
π
6 rad
π
3 rad

 (64)

Figures 1 - 4 show results in simulation comparing the
proposed method with the nominal min-norm task-priority
controller. In Figures 1 and 2 we can clearly see that the
proposed method achieves faster convergence to the desired
value for the first two tasks y1 and y2, with only a small
overshoot for the second task. As seen in Figure 4 there are
small spikes in the control input due to the fact that the de-
sired value changes discontinuously, but from t = 25 s the
control input is in fact similar to, or smaller than, using the
nominal controller.

Fig. 1. Cart position
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Fig. 2. End-effector position

Fig. 3. Angle of the first joint

E. Comparison with a PD Control Law

We now compare the proposed method, using the con-
troller designed in Section IV-D as a nominal controller, with
a control law using the input-output feedback linearizing con-
trol law (39) together with a PD control law for each task.
The PD control law is given by

µi = −Kp,iỹi −Kd,i
˙̃yi (65)

We let Kp,i = 1 and Kd,i = 5 for all tasks. We use the
same initial value for x(0) and desired set-point values as in
Section V-D. As we can see from Figures 5 - 7, the proposed
method has slightly faster convergence to the desired value
than the PD control law. The spike in control inputs at t =
0 s is slightly larger, but the spikes at subsequent set-point
changes are smaller.

VI. CONCLUSIONS

This paper has presented a hierarchical model predic-
tive dynamic task-priority control method using control Lya-
punov functions, allowing for an arbitrary number of tasks
spread over an arbitrary number of priority levels with strict
priority between tasks at different priority levels. The method
uses model predictive control to improve the closed-loop
performance of the system relative to a user specified cost
function. The proposed method is verified in simulation on a

Fig. 4. Control inputs

Fig. 5. Cart position

redundant robotic system where it shows good performance
compared with existing dynamic task-priority control meth-
ods, without requiring higher control-efforts.
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